1
|
Varma M, Deserno M. The interplay of composition and mechanics in the thermodynamics of asymmetric ternary lipid membranes. Faraday Discuss 2025. [PMID: 40387637 DOI: 10.1039/d4fd00196f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Eukaryotic lipid membranes are both compositionally complex and strongly asymmetric. Preferential lipid interactions enable coexistence between two fluid phases and an associated critical point, while bilayer asymmetry leads to leaflet-specific values for many observables-most saliently composition, but also a difference in leaflet tensions, for which we introduced the term "differential stress." Lipid mixing thermodynamics has been extensively studied, notably in idealized ternary model systems, and interest in asymmetry has grown significantly in the past decade, but their interplay remains poorly understood. Here we propose a conceptual framework for the thermodynamics of asymmetric ternary lipid membranes. Cholesterol emerges as an essential actor playing two different roles: first, it controls lipid mixing; second, it couples the compositional phase points of the two leaflets by achieving chemical equilibrium between them. Since differential stress can squeeze cholesterol from one leaflet into the other, this couples mechanical properties such as lateral stresses and curvature torques directly to mixing thermodynamics. Using coarse-grained simulations, we explore implications for leaflet coexistence, mechanical stability of giant vesicles, and differential stress driven phase segregation in a single leaflet. We hope this framework enables a fresh look at some persistent puzzles in this field, most notably the elusive nature of lipid rafts.
Collapse
Affiliation(s)
- Malavika Varma
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
2
|
Kakuda S, London E. Effect of a scramblase activator upon lipid and probe scrambling and membrane domain formation in HEK 293T cells. Faraday Discuss 2025. [PMID: 40341913 DOI: 10.1039/d4fd00211c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Lipid asymmetry, a difference between the lipid composition of the inner and outer leaflets (monolayers) of a membrane, is a characteristic of mammalian plasma membranes. In artificial lipid vesicles, asymmetry can either suppress or induce the formation of coexisting ordered and disordered lipid domains depending on lipid composition. In mammalian plasma membrane preparations, loss of asymmetry induces the formation of ordered domains. In this report, we studied the effect of a scramblase activator, the ionophore BrA23187 (BrA) plus Ca2+, upon ordered domain (lipid raft) formation in human embryonic kidney 293T cells. Addition of BrA induced a decrease in FRET between the plasma membrane outer leaflet probe TMADPH, which partly associates with ordered domains, and ODRB, which localizes largely in liquid disordered domains. This is consistent with the formation of coexisting ordered and disordered domains in the plasma membrane. In addition, upon BrA addition, the plasma membrane outer leaflet probe Pro12A exhibited a decrease in the generalized polarization (GP) suggesting a decrease in outer leaflet membrane order, perhaps due to a decrease in outer leaflet cholesterol However, there are other explanations for these observations. To test if BrA induced scrambling of fluorescent membrane probes, which would complicate interpretation of the experiments described above, we measured the effect of BrA upon extractability of outer leaflet probes with MβCD (in most cases, MβCD was more effective for extraction than BSA). These experiments showed that at most a small fraction of probes migrate to the inner leaflet upon addition of BrA. Other experiments raise the possibility that BrA binding to membranes may directly influence ordered domain formation and properties or alter fluorescence by direct interactions with TMADPH, and thus not reflect changes in domain formation.
Collapse
Affiliation(s)
- Shinako Kakuda
- Dept. of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Erwin London
- Dept. of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
3
|
McDonough J, Paratore TA, Ketelhohn HM, DeCilio BC, Ross AH, Gericke A. Engineering Phosphatidylserine Containing Asymmetric Giant Unilamellar Vesicles. MEMBRANES 2024; 14:181. [PMID: 39330522 PMCID: PMC11433827 DOI: 10.3390/membranes14090181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/28/2024]
Abstract
The plasma membrane lipid distribution is asymmetric, with several anionic lipid species located in its inner leaflet. Among these, phosphatidylserine (PS) plays a crucial role in various important physiological functions. Over the last decade several methods have been developed that allow for the fabrication of large or giant unilamellar vesicles (GUVs) with an asymmetric lipid composition. Investigating the physicochemical properties of PS in such asymmetric lipid bilayers and studying its interactions with proteins necessitates the reliable fabrication of asymmetric GUVs (aGUVs) with a high degree of asymmetry that exhibit PS in the outer leaflet so that the interaction with peptides and proteins can be studied. Despite progress, achieving aGUVs with well-defined PS asymmetry remains challenging. Recently, a Ca2+-initiated hemifusion method has been introduced, utilizing the fusion of symmetric GUVs (sGUVs) with a supported lipid bilayer (SLB) for the fabrication of aGUVs. We extend this approach to create aGUVs with PS in the outer bilayer leaflet. Comparing the degree of asymmetry between aGUVs obtained via Ca2+ or Mg2+ initiated hemifusion of a phosphatidylcholine (PC) sGUVwith a PC/PS-supported lipid bilayer, we observe for both bivalent cations a significant number of aGUVs with near-complete asymmetry. The degree of asymmetry distribution is narrower for physiological salt conditions than at lower ionic strengths. While Ca2+ clusters PS in the SLB, macroscopic domain formation is absent in the presence of Mg2+. However, the clustering of PS upon the addition of Ca2+ is apparently too slow to have a negative effect on the quality of the obtained aGUVs. We introduce a data filtering method to select aGUVs that are best suited for further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | - Arne Gericke
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, USA (T.A.P.); (H.M.K.); (B.C.D.); (A.H.R.)
