1
|
Zhang Q, Zhou J, Kao CW, Gao S, Li J, Lu YR, Yuan D, Palaniyandy N, Tan Y. Interfacial Electronic Interactions Induced by Self-Assembled Amorphous RuCo Bimetallenes/MXene Heterostructures for Nitrate Electroreduction to Ammonia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502635. [PMID: 40351078 DOI: 10.1002/smll.202502635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/05/2025] [Indexed: 05/14/2025]
Abstract
Electrocatalytic nitrate reduction to ammonia (NO3RR) is an attractive green route to generate valuable ammonia and remove nitrates in industrial processes. However, under the intense competition of hydrogen evolution reactions (HER), it is a key challenge to improve the selectivity and reduce the energy consumption of the nitrate reduction reaction. Herein, a unique amorphous RuCo Bimetallenes confined on Ti3C2Tx-MXene (RuCo/Ti3C2Tx) is reported as a highly efficient NO3RR catalyst, showing a remarkable Faradaic efficiency for ammonia of 94.7% at -0.2 V versus reversible hydrogen electrode (RHE), with the corresponding high ammonia yield rate of 98.8 mg h-1 mgcat -1 at -0.6 V versus RHE. Significantly, the RuCo/Ti3C2Tx heterostructures are able to operate stably at 1 A cm-2 for over 100 h under membrane electrode assembly (MEA) conditions with a stabilized NH3 Faraday efficiency. In-depth theoretical and operando spectroscopic investigations unveil that the in situ generation of heterojunction via interfacial Ru/Co─O bridges can induce charge redistribution through Ru/Co─O-Ti structure and modulate the electronic structure of RuCo Bimetallenes, significantly promoting *H production and the adsorption and activation of reactants/intermediates, while suppressing HER, thereby boosting NO3RR performance. This study offers a new insight the metal-support interaction for the development of high-performance electrocatalysts.
Collapse
Affiliation(s)
- Qi Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Jing Zhou
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Cheng-Wei Kao
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Shanqiang Gao
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Jilong Li
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Dingwang Yuan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Nithyadharseni Palaniyandy
- Institute for Catalysis and Energy Solutions (ICES), College of Science, Engineering, and Technology (CSET), University of South Africa, Florida Science Campus, Roodepoort, 1709, South Africa
| | - Yongwen Tan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|
2
|
Nguyen TH, Tran DT, Malhotra D, Tran PKL, Dinh VA, Ta TTN, Dong CL, Kim NH, Lee JH. D-Orbital-Modulated Ruthenium Embedded within Functionalized Hollow MXene Networks for Enhanced Hydrazine-Assisted Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502553. [PMID: 40249384 DOI: 10.1002/smll.202502553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/26/2025] [Indexed: 04/19/2025]
Abstract
Electrochemical green hydrogen production via water splitting is an attractive and sustainable pathway; however, the sluggish kinetics of anodic oxygen evolution reaction is still a critical challenge. In this study, an effective electrocatalyst engineering approach is demonstrated by preparing an innovative hybrid of ruthenium d-orbitals-regulated nanoclusters embedding within functionalized hollow Ti3C2 MXene networks (Ru0.91Ni0.09-N/O-Ti3C2) to promote the hydrazine-assisted hydrogen production. A specific charge redistribution is revealed, locally concentrating at interfaces derived from stable Ru(Ni)-N/O-Ti coordination and d-p orbital hybridization. The charge transfer effect from Ni to Ru within Ru0.91Ni0.09 structure and Ru0.91Ni0.09 to N/O-Ti3C2 tailors electronic features of Ru sites to enable reasonable adsorption/desorption toward reactant intermediates. The Ru0.91Ni0.09-N/O-Ti3C2 requires an overpotential of only 29.3 mV for cathodic hydrogen evolution and a low potential of -29.9 mV for anodic hydrazine oxidation to reach 10 mA cm-2, showing excellent stability. The hydrazine-assisted hydrogen production system based on Ru0.91Ni0.09-N/O-Ti3C2 electrodes delivers small cell voltages of 0.02 V at 10 mA cm-2 and 0.92 V at industrial current level of 1.0 A cm-2. This work may open a new electrocatalysis strategy from lab scale to industry for robust and efficient green hydrogen production.
