1
|
YOON IRISH, HENSELMAN-PETRUSEK GREGORY, YU YIYI, GHRIST ROBERT, SMITH SPENCERLAVERE, GIUSTI CHAD. TRACKING THE TOPOLOGY OF NEURAL MANIFOLDS ACROSS POPULATIONS. ARXIV 2025:arXiv:2503.20629v1. [PMID: 40196150 PMCID: PMC11975052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Neural manifolds summarize the intrinsic structure of the information encoded by a population of neurons. Advances in experimental techniques have made simultaneous recordings from multiple brain regions increasingly commonplace, raising the possibility of studying how these manifolds relate across populations. However, when the manifolds are nonlinear and possibly code for multiple unknown variables, it is challenging to extract robust and falsifiable information about their relationships. We introduce a framework, called the method of analogous cycles, for matching topological features of neural manifolds using only observed dissimilarity matrices within and between neural populations. We demonstrate via analysis of simulations and in vivo experimental data that this method can be used to correctly identify multiple shared circular coordinate systems across both stimuli and inferred neural manifolds. Conversely, the method rejects matching features that are not intrinsic to one of the systems. Further, as this method is deterministic and does not rely on dimensionality reduction or optimization methods, it is amenable to direct mathematical investigation and interpretation in terms of the underlying neural activity. We thus propose the method of analogous cycles as a suitable foundation for a theory of cross-population analysis via neural manifolds.
Collapse
Affiliation(s)
- IRIS H.R. YOON
- Department of Mathematics and Computer Science, Wesleyan University, 265 Church Street Middletown, CT 06459
| | | | - YIYI YU
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA 93106
| | - ROBERT GHRIST
- Department of Mathematics and Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - SPENCER LAVERE SMITH
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA 93106
| | - CHAD GIUSTI
- Department of Mathematics, Oregon State University, 2000 SW Campus Way, Corvallis, Oregon 97331
| |
Collapse
|
2
|
Blanco Malerba S, Pieropan M, Burak Y, Azeredo da Silveira R. Random compressed coding with neurons. Cell Rep 2025; 44:115412. [PMID: 40111998 DOI: 10.1016/j.celrep.2025.115412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 11/20/2023] [Accepted: 02/18/2025] [Indexed: 03/22/2025] Open
Abstract
Classical models of efficient coding in neurons assume simple mean responses-"tuning curves"- such as bell-shaped or monotonic functions of a stimulus feature. Real neurons, however, can be more complex: grid cells, for example, exhibit periodic responses that impart the neural population code with high accuracy. But do highly accurate codes require fine-tuning of the response properties? We address this question with the use of a simple model: a population of neurons with random, spatially extended, and irregular tuning curves. Irregularity enhances the local resolution of the code but gives rise to catastrophic, global errors. For optimal smoothness of the tuning curves, when local and global errors balance out, the neural population compresses information about a continuous stimulus into a low-dimensional representation, and the resulting distributed code achieves exponential accuracy. An analysis of recordings from monkey motor cortex points to such "compressed efficient coding." Efficient codes do not require a finely tuned design-they emerge robustly from irregularity or randomness.
Collapse
Affiliation(s)
- Simone Blanco Malerba
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France; Institute for Neural Information Processing, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Mirko Pieropan
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Yoram Burak
- Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 9190401, Israel; Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Rava Azeredo da Silveira
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France; Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Faculty of Science, University of Basel, 4056 Basel, Switzerland; Department of Economics, University of Zurich, 8001 Zurich, Switzerland.