| |
Collapse
|
4
|
Drabik D, Hinc P, Stephan M, Cavalcanti RRM, Czogalla A, Dimova R. Effect of leaflet asymmetry on the stretching elasticity of lipid bilayers with phosphatidic acid. Biophys J 2024; 123:2406-2421. [PMID: 38822521 PMCID: PMC11365108 DOI: 10.1016/j.bpj.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/03/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024] Open
Abstract
The asymmetry of membranes has a significant impact on their biophysical characteristics and behavior. This study investigates the composition and mechanical properties of symmetric and asymmetric membranes in giant unilamellar vesicles (GUVs) made of palmitoyloleoyl phosphatidylcholine (POPC) and palmitoyloleoyl phosphatidic acid (POPA). A combination of fluorescence quantification, zeta potential measurements, micropipette aspiration, and bilayer molecular dynamics simulations are used to characterize these membranes. The outer leaflet composition in vesicles is found consistent across the two preparation methods we employed, namely electroformation and inverted emulsion transfer. However, characterizing the inner leaflet poses challenges. Micropipette aspiration of GUVs show that oil residues do not substantially alter membrane elasticity, but simulations reveal increased membrane thickness and decreased interleaflet coupling in the presence of oil. Asymmetric membranes with a POPC:POPA mixture in the outer leaflet and POPC in the inner leaflet display similar stretching elasticity values to symmetric POPC:POPA membranes, suggesting potential POPA insertion into the inner leaflet during vesicle formation and suppressed asymmetry. The inverse compositional asymmetry, with POPC in the outer leaflet and POPC:POPA in the inner one yield less stretchable membranes with higher compressibility modulus compared with their symmetric counterparts. Challenges in achieving and predicting compositional correspondence highlight the limitations of phase-transfer-based methods. In addition, caution is advised when using fluorescently labeled lipids (even at low fractions of 0.5 mol %), as unexpected gel-like domains in symmetric POPC:POPA membranes were observed only with a specific type of labeled DOPE (dioleoylphosphatidylethanolamine) and the same fraction of unlabeled DOPE. The latter suggest that such domain formation may result from interactions between lipids and membrane fluorescent probes. Overall, this study underscores the complexity of factors influencing GUV membrane asymmetry, emphasizing the need for further research and improvement of characterization techniques.
Collapse
Affiliation(s)
- Dominik Drabik
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland; Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland.
| | - Piotr Hinc
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Mareike Stephan
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | | | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| |
Collapse
|
5
|
DiPasquale M, Marquardt D. Perceiving the functions of vitamin E through neutron and X-ray scattering. Adv Colloid Interface Sci 2024; 330:103189. [PMID: 38824717 DOI: 10.1016/j.cis.2024.103189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024]
Abstract
Take your vitamins, or don't? Vitamin E is one of the few lipophilic vitamins in the human diet and is considered an essential nutrient. Over the years it has proven to be a powerful antioxidant and is commercially used as such, but this association is far from linear in physiology. It is increasingly more likely that vitamin E has multiple legitimate biological roles. Here, we review past and current work using neutron and X-ray scattering to elucidate the influence of vitamin E on key features of model membranes that can translate to the biological function(s) of vitamin E. Although progress is being made, the hundred year-old mystery remains unsolved.
