1
|
Bardon AG, Ballesteros JJ, Brincat SL, Roy JE, Mahnke MK, Ishizawa Y, Brown EN, Miller EK. Convergent effects of different anesthetics on changes in phase alignment of cortical oscillations. Cell Rep 2025; 44:115685. [PMID: 40349347 DOI: 10.1016/j.celrep.2025.115685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 03/15/2025] [Accepted: 04/18/2025] [Indexed: 05/14/2025] Open
Abstract
Many anesthetics cause loss of consciousness despite having diverse underlying molecular and circuit actions. To explore the convergent effects of these drugs, we examine how anesthetic doses of ketamine and dexmedetomidine affect bilateral oscillations in the prefrontal cortex of nonhuman primates. Both anesthetics increase phase locking in the ventrolateral and dorsolateral prefrontal cortex, within and across hemispheres. However, the nature of the phase locking varies. Neighboring prefrontal subregions within a hemisphere show decreased phase alignment with both drugs. Local analyses within a region suggest that this finding could be explained by broad cortical distance-based effects, such as large traveling waves. In contrast, homologous areas across hemispheres become more aligned in phase. Our results suggest that both anesthetics induce strong patterns of cortical phase alignment that are markedly different from those during waking and that these patterns may be a common feature driving loss of responsiveness from different anesthetic drugs.
Collapse
Affiliation(s)
- Alexandra G Bardon
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jesus J Ballesteros
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Psychology, Ruhr-Universität-Bochum, 44801 Bochum, Germany
| | - Scott L Brincat
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jefferson E Roy
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Meredith K Mahnke
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yumiko Ishizawa
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Emery N Brown
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Earl K Miller
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
2
|
Whyte CJ, Müller EJ, Aru J, Larkum M, John Y, Munn BR, Shine JM. A burst-dependent thalamocortical substrate for perceptual awareness. PLoS Comput Biol 2025; 21:e1012951. [PMID: 40193388 PMCID: PMC12061433 DOI: 10.1371/journal.pcbi.1012951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 05/08/2025] [Accepted: 03/11/2025] [Indexed: 04/09/2025] Open
Abstract
Contemporary models of perceptual awareness lack tractable neurobiological constraints. Inspired by recent cellular recordings in a mouse model of tactile threshold detection, we constructed a biophysical model of perceptual awareness that incorporated essential features of thalamocortical anatomy and cellular physiology. Our model reproduced, and mechanistically explains, the key in vivo neural and behavioural signatures of perceptual awareness in the mouse model, as well as the response to a set of causal perturbations. We generalised the same model (with identical parameters) to a more complex task - visual rivalry - and found that the same thalamic-mediated mechanism of perceptual awareness determined perceptual dominance. This led to the generation of a set of novel, and directly testable, electrophysiological predictions. Analyses of the model based on dynamical systems theory show that perceptual awareness in simulations of both threshold detection and visual rivalry arises from the emergent systems-level dynamics of thalamocortical loops.
Collapse
Affiliation(s)
- Christopher J. Whyte
- Centre for Complex Systems, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Center, The University of Sydney, Sydney, New South Wales, Australia
| | - Eli J. Müller
- Centre for Complex Systems, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Center, The University of Sydney, Sydney, New South Wales, Australia
| | - Jaan Aru
- Computational Neuroscience Lab, University of Tartu, Tartu, Estonia
| | - Matthew Larkum
- Institute for Biology, Humboldt University of Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Yohan John
- Department of Health Sciences, Neural Systems Laboratory, Boston University, Boston, Massachusetts, United States of America
| | - Brandon R. Munn
- Centre for Complex Systems, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Center, The University of Sydney, Sydney, New South Wales, Australia
| | - James M. Shine
- Centre for Complex Systems, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Center, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Klatzmann U, Froudist-Walsh S, Bliss DP, Theodoni P, Mejías J, Niu M, Rapan L, Palomero-Gallagher N, Sergent C, Dehaene S, Wang XJ. A dynamic bifurcation mechanism explains cortex-wide neural correlates of conscious access. Cell Rep 2025; 44:115372. [PMID: 40088446 DOI: 10.1016/j.celrep.2025.115372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/06/2024] [Accepted: 02/07/2025] [Indexed: 03/17/2025] Open
Abstract
Conscious access is suggested to involve "ignition," an all-or-none activation across cortical areas. To elucidate this phenomenon, we carry out computer simulations of a detection task using a mesoscale connectome-based model for the multiregional macaque cortex. The model uncovers a dynamic bifurcation mechanism that gives rise to ignition in a network of associative regions. A hierarchical N-methyl-D-aspartate (NMDA)/α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor gradient plays a critical role: fast AMPA receptors drive feedforward signal propagation, while slow NMDA receptors in feedback pathways shape and sustain the ignited network. Intriguingly, the model suggests higher NMDA-to-AMPA receptor ratios in sensory areas compared to association areas, a prediction supported by in vitro autoradiography data. Furthermore, the model accounts for diverse behavioral and physiological phenomena linked to consciousness. This work sheds light on how receptor gradients along the cortical hierarchy enable distributed cognitive functions and provides a biologically constrained computational framework for investigating the neurophysiological basis of conscious access.