Collapse
Affiliation(s)
- Thanh Hai Nguyen
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Duy Thanh Tran
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Deepanshu Malhotra
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Phan Khanh Linh Tran
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Van An Dinh
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Thi Thuy Nga Ta
- Department of Physics, Tamkang University, New Taipei City, 25137, Taiwan
| | - Chung-Li Dong
- Department of Physics, Tamkang University, New Taipei City, 25137, Taiwan
| | - Nam Hoon Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Joong Hee Lee
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
- Center for Carbon Composite Materials, Department of Polymer & Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| |
Collapse
|
3
|
Shen T, Chen X, Hu Z, Yan Z, Yang L, Sun H, Zhang R, Yu HY. Enhanced Water Splitting Electrocatalysis with Heterointerfacial Cobalt Phosphide In Situ Supported on a Cellulose-Derived Carbon Aerogel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:694-703. [PMID: 39720909 DOI: 10.1021/acs.langmuir.4c03958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
The active site density, intrinsic activity, and supporting substrate of cobalt phosphide catalysts are vital to their performance in alkaline water electrolysis. In this work, a CoP/Co2P loaded on cellulose nanofiber-derived carbon aerogels (CP/CCAs) bifunctional electrocatalyst with a three-dimensional network and heterostructure is illustrated through sequential facile hydrothermal, freeze-drying, and phosphorylation processes. The three-dimensional network of carbon aerogels derived from cellulose nanofibers reveals a specific surface area of 183.41 m2/g, greatly enriching the active sites and facilitating the electron and mass transportation. Besides, interactions between CoP/Co2P with a heterogeneous structure and carbon aerogels modulate the electronic structure to enhance the intrinsic activity of the catalysts. Benefiting from these advantages, CP/CCAs-2 demonstrates a superior oxygen evolution reaction activity (η10 mA cm-2 = 277 mV) over the benchmark RuO2 and a moderate hydrogen evolution reaction performance (η10 mA cm-2 = 63 mV). Density functional theory calculations further reveal that the coupling of CoP/Co2P and cellulose-derived carbon aerogels promotes the water adsorption and activates the H-O bond. As a result, the alkaline electrolyzer assembled with CP/CCAs-2 both as a cathode and an anode shows a low cell voltage of 1.59 V at a current density of 10 mA cm-2 and good stability. This work provides a strategy for phosphide electrocatalysts composited with green carbon carriers for overall water splitting.
Collapse
Affiliation(s)
- Taoyi Shen
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiang Chen
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhongce Hu
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lanlan Yang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hongming Sun
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China
| | - Rui Zhang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hou-Yong Yu
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|
4
|
Zhu D, Huang Y, Shi X, Li R, Wang Z, Peng W, Cao J, Lee S. Enhancing molecular oxygen activation by nitrogen-doped carbon encapsulating FeNi alloys with ultra-low Pt loading. PNAS NEXUS 2025; 4:pgae594. [PMID: 39831155 PMCID: PMC11740729 DOI: 10.1093/pnasnexus/pgae594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025]
Abstract
Modulating the electronic structure of noble metals via electronic metal-support interaction (EMSI) has been proven effectively for facilitating molecular oxygen activation and catalytic oxidation reactions. Nevertheless, the investigation of the fundamental mechanisms underlying activity enhancement has primarily focused on metal oxides as supports, especially in the catalytic degradation of volatile organic compounds. In this study, a novel Pt catalyst supported on nitrogen-doped carbon encapsulating FeNi alloy, featuring ultrafine Pt nanoparticles, was synthesized. This catalyst demonstrated exceptional catalytic activity (92%), recyclability, and water tolerance for the deep oxidation of formaldehyde at room temperature. Structural analyses and theoretical calculations revealed a directional electron transfer from FeNi alloy to Pt, even there is no direct contact between them. This electron penetration effect, mediated by carbon, conferred electron-rich properties to Pt, leading to the activation of molecular oxygen by elongating O-O bond length (1.405 Å). Consequently, efficient formaldehyde removal was achieved with an ultra-low Pt loading. This investigation offers a novel perspective on modulating the electronic structure of Pt by engineering a unique EMSI effect between a nonoxide support and active species, thereby enabling efficient oxygen activation for air purification.
