1
|
Sowa R, Kurashige Y. Exploring the origin of electron spin polarization in metal-containing chromophore-radical systems via multireference calculations. Phys Chem Chem Phys 2025; 27:9005-9015. [PMID: 40223681 DOI: 10.1039/d4cp04695a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The electron spin polarization (ESP) phenomenon in photoexcited chromophore-radical connected systems was analyzed by multireference electronic structure calculations. We focused on bpy-M-CAT-mPh-NN (bpy = 4,4'-di-tert-butyl-2,2'-bipyridine, M = Pt or Pd, CAT = 3-tert-butylcatecholate, mPh = meta-phenylene, and NN = nitronyl nitroxide) reported by Kirk et al., which is a connected system consisting of a donor-acceptor complex and a radical, and elucidated the mechanism behind the reversal of the sign of photoinduced ESP depending on the metal species. The low-lying electronic states of these molecules were revealed through the multireference theory, suggesting that the ligand-to-ligand charge-transfer states play a significant role. Additionally, several structural factors that influence the energies of the excited states were identified. To enhance our understanding of the ESP, we incorporated spin-orbit coupling as a direct transition term between excited states and explicitly considered its effects on the ESP. The results of evaluating transition rates through a transition simulation indicate that when the influence of spin-orbit coupling is significant, the sign of the ESP in the ground state can reverse. This novel ESP mechanism mediated by spin-orbit coupling may offer fundamental insights for designing molecules to precisely control electron distribution across multiple spin states.
Collapse
Affiliation(s)
- Ryosuke Sowa
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku Kyoto, 606-8502, Japan.
| | - Yuki Kurashige
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku Kyoto, 606-8502, Japan.
- FOREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
- CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
2
|
He L, Jiang B, Peng Y, Zhang X, Liu M. NMR Based Methods for Metabolites Analysis. Anal Chem 2025; 97:5393-5406. [PMID: 40048643 PMCID: PMC11923949 DOI: 10.1021/acs.analchem.4c06477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/07/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Metabolite analysis is essential for understanding the biochemical processes and pathways that sustain life, providing insights into the complex interactions within cellular systems and clinical examinations. This review explores recent applications of nuclear magnetic resonance (NMR) spectroscopy in metabolite studies. Various methods enhancing analytical accuracy for metabolome profiling and metabolic pathway studies, including spectral simplification techniques, quantitative NMR, high-resolution MAS NMR, and isotopic labeling, are discussed. The application of NMR in in situ and in vivo studies is also covered, highlighting in-cell NMR and in vivo MRS techniques. Last but not least, we discuss recent advancements in NMR hyperpolarization, with a focus on dynamic nuclear polarization (DNP), chemically induced dynamic nuclear polarization (CIDNP), para-hydrogen-induced polarization (PHIP), and signal amplification by reversible exchange (SABRE). These advancements offer significant potential for enhancing the sensitivity and accuracy of metabolite studies and are expected to further deepen the study and understanding of metabolites and metabolic pathways.
Collapse
Affiliation(s)
- Lichun He
- State
Key Laboratory of Magnetic Resonance and Atomic Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Innovation Academy
for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 101408, China
| | - Bin Jiang
- State
Key Laboratory of Magnetic Resonance and Atomic Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Innovation Academy
for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 101408, China
| | - Yun Peng
- State
Key Laboratory of Magnetic Resonance and Atomic Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Innovation Academy
for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 101408, China
| | - Xu Zhang
- State
Key Laboratory of Magnetic Resonance and Atomic Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Innovation Academy
for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 101408, China
| | - Maili Liu
- State
Key Laboratory of Magnetic Resonance and Atomic Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Innovation Academy
for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 101408, China
- Optics
Valley Laboratory, Hubei 430074, China
| |
Collapse
|
3
|
Miyamoto H, Okada K, Tada K, Kishi R, Kitagawa Y. Theoretical Study on Singlet Fission Dynamics and Triplet Migration Process in Symmetric Heterotrimer Models. Molecules 2024; 29:5449. [PMID: 39598837 PMCID: PMC11597243 DOI: 10.3390/molecules29225449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/16/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Singlet fission (SF) is a photophysical process where one singlet exciton splits into two triplet excitons. To construct design guidelines for engineering directional triplet exciton migration, we investigated the SF dynamics in symmetric linear heterotrimer systems consisting of different unsubstituted or 6,13-disubstituted pentacene derivatives denoted as X/Y (X, Y: terminal and center monomer species). Time-dependent density functional theory (TDDFT) calculations clarified that the induction effects of the substituents, represented as Hammett's para-substitution coefficients σp, correlated with both the excitation energies of S1 and T1 states, in addition to the energies of the highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO). Electronic coupling calculations and quantum dynamics simulations revealed that the selectivity of spatially separated TT states for heterotrimers increased over 70%, superior to that in the homotrimer: an optimal region of the difference in σp between the substituents of X and Y for the increase in SF rate was found. The origin of the rise in SF rate is explained by considering the quantum interference effect: reduction in structural symmetry opens new interaction paths, allowing the S1-TT mixing, which contributes to accelerating the hetero-fission between the terminal and center molecules.