Collapse
Affiliation(s)
- Ulysse Klatzmann
- Center for Neural Science, New York University, New York, NY 10003, USA; Université de Paris Cité, INCC UMR 8002, 75006 Paris, France; Bristol Computational Neuroscience Unit, School of Engineering Mathematics and Technology, University of Bristol, Bristol BS8 1UB, UK
| | - Sean Froudist-Walsh
- Bristol Computational Neuroscience Unit, School of Engineering Mathematics and Technology, University of Bristol, Bristol BS8 1UB, UK
| | - Daniel P Bliss
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Panagiota Theodoni
- Center for Neural Science, New York University, New York, NY 10003, USA; Center for Mind, Brain, and Consciousness, Department of Philosophy, New York University, New York City NY 10003, USA
| | - Jorge Mejías
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Meiqi Niu
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - Lucija Rapan
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany; C. and O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Claire Sergent
- Université de Paris Cité, INCC UMR 8002, 75006 Paris, France; CNRS, INCC UMR 8002, Paris, France
| | - Stanislas Dehaene
- Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France; Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
4
|
Bachmann T. Context-Sensitive Conscious Interpretation and Layer-5 Pyramidal Neurons in Multistable Perception. Brain Behav 2025; 15:e70393. [PMID: 40038853 PMCID: PMC11879900 DOI: 10.1002/brb3.70393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/06/2025] Open
Abstract
INTRODUCTION There appears to be a fundamental difference between the two ways of how an object becomes perceptually experienced. One occurs when preconscious object-specifying sensory data processing crosses a certain threshold so that sensory constituents of object depiction become consciously experienced. The other occurs when the already consciously experienced sensory features of the object become interpreted as belonging to a certain visual object category. Surprisingly, experimental facts about neural markers of conscious access gathered so far do not allow us to distinguish mechanisms responsible for these two varieties. METHODS A cortical multicompartment layer-5 pyramidal neuron-based generic processing model is presented in order to conceptualize a possible mechanistic solution for the explanatory cul-de-sac. To support the argument, a review of pertinent research is compiled as associated with data from studies where physically invariant perceptual stimuli have underwent alternative interpretation(s) by the brain. RESULTS Recent developments in the newly emerging field of cellular psycho(physio)logy are introduced, offering a hypothetical solution for distinguishing the mechanisms subserving sensory content experience and conscious interpretation. CONCLUSION The multicompartment single cell-based mechanistic approach to brain process correlates of conscious perception appears to have an added value beyond the traditional inter-areal connectivity-based theoretical stances.
Collapse
|
5
|
Leisman G, Wallach J, Machado-Ferrer Y, Acosta MC, Meyer AG, Lebovits R, Donkin S. Binaural Pulse Modulation (BPM) as an Adjunctive Treatment for Anxiety: A Pilot Study. Brain Sci 2025; 15:147. [PMID: 40002480 PMCID: PMC11853125 DOI: 10.3390/brainsci15020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Treating psychiatric illnesses or influencing mental states with neurofeedback is challenging, likely due to the limited spatial specificity of EEG and the complications arising from the inadequate signal-to-noise ratio reduction of single-trial EEG. OBJECTIVE This pilot study aimed to investigate the feasibility of employing a binaural pulse mode-modulation (BPM) device to reduce anxiety by self-regulation. We desired to determine whether anxiety could be significantly reduced or regulated using BPM-type systems. METHODS Sixty adult participants were examined with self-reported anxiety tests (COVID Stress Scale, Generalized Anxiety Disorder 7, Beck Depression Inventory-II), which were completed before treatment, after four weeks, and after 12 weeks post-treatment. This BPM device produced two frequencies which combined to create a binaural pulse through differential auditory tone presentations. The participant calibrated the suitable target tone for optimal treatment efficacy. Each participant adjusted the binaural pulse to enhance the emotional intensity felt when envisioning an experience with comparable emotional significance or while performing a cognitive task while concurrently listening to music. The "treatment" relied on the individual's regulation of binaural pulses to obtain the desired state. The training concentrated on particular facets of their psychological challenges while listening to an auditory tone, adjusting a knob until the sound amplified the intended emotional state. Another knob was turned to intensify the emotional state associated with distress reduction. RESULTS On the self-reported measures, the BPM treatment group was significantly better than the sham treatment (control) groups (p < 0.01). These findings indicate that over the four-week intervention period, BPM was similarly effective. On the GAD-7, the significant difference over time was noted before treatment and at the end of treatment for the experimental group, with the average GAD-7 score at the end of treatment being significantly lower (p < 0.01). CONCLUSIONS BPM seems to induce a short-term alteration in self-reported distress levels during therapy. This study's limitations are examined, and recommendations for future research are provided.