| |
Collapse
|
3
|
Ma X, Rizzoglio F, Bodkin KL, Miller LE. Unsupervised, piecewise linear decoding enables an accurate prediction of muscle activity in a multi-task brain computer interface. J Neural Eng 2025; 22:016019. [PMID: 39823647 PMCID: PMC11775726 DOI: 10.1088/1741-2552/adab93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/31/2024] [Accepted: 01/17/2025] [Indexed: 01/19/2025]
Abstract
Objective.Creating an intracortical brain computer interface (iBCI) capable of seamless transitions between tasks and contexts would greatly enhance user experience. However, the nonlinearity in neural activity presents challenges to computing a global iBCI decoder. We aimed to develop a method that differs from a globally optimized decoder to address this issue.Approach.We devised an unsupervised approach that relies on the structure of a low-dimensional neural manifold to implement a piecewise linear decoder. We created a distinctive dataset in which monkeys performed a diverse set of tasks, some trained, others innate, while we recorded neural signals from the motor cortex (M1) and electromyographs (EMGs) from upper limb muscles. We used both linear and nonlinear dimensionality reduction techniques to discover neural manifolds and applied unsupervised algorithms to identify clusters within those spaces. Finally, we fit a linear decoder of EMG for each cluster. A specific decoder was activated corresponding to the cluster each new neural data point belonged to.Main results.We found clusters in the neural manifolds corresponding with the different tasks or task sub-phases. The performance of piecewise decoding improved as the number of clusters increased and plateaued gradually. With only two clusters it already outperformed a global linear decoder, and unexpectedly, it outperformed even a global recurrent neural network decoder with 10-12 clusters.Significance.This study introduced a computationally lightweight solution for creating iBCI decoders that can function effectively across a broad range of tasks. EMG decoding is particularly challenging, as muscle activity is used, under varying contexts, to control interaction forces and limb stiffness, as well as motion. The results suggest that a piecewise linear decoder can provide a good approximation to the nonlinearity between neural activity and motor outputs, a result of our increased understanding of the structure of neural manifolds in motor cortex.
Collapse
Affiliation(s)
- Xuan Ma
- Department of Neuroscience, Northwestern University, Chicago, IL, United States of America
| | - Fabio Rizzoglio
- Department of Neuroscience, Northwestern University, Chicago, IL, United States of America
| | - Kevin L Bodkin
- Department of Neurobiology, Northwestern University, Evanston, IL, United States of America
| | - Lee E Miller
- Department of Neuroscience, Northwestern University, Chicago, IL, United States of America
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
- Shirley Ryan AbilityLab, Chicago, IL, United States of America
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States of America
| |
Collapse
|
4
|
Yoon IHR, Henselman-Petrusek G, Yu Y, Ghrist R, Smith SL, Giusti C. Tracking the topology of neural manifolds across populations. Proc Natl Acad Sci U S A 2024; 121:e2407997121. [PMID: 39514312 PMCID: PMC11573501 DOI: 10.1073/pnas.2407997121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Neural manifolds summarize the intrinsic structure of the information encoded by a population of neurons. Advances in experimental techniques have made simultaneous recordings from multiple brain regions increasingly commonplace, raising the possibility of studying how these manifolds relate across populations. However, when the manifolds are nonlinear and possibly code for multiple unknown variables, it is challenging to extract robust and falsifiable information about their relationships. We introduce a framework, called the method of analogous cycles, for matching topological features of neural manifolds using only observed dissimilarity matrices within and between neural populations. We demonstrate via analysis of simulations and in vivo experimental data that this method can be used to correctly identify multiple shared circular coordinate systems across both stimuli and inferred neural manifolds. Conversely, the method rejects matching features that are not intrinsic to one of the systems. Further, as this method is deterministic and does not rely on dimensionality reduction or optimization methods, it is amenable to direct mathematical investigation and interpretation in terms of the underlying neural activity. We thus propose the method of analogous cycles as a suitable foundation for a theory of cross-population analysis via neural manifolds.