Collapse
Affiliation(s)
- Hajime Miyamoto
- Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Osaka, Japan
| | - Kenji Okada
- Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Osaka, Japan
| | - Kohei Tada
- Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Osaka, Japan
- Research Center for Solar Energy Chemistry (RCSEC), Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Osaka, Japan
- Center for Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka 560-8531, Osaka, Japan
| | - Ryohei Kishi
- Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Osaka, Japan
- Research Center for Solar Energy Chemistry (RCSEC), Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Osaka, Japan
- Center for Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka 560-8531, Osaka, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita 565-0871, Osaka, Japan
| | - Yasutaka Kitagawa
- Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Osaka, Japan
- Research Center for Solar Energy Chemistry (RCSEC), Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Osaka, Japan
- Center for Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka 560-8531, Osaka, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita 565-0871, Osaka, Japan
- Spintronics Research Network Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI-Spin), Toyonaka 560-8531, Osaka, Japan
| |
Collapse
|
4
|
Mena A, Mann SK, Cowley-Semple A, Bryan E, Heutz S, McCamey DR, Attwood M, Bayliss SL. Room-Temperature Optically Detected Coherent Control of Molecular Spins. PHYSICAL REVIEW LETTERS 2024; 133:120801. [PMID: 39373412 DOI: 10.1103/physrevlett.133.120801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/13/2024] [Indexed: 10/08/2024]
Abstract
Optically interfaced molecular spins are a promising platform for quantum sensing and imaging. Key for such applications is optically detecting coherent spin manipulation at room temperature. Here, using the photoexcited triplet state of organic chromophores (pentacene doped in p-terphenyl), we optically detect coherent spin manipulation with photoluminescence contrasts exceeding 15% at room temperature, both in a molecular crystal and thin film. We further demonstrate how multifrequency spin control could enhance such systems. These results open opportunities for room-temperature quantum sensors that capitalize on the versatility of synthetic chemistry.
Collapse
Affiliation(s)
- Adrian Mena
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
- ARC Centre of Excellence in Exciton Science, School of Physics, UNSW Sydney, Sydney, 2052, New South Wales, Australia
| | | | | | | | | | - Dane R McCamey
- ARC Centre of Excellence in Exciton Science, School of Physics, UNSW Sydney, Sydney, 2052, New South Wales, Australia
| | | | | |
Collapse
|
5
|
Yamauchi A, Fujiwara S, Kimizuka N, Asada M, Fujiwara M, Nakamura T, Pirillo J, Hijikata Y, Yanai N. Modulation of triplet quantum coherence by guest-induced structural changes in a flexible metal-organic framework. Nat Commun 2024; 15:7622. [PMID: 39231937 PMCID: PMC11375101 DOI: 10.1038/s41467-024-51715-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/13/2024] [Indexed: 09/06/2024] Open
Abstract
Quantum sensing has the potential to improve the sensitivity of chemical sensing by exploiting the characteristics of qubits, which are sensitive to the external environment. Modulation of quantum coherence by target analytes can be a useful tool for quantum sensing. Using molecular qubits is expected to provide excellent sensitivity due to the proximity of the sensor to the target analyte. However, many molecular qubits are used at cryogenic temperatures, and how to make molecular qubits respond to specific analytes remains unclear. Here, we propose a material design in which the coherence time changes in response to a variety of analytes at room temperature. We used the photoexcited triplet, which can be initialized at room temperature, as qubits and introduce them to a metal-organic framework that can flexibly change its pore structure in response to guest adsorption. By changing the local molecular density around the triplet qubits by adsorption of a specific analyte, the mobility of the triplet qubit can be changed, and the coherence time can be made responsive.