Collapse
Affiliation(s)
- Gerry Leisman
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa 3498838, Israel
- Resonance Therapeutics Laboratory, Department of Neurology, Universidad de Ciencias Médicas de la Habana, Havana 10600, Cuba
| | - Joseph Wallach
- Maccabi Health System and Private Practice of Psychology, Modiin 7176538, Israel;
| | - Yanin Machado-Ferrer
- Department of Neurology, Institute for Neurology and Neurosurgery, Havana 10400, Cuba; (Y.M.-F.); (M.-C.A.)
| | - Mauricio-Chinchilla Acosta
- Department of Neurology, Institute for Neurology and Neurosurgery, Havana 10400, Cuba; (Y.M.-F.); (M.-C.A.)
| | - Abraham-Gérard Meyer
- Mental Wellness Society International, Beit Shemesh 9030860, Israel; (A.-G.M.); (R.L.)
| | - Robert Lebovits
- Mental Wellness Society International, Beit Shemesh 9030860, Israel; (A.-G.M.); (R.L.)
| | - Scott Donkin
- Mind, Movement and Mood Wellness Centers, Movement Department, Lincoln, NE 68506, USA;
| |
Collapse
|
6
|
Munn BR, Müller EJ, Favre-Bulle I, Scott E, Lizier JT, Breakspear M, Shine JM. Multiscale organization of neuronal activity unifies scale-dependent theories of brain function. Cell 2024; 187:7303-7313.e15. [PMID: 39481379 DOI: 10.1016/j.cell.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/09/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024]
Abstract
Brain recordings collected at different resolutions support distinct signatures of neural coding, leading to scale-dependent theories of brain function. Here, we show that these disparate signatures emerge from a heavy-tailed, multiscale functional organization of neuronal activity observed across calcium-imaging recordings collected from the whole brains of zebrafish and C. elegans as well as from sensory regions in Drosophila, mice, and macaques. Network simulations demonstrate that this conserved hierarchical structure enhances information processing. Finally, we find that this organization is maintained despite significant cross-scale reconfiguration of cellular coordination during behavior. Our findings suggest that this nonlinear organization of neuronal activity is a universal principle conserved for its ability to adaptively link behavior to neural dynamics across multiple spatiotemporal scales while balancing functional resiliency and information processing efficiency.
Collapse
Affiliation(s)
- Brandon R Munn
- Brain and Mind Centre, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia; Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia.