Collapse
Affiliation(s)
- Iris H. R. Yoon
- Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT06459
| | | | - Yiyi Yu
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA93106
| | - Robert Ghrist
- Department of Mathematics, University of Pennsylvania, Philadelphia, PA19104
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Spencer LaVere Smith
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA93106
| | - Chad Giusti
- Department of Mathematics, Oregon State University, Corvallis, OR97331
| |
Collapse
|
5
|
Weiss O, Coen-Cagli R. Measuring Stimulus Information Transfer Between Neural Populations through the Communication Subspace. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622283. [PMID: 39574567 PMCID: PMC11580955 DOI: 10.1101/2024.11.06.622283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Sensory processing arises from the communication between neural populations across multiple brain areas. While the widespread presence of neural response variability shared throughout a neural population limits the amount of stimulus-related information those populations can accurately represent, how this variability affects the interareal communication of sensory information is unknown. We propose a mathematical framework to understand the impact of neural population response variability on sensory information transmission. We combine linear Fisher information, a metric connecting stimulus representation and variability, with the framework of communication subspaces, which suggests that functional mappings between cortical populations are low-dimensional relative to the space of population activity patterns. From this, we partition Fisher information depending on the alignment between the population covariance and the mean tuning direction projected onto the communication subspace or its orthogonal complement. We provide mathematical and numerical analyses of our proposed decomposition of Fisher information and examine theoretical scenarios that demonstrate how to leverage communication subspaces for flexible routing and gating of stimulus information. This work will provide researchers investigating interareal communication with a theoretical lens through which to understand sensory information transmission and guide experimental design.
Collapse
Affiliation(s)
- Oren Weiss
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ruben Coen-Cagli
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
6
|
Ma X, Rizzoglio F, Bodkin KL, Miller LE. Unsupervised, piecewise linear decoding enables an accurate prediction of muscle activity in a multi-task brain computer interface. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612102. [PMID: 39314275 PMCID: PMC11419126 DOI: 10.1101/2024.09.09.612102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Objective Creating an intracortical brain-computer interface (iBCI) capable of seamless transitions between tasks and contexts would greatly enhance user experience. However, the nonlinearity in neural activity presents challenges to computing a global iBCI decoder. We aimed to develop a method that differs from a globally optimized decoder to address this issue. Approach We devised an unsupervised approach that relies on the structure of a low-dimensional neural manifold to implement a piecewise linear decoder. We created a distinctive dataset in which monkeys performed a diverse set of tasks, some trained, others innate, while we recorded neural signals from the motor cortex (M1) and electromyographs (EMGs) from upper limb muscles. We used both linear and nonlinear dimensionality reduction techniques to discover neural manifolds and applied unsupervised algorithms to identify clusters within those spaces. Finally, we fit a linear decoder of EMG for each cluster. A specific decoder was activated corresponding to the cluster each new neural data point belonged to. Main results We found clusters in the neural manifolds corresponding with the different tasks or task sub-phases. The performance of piecewise decoding improved as the number of clusters increased and plateaued gradually. With only two clusters it already outperformed a global linear decoder, and unexpectedly, it outperformed even a global recurrent neural network (RNN) decoder with 10-12 clusters. Significance This study introduced a computationally lightweight solution for creating iBCI decoders that can function effectively across a broad range of tasks. EMG decoding is particularly challenging, as muscle activity is used, under varying contexts, to control interaction forces and limb stiffness, as well as motion. The results suggest that a piecewise linear decoder can provide a good approximation to the nonlinearity between neural activity and motor outputs, a result of our increased understanding of the structure of neural manifolds in motor cortex.