Collapse
Affiliation(s)
- Dandan Zhu
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi’an 710061, China
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi’an 710061, China
| | - Yu Huang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi’an 710061, China
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi’an 710061, China
| | - Xianjin Shi
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi’an 710061, China
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi’an 710061, China
| | - Rong Li
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi’an 710061, China
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi’an 710061, China
| | - Zhenyu Wang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi’an 710061, China
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi’an 710061, China
| | - Wei Peng
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi’an 710061, China
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi’an 710061, China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Shuncheng Lee
- Thrust of Earth, Ocean and Atmospheric Sciences Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511453, China
| |
Collapse
|
5
|
Liu J, Xiang Y, Fang S, Du Z, Li Z, Gao L, Fu F, Lv L, Gao X, Zhou J, Wu D, Jian X. Construction of Mo 2TiC 2T x MXene as a Superior Carrier to Support Ru-CuO Heterojunctions for Improving Alkaline Hydrogen Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70508-70519. [PMID: 39659232 DOI: 10.1021/acsami.4c14927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The sluggish anodic hydrogen oxidation reaction (HOR) of the hydroxide exchange membrane fuel cell (HEMFC) is a significant barrier for practical implementation. Herein, we designed a catalyst of Mo2TiC2Tx MXene-supported Ru-CuO heterojunctions (named as Ru-CuO/MXene). The XPS spectra and the d-band center data of the different amounts of Cu of the Ru-CuO/MXene suggested that there existed a strongly electronic metal-support interaction between the active species and the substrate with MXene as the excellent carrier. Furthermore, the in situ electrochemical experimental results (operando electrochemical impedance spectroscopy and in situ electrochemical Raman spectroscopy) and density functional theory (DFT) calculations showed that Ru and CuO were the optimal adsorption sites for surface species *H and *OH, respectively, endowing Ru-CuO/MXene with the ability to weaken the hydrogen binding energy (HBE) and strengthen the hydroxide binding energy (OHBE). Remarkably, the optimized catalyst modified an impressive HOR activity in the 0.1 M KOH electrolyte with a kinetic and an exchange current density of 7.63 and 1.37 mA cm-2 at 50 mV overpotential (vs. RHE), respectively, which were 1.98- and 1.2-fold higher than those of commercial Pt/C (20 wt %). Finally, the as-prepared catalyst also exhibited superior durability and exceptional CO antipoisoning ability in 1000 ppm of the CO/H2-saturated 0.1 M KOH electrolyte. This work provides an inspiring strategy to design high-activity HOR electrocatalyst-based metallic Ru in alkaline environments.
Collapse
Affiliation(s)
- Juanjuan Liu
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People Republic of China
| | - Yu Xiang
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People Republic of China
| | - Sitao Fang
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People Republic of China
| | - Zifu Du
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People Republic of China
| | - Zuosi Li
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People Republic of China
| | - Loujun Gao
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People Republic of China
| | - Feng Fu
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People Republic of China
| | - Lei Lv
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People Republic of China
| | - Xiaoming Gao
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People Republic of China
| | - Jianzhang Zhou
- Department of Chemistry, College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry for Solid Surface, Xiamen University, Xiamen, Fujian 361005, People Republic of China
| | - Deyin Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry for Solid Surface, Xiamen University, Xiamen, Fujian 361005, People Republic of China
| | - Xuan Jian
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People Republic of China
| |
Collapse
|
6
|
Pan HR, Shi ZQ, Liu XZ, Jin S, Fu J, Ding L, Wang SQ, Li J, Zhang L, Su D, Ling C, Huang Y, Xu C, Tang T, Hu JS. Unconventional hcp/fcc Nickel Heteronanocrystal with Asymmetric Convex Sites Boosts Hydrogen Oxidation. Angew Chem Int Ed Engl 2024; 63:e202409763. [PMID: 38954763 DOI: 10.1002/anie.202409763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Developing non-platinum group metal catalysts for the sluggish hydrogen oxidation reaction (HOR) is critical for alkaline fuel cells. To date, Ni-based materials are the most promising candidates but still suffer from insufficient performance. Herein, we report an unconventional hcp/fcc Ni (u-hcp/fcc Ni) heteronanocrystal with multiple epitaxial hcp/fcc heterointerfaces and coherent twin boundaries, generating rugged surfaces with plenty of asymmetric convex sites. Systematic analyses discover that such convex sites enable the adsorption of *H in unusual bridge positions with weakened binding energy, circumventing the over-strong *H adsorption on traditional hollow positions, and simultaneously stabilizing interfacial *H2O. It thus synergistically optimizes the HOR thermodynamic process as well as reduces the kinetic barrier of the rate-determining Volmer step. Consequently, the developed u-hcp/fcc Ni exhibits the top-rank alkaline HOR activity with a mass activity of 40.6 mA mgNi -1 (6.3 times higher than fcc Ni control) together with superior stability and high CO-tolerance. These results provide a paradigm for designing high-performance catalysts by shifting the adsorption state of intermediates through configuring surface sites.