| | - Eli J Müller
- Brain and Mind Centre, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia; Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia
| | - Itia Favre-Bulle
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia; School of Mathematics and Physics, The University of Queensland, St Lucia, QLD, Australia
| | - Ethan Scott
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Joseph T Lizier
- Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia; School of Computer Science, The University of Sydney, Sydney, NSW, Australia
| | - Michael Breakspear
- School of Psychology, College of Engineering, Science and the Environment, School of Medicine and Public Health, College of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - James M Shine
- Brain and Mind Centre, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Jang H, Fotiadis P, Mashour GA, Hudetz AG, Huang Z. Thalamic Roles in Conscious Perception Revealed by Low-Intensity Focused Ultrasound Neuromodulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617034. [PMID: 39416133 PMCID: PMC11483030 DOI: 10.1101/2024.10.07.617034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The neural basis of conscious perception remains incompletely understood. While cortical mechanisms of conscious content have been extensively investigated, the role of subcortical structures, including the thalamus, remains less explored. We aim to elucidate the causal contributions of different thalamic regions to conscious perception using transcranial low-intensity focused ultrasound (LIFU) neuromodulation. We hypothesize that modulating different thalamic regions would result in distinct perceptual outcomes. We apply LIFU in human volunteers to investigate region-specific and sonication parameter-dependent effects. We target anterior (transmodal-dominant) and posterior (unimodal-dominant) thalamic regions, further divided into ventral and dorsal regions, while participants perform a near-threshold visual perception task. Task performance is evaluated using Signal Detection Theory metrics. We find that the high duty cycle stimulation of the ventral anterior thalamus enhanced object recognition sensitivity. We also observe a general (i.e., region-independent) effect of LIFU on decision bias (i.e., a tendency toward a particular response) and object categorization accuracy. Specifically, high duty cycle stimulation decreases categorization accuracy, whereas low duty cycle shifts decision bias towards a more conservative stance. In conclusion, our results provide causal insight into the functional organization of the thalamus in shaping human visual experience and highlight the unique role of the transmodal-dominant ventral anterior thalamus.
Collapse
Affiliation(s)
- Hyunwoo Jang
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Panagiotis Fotiadis
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - George A. Mashour
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Anthony G. Hudetz
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Zirui Huang
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
8
|
Bardon AG, Ballesteros JJ, Brincat SL, Roy JE, Mahnke MK, Ishizawa Y, Brown EN, Miller EK. Convergent effects of different anesthetics on changes in phase alignment of cortical oscillations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585943. [PMID: 38562734 PMCID: PMC10983946 DOI: 10.1101/2024.03.20.585943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Many anesthetics cause loss of responsiveness despite having diverse underlying molecular and circuit actions. To explore the convergent effects of these drugs, we examined how anesthetic doses of ketamine and dexmedetomidine affected oscillations in the prefrontal cortex of nonhuman primates. Both anesthetics caused increases in phase locking in the ventrolateral and dorsolateral prefrontal cortex, within and across hemispheres. However, the nature of the phase locking varied. Activity in different subregions within a hemisphere became more anti-phase with both drugs. Local analyses within a region suggested that this finding could be explained by broad cortical distance-based effects, such as large traveling waves. By contrast, homologous areas across hemispheres became more in-phase. Our results suggest that both anesthetics induce strong patterns of cortical phase alignment that are markedly different from those in the awake state, and that these patterns may be a common feature driving loss of responsiveness from different anesthetic drugs.
Collapse
|
9
|
Huang Z, Mashour GA, Hudetz AG. Propofol disrupts the functional core-matrix architecture of the thalamus in humans. Nat Commun 2024; 15:7496. [PMID: 39251579 PMCID: PMC11384736 DOI: 10.1038/s41467-024-51837-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/15/2024] [Indexed: 09/11/2024] Open
Abstract
Research into the role of thalamocortical circuits in anesthesia-induced unconsciousness is difficult due to anatomical and functional complexity. Prior neuroimaging studies have examined either the thalamus as a whole or focused on specific subregions, overlooking the distinct neuronal subtypes like core and matrix cells. We conducted a study of heathy volunteers and functional magnetic resonance imaging during conscious baseline, deep sedation, and recovery. We advanced the functional gradient mapping technique to delineate the functional geometry of thalamocortical circuits, within a framework of the unimodal-transmodal functional axis of the cortex. Here we show a significant shift in this geometry during deep sedation, marked by a transmodal-deficient geometry. This alteration is closely linked to the spatial variations in the matrix cell composition within the thalamus. This research bridges cellular and systems-level understanding, highlighting the crucial role of thalamic core-matrix functional architecture in understanding the neural mechanisms of states of consciousness.
Collapse
Affiliation(s)
- Zirui Huang
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, USA.
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, USA.
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA.
| | - George A Mashour
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anthony G Hudetz
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Sherman SM, Usrey WM. Transthalamic Pathways for Cortical Function. J Neurosci 2024; 44:e0909242024. [PMID: 39197951 PMCID: PMC11358609 DOI: 10.1523/jneurosci.0909-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/06/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
The cerebral cortex contains multiple, distinct areas that individually perform specific computations. A particular strength of the cortex is the communication of signals between cortical areas that allows the outputs of these compartmentalized computations to influence and build on each other, thereby dramatically increasing the processing power of the cortex and its role in sensation, action, and cognition. Determining how the cortex communicates signals between individual areas is, therefore, critical for understanding cortical function. Historically, corticocortical communication was thought to occur exclusively by direct anatomical connections between areas that often sequentially linked cortical areas in a hierarchical fashion. More recently, anatomical, physiological, and behavioral evidence is accumulating indicating a role for the higher-order thalamus in corticocortical communication. Specifically, the transthalamic pathway involves projections from one area of the cortex to neurons in the higher-order thalamus that, in turn, project to another area of the cortex. Here, we consider the evidence for and implications of having two routes for corticocortical communication with an emphasis on unique processing available in the transthalamic pathway and the consequences of disorders and diseases that affect transthalamic communication.