Collapse
Affiliation(s)
- Xuan Ma
- Department of Neuroscience, Northwestern University, Chicago, IL, United States of America
| | - Fabio Rizzoglio
- Department of Neuroscience, Northwestern University, Chicago, IL, United States of America
| | - Kevin L. Bodkin
- Department of Neurobiology, Northwestern University, Evanston, IL, United States of America
| | - Lee E. Miller
- Department of Neuroscience, Northwestern University, Chicago, IL, United States of America
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
- Shirley Ryan AbilityLab, Chicago, IL, United States of America
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States of America
| |
Collapse
|
7
|
McMullin MA, Kumar R, Higgins NC, Gygi B, Elhilali M, Snyder JS. Preliminary Evidence for Global Properties in Human Listeners During Natural Auditory Scene Perception. Open Mind (Camb) 2024; 8:333-365. [PMID: 38571530 PMCID: PMC10990578 DOI: 10.1162/opmi_a_00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 02/10/2024] [Indexed: 04/05/2024] Open
Abstract
Theories of auditory and visual scene analysis suggest the perception of scenes relies on the identification and segregation of objects within it, resembling a detail-oriented processing style. However, a more global process may occur while analyzing scenes, which has been evidenced in the visual domain. It is our understanding that a similar line of research has not been explored in the auditory domain; therefore, we evaluated the contributions of high-level global and low-level acoustic information to auditory scene perception. An additional aim was to increase the field's ecological validity by using and making available a new collection of high-quality auditory scenes. Participants rated scenes on 8 global properties (e.g., open vs. enclosed) and an acoustic analysis evaluated which low-level features predicted the ratings. We submitted the acoustic measures and average ratings of the global properties to separate exploratory factor analyses (EFAs). The EFA of the acoustic measures revealed a seven-factor structure explaining 57% of the variance in the data, while the EFA of the global property measures revealed a two-factor structure explaining 64% of the variance in the data. Regression analyses revealed each global property was predicted by at least one acoustic variable (R2 = 0.33-0.87). These findings were extended using deep neural network models where we examined correlations between human ratings of global properties and deep embeddings of two computational models: an object-based model and a scene-based model. The results support that participants' ratings are more strongly explained by a global analysis of the scene setting, though the relationship between scene perception and auditory perception is multifaceted, with differing correlation patterns evident between the two models. Taken together, our results provide evidence for the ability to perceive auditory scenes from a global perspective. Some of the acoustic measures predicted ratings of global scene perception, suggesting representations of auditory objects may be transformed through many stages of processing in the ventral auditory stream, similar to what has been proposed in the ventral visual stream. These findings and the open availability of our scene collection will make future studies on perception, attention, and memory for natural auditory scenes possible.
Collapse
Affiliation(s)
| | - Rohit Kumar
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Nathan C. Higgins
- Department of Communication Sciences & Disorders, University of South Florida, Tampa, FL, USA
| | - Brian Gygi
- East Bay Institute for Research and Education, Martinez, CA, USA
| | - Mounya Elhilali
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Joel S. Snyder
- Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, USA
| |
Collapse
|
8
|
Shinn M. Phantom oscillations in principal component analysis. Proc Natl Acad Sci U S A 2023; 120:e2311420120. [PMID: 37988465 PMCID: PMC10691246 DOI: 10.1073/pnas.2311420120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/18/2023] [Indexed: 11/23/2023] Open
Abstract
Principal component analysis (PCA) is a dimensionality reduction method that is known for being simple and easy to interpret. Principal components are often interpreted as low-dimensional patterns in high-dimensional space. However, this simple interpretation fails for timeseries, spatial maps, and other continuous data. In these cases, nonoscillatory data may have oscillatory principal components. Here, we show that two common properties of data cause oscillatory principal components: smoothness and shifts in time or space. These two properties implicate almost all neuroscience data. We show how the oscillations produced by PCA, which we call "phantom oscillations," impact data analysis. We also show that traditional cross-validation does not detect phantom oscillations, so we suggest procedures that do. Our findings are supported by a collection of mathematical proofs. Collectively, our work demonstrates that patterns which emerge from high-dimensional data analysis may not faithfully represent the underlying data.
Collapse
Affiliation(s)
- Maxwell Shinn
- University College London (UCL) Queen Square Institute of Neurology, University College London, LondonWC1E 6BT, United Kingdom
| |
Collapse
|