Collapse
Affiliation(s)
- Akio Yamauchi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Saiya Fujiwara
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
- Center for Molecular Systems (CMS), Kyushu University, Fukuoka, Japan
| | - Mizue Asada
- Institute for Molecular Science, Okazaki, Japan
| | | | | | - Jenny Pirillo
- Department of Chemistry and Biotechnology, School of Engineering, and Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Yuh Hijikata
- Research Center for Net Zero Carbon Society, Institute of Innovation for Future Society, Nagoya university, Nagoya, Japan
| | - Nobuhiro Yanai
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan.
- Center for Molecular Systems (CMS), Kyushu University, Fukuoka, Japan.
- FOREST, CREST, JST, Saitama, Japan.
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 113-0033, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
6
|
Hamachi T, Yanai N. Recent developments in materials and applications of triplet dynamic nuclear polarization. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 142-143:55-68. [PMID: 39237253 DOI: 10.1016/j.pnmrs.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 09/07/2024]
Abstract
Dynamic nuclear polarization (DNP) is a method for achieving high levels of nuclear spin polarization by transferring spin polarization from electrons to nuclei by microwave irradiation, resulting in higher sensitivity in NMR/MRI. In particular, DNP using photoexcited triplet electron spins (triplet-DNP) can provide a hyperpolarized nuclear spin state at room temperature and in low magnetic field. In this review article, we highlight recent developments in materials and instrumentation for the application of triplet-DNP. First, a brief history and principles of triplet-DNP will be presented. Next, important advances in recent years will be outlined: new materials to hyperpolarize water and biomolecules; high-sensitivity solution NMR by dissolution triplet-DNP; and strategies for further improvement of the polarization. In view of these developments, future directions to widen the range of applications of triplet-DNP will be discussed.
Collapse
Affiliation(s)
- Tomoyuki Hamachi
- Department of Applied Chemistry, Graduate School of Engineering, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuhiro Yanai
- Department of Applied Chemistry, Graduate School of Engineering, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan; CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
7
|
Inukai M, Sato H, Miyanishi K, Negoro M, Kagawa A, Hori Y, Shigeta Y, Kurihara T, Nakamura K. Cocrystalline Matrices for Hyperpolarization at Room Temperature Using Photoexcited Electrons. J Am Chem Soc 2024; 146:14539-14545. [PMID: 38754971 DOI: 10.1021/jacs.4c01050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
We propose using cocrystals as effective polarization matrices for triplet dynamic nuclear polarization (DNP) at room temperature. The polarization source can be uniformly doped into cocrystals formed through acid-acid, amide-amide, and acid-amide synthons. The dense-packing crystal structures, facilitated by multiple hydrogen bonding and π-π interactions, result in extended T1 relaxation times, enabling efficient polarization diffusion within the crystals. Our study demonstrates the successful polarization of a DNP-magnetic resonance imaging molecular probe, such as urea, within a cocrystal matrix at room temperature using triplet-DNP.
Collapse
Affiliation(s)
- Munehiro Inukai
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8506, Japan
| | - Haruki Sato
- Graduate School of Science and Technology for Innovation, Tokushima University, Tokushima 770-8506, Japan
| | - Koichiro Miyanishi
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Makoto Negoro
- Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage-Ku, Chiba 263-8555, Japan
- Premium Research Institute for Human Metaverse Medicine, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Akinori Kagawa
- Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Premium Research Institute for Human Metaverse Medicine, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yuta Hori
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Takuya Kurihara
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Koichi Nakamura
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8506, Japan
| |
Collapse
|
8
|
Miyokawa K, Kurashige Y. Zero-Field Splitting Tensor of the Triplet Excited States of Aromatic Molecules: A Valence Full-π Complete Active Space Self-Consistent Field Study. J Phys Chem A 2024. [PMID: 38501814 DOI: 10.1021/acs.jpca.4c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
A method to predict the D tensor in the molecular frame with multiconfigurational wave functions in large active space was proposed, and the spin properties of the lowest triplets of aromatic molecules were examined with full-π active space; such calculations were challenging because the size of active space grows exponentially with the number of π electrons. In this method, the exponential growth of complexity is resolved by the density matrix renormalization group (DMRG) algorithm. From the D tensor, we can directly determine the direction of the magnetic axes and the ZFS parameters, D- and E-values, of the phenomenological spin Hamiltonian with their signs, which are not usually obtained in ESR experiments. The method using the DMRG-CASSCF wave function can give correct results even when the sign of D- and E-values is sensitive to the accuracy of the prediction of the D tensor and existing methods fail to predict the correct magnetic axes.
Collapse
Affiliation(s)
- Katsuki Miyokawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yuki Kurashige
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
- CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|