Collapse
Affiliation(s)
- S Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| | - W Martin Usrey
- Center for Neuroscience, University of California, Davis, California 95618
| |
Collapse
|
11
|
Luppi AI, Rosas FE, Mediano PAM, Demertzi A, Menon DK, Stamatakis EA. Unravelling consciousness and brain function through the lens of time, space, and information. Trends Neurosci 2024; 47:551-568. [PMID: 38824075 DOI: 10.1016/j.tins.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Disentangling how cognitive functions emerge from the interplay of brain dynamics and network architecture is among the major challenges that neuroscientists face. Pharmacological and pathological perturbations of consciousness provide a lens to investigate these complex challenges. Here, we review how recent advances about consciousness and the brain's functional organisation have been driven by a common denominator: decomposing brain function into fundamental constituents of time, space, and information. Whereas unconsciousness increases structure-function coupling across scales, psychedelics may decouple brain function from structure. Convergent effects also emerge: anaesthetics, psychedelics, and disorders of consciousness can exhibit similar reconfigurations of the brain's unimodal-transmodal functional axis. Decomposition approaches reveal the potential to translate discoveries across species, with computational modelling providing a path towards mechanistic integration.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Montreal Neurological Institute, McGill University, Montreal, QC, Canada; St John's College, University of Cambridge, Cambridge, UK; Center for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK.
| | - Fernando E Rosas
- Center for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Department of Informatics, University of Sussex, Brighton, UK; Center for Psychedelic Research, Imperial College London, London, UK
| | | | - Athena Demertzi
- Physiology of Cognition Lab, GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liège 4000, Belgium; Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège 4000, Belgium; National Fund for Scientific Research (FNRS), Brussels 1000, Belgium
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Sherman SM, Usrey WM. A Reconsideration of the Core and Matrix Classification of Thalamocortical Projections. J Neurosci 2024; 44:e0163242024. [PMID: 38866538 PMCID: PMC11170670 DOI: 10.1523/jneurosci.0163-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/18/2024] [Accepted: 04/16/2024] [Indexed: 06/14/2024] Open
Abstract
In 1998, Jones suggested a classification of thalamocortical projections into core and matrix divisions (Jones, 1998). In this classification, core projections are specific, topographical, innervate middle cortical layers, and serve to transmit specific information to the cortex for further analysis; matrix projections, in contrast, are diffuse, much less topographic, innervate upper layers, especially Layer 1, and serve a more global, modulatory function, such as affecting levels of arousal. This classification has proven especially influential in studies of thalamocortical relationships. Whereas it may be the case that a clear subset of thalamocortical connections fit the core motif, since they are specific, topographic, and innervate middle layers, we argue that there is no clear evidence for any single class that encompasses the remainder of thalamocortical connections as is claimed for matrix. Instead, there is great morphological variation in connections made by thalamocortical projections fitting neither a core nor matrix classification. We thus conclude that the core/matrix classification should be abandoned, because its application is not helpful in providing insights into thalamocortical interactions and can even be misleading. As one example of the latter, recent suggestions indicate that core projections are equivalent to first-order thalamic relays (i.e., those that relay subcortical information to the cortex) and matrix to higher-order relays (i.e., those that relay information from one cortical area to another), but available evidence does not support this relationship. All of this points to a need to replace the core/matrix grouping with a more complete classification of thalamocortical projections.