Collapse
Affiliation(s)
- Hai-Rui Pan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Zhuo-Qi Shi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Zhi Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shifeng Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiaju Fu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Liang Ding
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu-Qi Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Jian Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Linjuan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chongyi Ling
- School of Physics, Southeast University, Nanjing, 211189, China
| | - Yucheng Huang
- College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000, China
| | - Cailing Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Tang Tang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Jin-Song Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Wang K, Hong Q, Zhu C, Xu Y, Li W, Wang Y, Chen W, Gu X, Chen X, Fang Y, Shen Y, Liu S, Zhang Y. Metal-ligand dual-site single-atom nanozyme mimicking urate oxidase with high substrates specificity. Nat Commun 2024; 15:5705. [PMID: 38977710 PMCID: PMC11231224 DOI: 10.1038/s41467-024-50123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
In nature, coenzyme-independent oxidases have evolved in selective catalysis using isolated substrate-binding pockets. Single-atom nanozymes (SAzymes), an emerging type of non-protein artificial enzymes, are promising to simulate enzyme active centers, but owing to the lack of recognition sites, realizing substrate specificity is a formidable task. Here we report a metal-ligand dual-site SAzyme (Ni-DAB) that exhibited selectivity in uric acid (UA) oxidation. Ni-DAB mimics the dual-site catalytic mechanism of urate oxidase, in which the Ni metal center and the C atom in the ligand serve as the specific UA and O2 binding sites, respectively, characterized by synchrotron soft X-ray absorption spectroscopy, in situ near ambient pressure X-ray photoelectron spectroscopy, and isotope labeling. The theoretical calculations reveal the high catalytic specificity is derived from not only the delicate interaction between UA and the Ni center but also the complementary oxygen reduction at the beta C site in the ligand. As a potential application, a Ni-DAB-based biofuel cell using human urine is constructed. This work unlocks an approach of enzyme-like isolated dual sites in boosting the selectivity of non-protein artificial enzymes.
Collapse
Affiliation(s)
- Kaiyuan Wang
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Qing Hong
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Caixia Zhu
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Yuan Xu
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Wang Li
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Ying Wang
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Wenhao Chen
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Xiang Gu
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Xinghua Chen
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Yanfeng Fang
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Yanfei Shen
- Medical School, Southeast University, Nanjing, 210009, China.
| | - Songqin Liu
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Yuanjian Zhang
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China.
- Department of Oncology, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
8
|
Pan HR, Tang T, Jiang Z, Ding L, Xu C, Hu JS. CO-Tolerant Hydrogen Oxidation Electrocatalysts for Low-Temperature Hydrogen Fuel Cells. J Phys Chem Lett 2024; 15:3011-3022. [PMID: 38465884 DOI: 10.1021/acs.jpclett.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The severe performance degradation of low-temperature hydrogen fuel cells upon exposure to trace amounts of carbon monoxide (CO) impurities in reformate hydrogen fuels is one of the challenges that hinders their commercialization. Despite significant efforts that have been made, the CO-tolerance performance of electrocatalysts for the hydrogen oxidation reaction (HOR) is still unsatisfactory. This Perspective discusses the path forward for the rational design of CO-tolerant HOR electrocatalysts. The fundamentals of the CO-tolerant mechanisms on commercialized platinum group metal (PGM) electrocatalysts via either promoting CO electrooxidation or weakening CO adsorption are provided, and comprehensive discussions based on these strategies are presented with typical examples. Given the recent progress, some emerging strategies, including blocking CO diffusion with a barrier layer and developing non-PGM HOR catalysts, are also discussed. We conclude with a discussion of the strengths and limitations of these strategies along with the perspectives of the major challenges and opportunities for future research on CO-tolerant HOR electrocatalysts.
Collapse
Affiliation(s)
- Hai-Rui Pan
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Tang Tang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Ding
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cailing Xu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jin-Song Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|