1
|
Zhang G, Zhou D, Hu R, Qin A, Tang BZ. Recent Advances in Aggregation-Induced Emission Bioconjugates. Bioconjug Chem 2025; 36:609-626. [PMID: 40167757 DOI: 10.1021/acs.bioconjchem.5c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Fluorescence imaging technology is playing increasing roles in modern personalized and precision medicine. Thanks to their excellent photophysical properties, organic luminogens featuring aggregation-induced emission (AIE) characteristics (AIEgens) have attracted considerable attention over the past two decades. Because of their superior biocompatibility, ease of processing and functionalization, excellent water solubility, high responsiveness, and exceptional signal-to-noise ratio (SNR) for biotargets, AIE bioconjugates, formed by covalently linking AIEgens with biomolecules, have emerged as an ideal candidate for bioapplications. In this review, we summarize the progress in preparation, properties, and application of AIE bioconjugates in the last five years. Moreover, the challenges and opportunities of AIE bioconjugates are also briefly discussed.
Collapse
Affiliation(s)
- Guiquan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Daming Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Rong Hu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| |
Collapse
|
2
|
Lee MMS, Yu EY, Chau JHC, Lam JWY, Kwok RTK, Tang BZ. Expanding Our Horizons: AIE Materials in Bacterial Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2407707. [PMID: 39246197 DOI: 10.1002/adma.202407707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/11/2024] [Indexed: 09/10/2024]
Abstract
Bacteria share a longstanding and complex relationship with humans, playing a role in protecting gut health and sustaining the ecosystem to cause infectious diseases and antibiotic resistance. Luminogenic materials that share aggregation-induced emission (AIE) characteristics have emerged as a versatile toolbox for bacterial studies through fluorescence visualization. Numerous research efforts highlight the superiority of AIE materials in this field. Recent advances in AIE materials in bacterial studies are categorized into four areas: understanding bacterial interactions, antibacterial strategies, diverse applications, and synergistic applications with bacteria. Initial research focuses on visualizing the unseen bacteria and progresses into developing strategies involving electrostatic interactions, amphiphilic AIE luminogens (AIEgens), and various AIE materials to enhance bacterial affinity. Recent progress in antibacterial strategies includes using photodynamic and photothermal therapies, bacterial toxicity studies, and combined therapies. Diverse applications from environmental disinfection to disease treatment, utilizing AIE materials in antibacterial coatings, bacterial sensors, wound healing materials, etc., are also provided. Finally, synergistic applications combining AIE materials with bacteria to achieve enhanced outcomes are explored. This review summarizes the developmental trend of AIE materials in bacterial studies and is expected to provide future research directions in advancing bacterial methodologies.
Collapse
Affiliation(s)
- Michelle M S Lee
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Eric Y Yu
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Joe H C Chau
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Ryan T K Kwok
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
| |
Collapse
|
3
|
Gentili V, Strazzabosco G, Spena R, Rizzo S, Beltrami S, Schiuma G, Alogna A, Rizzo R. Comparison Between Moxifloxacin and Chloramphenicol for the Treatment of Bacterial Eye Infections. CURRENT THERAPEUTIC RESEARCH 2024; 100:100740. [PMID: 38511104 PMCID: PMC10950741 DOI: 10.1016/j.curtheres.2024.100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
Background Moxifloxacin is a bactericidal methoxyquinolone used for the treatment of conjunctivitis and prophylactic therapy in cataract and refractive surgeries. Chloramphenicol is a bacteriostatic organochlorine introduced into clinical practice in 1948 and used mainly in topical preparations because of its known toxicity. Objectives The study aimed to evaluate the in vitro antibacterial effect and the ocular cytotoxicity of these broad-spectrum antibiotics. Methods Antimicrobic activity was tested on 4 bacteria strains (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis), and determined through calculation of MIC and half inhibitory concentration for each microorganism. Antibacterial activity was determined by microdilution method after 24 hours' incubation with 2-fold serial dilutions (2.5 mg/mL to 4.883 µg/mL) of moxifloxacin and chloramphenicol. Disk diffusion test were performed according to European Committee on Antimicrobial Susceptibility Testing methodology. Biofilm formation inhibition and biofilm eradication concentration assay were conducted for P aeruginosa and S epidermidis using the microdilution method. Cytotoxicity of antibiotics was evaluated by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) colorimetric assay on human corneal cell. Results Cytotoxicity of antibiotics was evaluated on human epithelial corneal cells after 4 hours treatment by viability assay. Results showed that corneal cell viability was significantly higher after moxifloxacin treatment compared with chloramphenicol (P < 0.01). Moxifloxacin is characterized by a significantly lower MIC and half inhibitory concentration values and a larger inhibition zone for all the strain tested, with high performance in controlling gram-negative growth, compared with chloramphenicol. Moreover, moxifloxacin showed higher activity compared with chloramphenicol in the inhibition of biofilm formation and in the disruption of biofilm, especially against S epidermidis biofilm. Conclusions The lower corneal cell toxicity and the broader spectrum of antibacterial activity observed with moxifloxacin suggests its use in ophthalmic solution for the treatment of bacterial eye infections.