Collapse
Affiliation(s)
- S Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| | - W Martin Usrey
- Center for Neuroscience, University of California, Davis, California 95616
| |
Collapse
|
13
|
Mastrovito D, Liu YH, Kusmierz L, Shea-Brown E, Koch C, Mihalas S. Transition to chaos separates learning regimes and relates to measure of consciousness in recurrent neural networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594236. [PMID: 38798582 PMCID: PMC11118502 DOI: 10.1101/2024.05.15.594236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Recurrent neural networks exhibit chaotic dynamics when the variance in their connection strengths exceed a critical value. Recent work indicates connection variance also modulates learning strategies; networks learn "rich" representations when initialized with low coupling and "lazier" solutions with larger variance. Using Watts-Strogatz networks of varying sparsity, structure, and hidden weight variance, we find that the critical coupling strength dividing chaotic from ordered dynamics also differentiates rich and lazy learning strategies. Training moves both stable and chaotic networks closer to the edge of chaos, with networks learning richer representations before the transition to chaos. In contrast, biologically realistic connectivity structures foster stability over a wide range of variances. The transition to chaos is also reflected in a measure that clinically discriminates levels of consciousness, the perturbational complexity index (PCIst). Networks with high values of PCIst exhibit stable dynamics and rich learning, suggesting a consciousness prior may promote rich learning. The results suggest a clear relationship between critical dynamics, learning regimes and complexity-based measures of consciousness.
Collapse
|
14
|
Storm JF, Klink PC, Aru J, Senn W, Goebel R, Pigorini A, Avanzini P, Vanduffel W, Roelfsema PR, Massimini M, Larkum ME, Pennartz CMA. An integrative, multiscale view on neural theories of consciousness. Neuron 2024; 112:1531-1552. [PMID: 38447578 DOI: 10.1016/j.neuron.2024.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/20/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
How is conscious experience related to material brain processes? A variety of theories aiming to answer this age-old question have emerged from the recent surge in consciousness research, and some are now hotly debated. Although most researchers have so far focused on the development and validation of their preferred theory in relative isolation, this article, written by a group of scientists representing different theories, takes an alternative approach. Noting that various theories often try to explain different aspects or mechanistic levels of consciousness, we argue that the theories do not necessarily contradict each other. Instead, several of them may converge on fundamental neuronal mechanisms and be partly compatible and complementary, so that multiple theories can simultaneously contribute to our understanding. Here, we consider unifying, integration-oriented approaches that have so far been largely neglected, seeking to combine valuable elements from various theories.
Collapse
Affiliation(s)
- Johan F Storm
- The Brain Signaling Group, Division of Physiology, IMB, Faculty of Medicine, University of Oslo, Domus Medica, Sognsvannsveien 9, Blindern, 0317 Oslo, Norway.
| | - P Christiaan Klink
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS Utrecht, the Netherlands; Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris 75012, France
| | - Jaan Aru
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Walter Senn
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands
| | - Andrea Pigorini
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan 20122, Italy
| | - Pietro Avanzini
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 43125 Parma, Italy
| | - Wim Vanduffel
- Department of Neurosciences, Laboratory of Neuro and Psychophysiology, KU Leuven Medical School, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| | - Pieter R Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris 75012, France; Department of Integrative Neurophysiology, VU University, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; Department of Neurosurgery, Academisch Medisch Centrum, Postbus 22660, 1100 DD Amsterdam, the Netherlands
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Milan 20157, Italy; Istituto di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan 20122, Italy; Azrieli Program in Brain, Mind and Consciousness, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| | - Matthew E Larkum
- Institute of Biology, Humboldt University Berlin, Berlin, Germany; Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Cyriel M A Pennartz
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, Sciencepark 904, Amsterdam 1098 XH, the Netherlands; Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Huang Z, Mashour GA, Hudetz AG. Propofol Disrupts the Functional Core-Matrix Architecture of the Thalamus in Humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576934. [PMID: 38328136 PMCID: PMC10849566 DOI: 10.1101/2024.01.23.576934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Research into the role of thalamocortical circuits in anesthesia-induced unconsciousness is difficult due to anatomical and functional complexity. Prior neuroimaging studies have examined either the thalamus as a whole or focused on specific subregions, overlooking the distinct neuronal subtypes like core and matrix cells. We conducted a study of heathy volunteers and functional magnetic resonance imaging during conscious baseline, deep sedation, and recovery. We advanced the functional gradient mapping technique to delineate the functional geometry of thalamocortical circuits, within a framework of the unimodal-transmodal functional axis of the cortex. We observed a significant shift in this geometry during unconsciousness, marked by the dominance of unimodal over transmodal geometry. This alteration was closely linked to the spatial variations in the density of matrix cells within the thalamus. This research bridges cellular and systems-level understanding, highlighting the crucial role of thalamic core-matrix functional architecture in understanding the neural mechanisms of states of consciousness.
Collapse
Affiliation(s)
- Zirui Huang
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - George A Mashour
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Anthony G Hudetz
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|