Collapse
Affiliation(s)
- Valentina Gentili
- Department of Chemical, Pharmaceutical, and Agricultural Science, University of Ferrara, Ferrara, Italy
| | - Giovanni Strazzabosco
- Department of Chemical, Pharmaceutical, and Agricultural Science, University of Ferrara, Ferrara, Italy
| | - Rossella Spena
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Sabrina Rizzo
- Department of Chemical, Pharmaceutical, and Agricultural Science, University of Ferrara, Ferrara, Italy
| | - Silvia Beltrami
- Department of Chemical, Pharmaceutical, and Agricultural Science, University of Ferrara, Ferrara, Italy
| | - Giovanna Schiuma
- Department of Chemical, Pharmaceutical, and Agricultural Science, University of Ferrara, Ferrara, Italy
| | - Andrea Alogna
- Department of Chemical, Pharmaceutical, and Agricultural Science, University of Ferrara, Ferrara, Italy
| | - Roberta Rizzo
- Department of Chemical, Pharmaceutical, and Agricultural Science, University of Ferrara, Ferrara, Italy
| |
Collapse
|
4
|
Anderton AS, Knowles OJ, Rossi-Ashton JA, Procter DJ. Flavin-Mediated Photocatalysis Provides a General Platform for Sulfide C-H Functionalization. ACS Catal 2024; 14:2395-2401. [PMID: 38384945 PMCID: PMC10877610 DOI: 10.1021/acscatal.3c05785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/23/2024]
Abstract
Functionalized sulfides are important in many areas of science, ranging from chemical biology through drug discovery to organic materials chemistry. Sulfides bearing pendant reactive groups in the α-position are particularly useful; however, methods for the selective valorization of simple sulfides or the late-stage functionalization of complex sulfides by the convenient addition of valuable functionality are underexplored. Here we exemplify a general reaction platform for sulfide functionalization by showcasing three modes of α-sulfur C-H functionalization; cyanation, alkenylation, and alkynylation. Using inexpensive and commercially available riboflavin tetraacetate and visible light, decoration of both feedstock and complex sulfides proceeds in a good yield and with high selectivity. Methionine-containing peptides can also be selectively functionalized and a tolerance screen using amino-acid dopants suggests that the platform is compatible with most amino-acid side chains and thus is a potential tool for bioconjugation.
Collapse
Affiliation(s)
| | | | - James A. Rossi-Ashton
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - David J. Procter
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
5
|
Kumar V, Chunchagatta Lakshman PK, Prasad TK, Manjunath K, Bairy S, Vasu AS, Ganavi B, Jasti S, Kamariah N. Target-based drug discovery: Applications of fluorescence techniques in high throughput and fragment-based screening. Heliyon 2024; 10:e23864. [PMID: 38226204 PMCID: PMC10788520 DOI: 10.1016/j.heliyon.2023.e23864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
Target-based discovery of first-in-class therapeutics demands an in-depth understanding of the molecular mechanisms underlying human diseases. Precise measurements of cellular and biochemical activities are critical to gain mechanistic knowledge of biomolecules and their altered function in disease conditions. Such measurements enable the development of intervention strategies for preventing or treating diseases by modulation of desired molecular processes. Fluorescence-based techniques are routinely employed for accurate and robust measurements of in-vitro activity of molecular targets and for discovering novel chemical molecules that modulate the activity of molecular targets. In the current review, the authors focus on the applications of fluorescence-based high throughput screening (HTS) and fragment-based ligand discovery (FBLD) techniques such as fluorescence polarization (FP), Förster resonance energy transfer (FRET), fluorescence thermal shift assay (FTSA) and microscale thermophoresis (MST) for the discovery of chemical probe to exploring target's role in disease biology and ultimately, serve as a foundation for drug discovery. Some recent advancements in these techniques for compound library screening against important classes of drug targets, such as G-protein-coupled receptors (GPCRs) and GTPases, as well as phosphorylation- and acetylation-mediated protein-protein interactions, are discussed. Overall, this review presents a landscape of how these techniques paved the way for the discovery of small-molecule modulators and biologics against these targets for therapeutic benefits.
Collapse
Affiliation(s)
| | | | - Thazhe Kootteri Prasad
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Kavyashree Manjunath
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Sneha Bairy
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Akshaya S. Vasu
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - B. Ganavi
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Subbarao Jasti
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Neelagandan Kamariah
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| |
Collapse
|
6
|
Segawa S, He X, Tang BZ. Metal-free click and bioorthogonal reactions of aggregation-induced emission probes for lighting up living systems. LUMINESCENCE 2024; 39:e4619. [PMID: 37987236 DOI: 10.1002/bio.4619] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023]
Abstract
In 2002, two transformative research paradigms emerged: 'click chemistry' and 'aggregation-induced emission (AIE),' both leaving significant impacts on early 21st-century academia. Click chemistry, which describes the straightforward and reliable reactions for linking two building blocks, has simplified complex molecular syntheses and functionalization, propelling advancements in polymer, material, and life science. In particular, nontoxic, metal-free click reactions involving abiotic functional groups have matured into bioorthogonal reactions. These are organic ligations capable of selective and efficient operations even in congested living systems, therefore enabling in vitro to in vivo biomolecular labelling. Concurrently, AIE, a fluorogenic phenomenon of twisted π-conjugated compounds upon aggregation, has offered profound insight into solid-state photophysics and promoted the creation of aggregate materials. The inherent fluorogenicity and aggregate-emission properties of AIE luminogens have found extensive application in biological imaging, characterized by their high-contrast and photostable fluorescent signals. As such, the convergence of these two domains to yield efficient labelling with excellent fluorescence images is an anticipated progression in recent life science research. In this review, we intend to showcase the synergetic applications of AIE probes and metal-free click or bioorthogonal reactions, highlighting both the achievements and the unexplored avenues in this promising field.
Collapse
Affiliation(s)
- Shinsuke Segawa
- Department of Chemical and Biological Engineering, School of Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Xuewen He
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| |
Collapse
|