Collapse
Affiliation(s)
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada; Department of Physics, University of Windsor, Windsor, Ontario, Canada.
| |
Collapse
|
6
|
Kennison-Cook KB, Heberle FA. Disruption of liquid/liquid phase separation in asymmetric GUVs prepared by hemifusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600037. [PMID: 38979299 PMCID: PMC11230200 DOI: 10.1101/2024.06.21.600037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Model asymmetric bilayers are useful for studying the coupling between lateral and transverse lipid organization. Here, we used calcium-induced hemifusion to create asymmetric giant unilamellar vesicles (aGUVs) for exploring the phase behavior of 16:0-PC/16:1-PC/Cholesterol, a simplified model for the mammalian plasma membrane. Symmetric GUVs (sGUVs) were first prepared using a composition that produced coexisting liquid-disordered and liquid-ordered phases visible by confocal fluorescence microscopy. The sGUVs were then hemifused to a supported lipid bilayer (SLB) composed of uniformly mixed 16:1-PC/Cholesterol. The extent of outer leaflet exchange was quantified in aGUVs in two ways: (1) from the reduction in fluorescence intensity of a lipid probe initially in the sGUV ("probe exit"); or (2) from the gain in intensity of a probe initially in the SLB ("probe entry"). These measurements revealed a large variability in the extent of outer leaflet exchange in aGUVs within a given preparation, and two populations with respect to their phase behavior: a subset of vesicles that remained phase separated, and a second subset that appeared uniformly mixed. Moreover, a correlation between phase behavior and extent of asymmetry was observed, with more strongly asymmetric vesicles having a greater probability of being uniformly mixed. We also observed substantial overlap between these populations, an indication that the uncertainty in measured exchange fraction is high. We developed models to determine the position of the phase boundary (i.e., the fraction of outer leaflet exchange above which domain formation is suppressed) and found that the phase boundaries determined separately from probe-entry and probe-exit data are in good agreement. Our models also provide improved estimates of the compositional uncertainty of individual aGUVs. We discuss several potential sources of uncertainty in the determination of lipid exchange from fluorescence measurements.
Collapse
|
7
|
Huster D, Maiti S, Herrmann A. Phospholipid Membranes as Chemically and Functionally Tunable Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312898. [PMID: 38456771 DOI: 10.1002/adma.202312898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/12/2024] [Indexed: 03/09/2024]
Abstract
The sheet-like lipid bilayer is the fundamental structural component of all cell membranes. Its building blocks are phospholipids and cholesterol. Their amphiphilic structure spontaneously leads to the formation of a bilayer in aqueous environment. Lipids are not just structural elements. Individual lipid species, the lipid membrane structure, and lipid dynamics influence and regulate membrane protein function. An exciting field is emerging where the membrane-associated material properties of different bilayer systems are used in designing innovative solutions for widespread applications across various fields, such as the food industry, cosmetics, nano- and biomedicine, drug storage and delivery, biotechnology, nano- and biosensors, and computing. Here, the authors summarize what is known about how lipids determine the properties and functions of biological membranes and how this has been or can be translated into innovative applications. Based on recent progress in the understanding of membrane structure, dynamics, and physical properties, a perspective is provided on how membrane-controlled regulation of protein functions can extend current applications and even offer new applications.
Collapse
Affiliation(s)
- Daniel Huster
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, D-04107, Leipzig, Germany
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400 005, India
| | - Andreas Herrmann
- Freie Universität Berlin, Department Chemistry and Biochemistry, SupraFAB, Altensteinstr. 23a, D-14195, Berlin, Germany
| |
Collapse
|
8
|
Reagle T, Xie Y, Li Z, Carnero W, Baumgart T. Methyl-β-cyclodextrin asymmetrically extracts phospholipid from bilayers, granting tunable control over differential stress in lipid vesicles. SOFT MATTER 2024; 20:4291-4307. [PMID: 38758097 PMCID: PMC11135146 DOI: 10.1039/d3sm01772a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
Lipid asymmetry - that is, a nonuniform lipid distribution between the leaflets of a bilayer - is a ubiquitous feature of biomembranes and is implicated in several cellular phenomena. Differential tension - that is, unequal lateral monolayer tensions comparing the leaflets of a bilayer- is closely associated with lipid asymmetry underlying these varied roles. Because differential tension is not directly measurable in combination with the fact that common methods to adjust this quantity grant only semi-quantitative control over it, a detailed understanding of lipid asymmetry and differential tension are impeded. To overcome these challenges, we leveraged reversible complexation of phospholipid by methyl-β-cyclodextrin (mbCD) to tune the direction and magnitude of lipid asymmetry in synthetic vesicles. Lipid asymmetry generated in our study induced (i) vesicle shape changes and (ii) gel-liquid phase coexistence in 1-component vesicles. By applying mass-action considerations to interpret our findings, we discuss how this approach provides access to phospholipid thermodynamic potentials in bilayers containing lipid asymmetry (which are coupled to the differential tension of a bilayer). Because lipid asymmetry yielded by our approach is (i) tunable and (ii) maintained over minute to hour timescales, we anticipate that this approach will be a valuable addition to the experimental toolbox for systematic investigation into the biophysical role(s) of lipid asymmetry (and differential tension).
Collapse
Affiliation(s)
- Tyler Reagle
- University of Pennsylvania, Chemistry Department, 231 South 34th Street, Philadelphia, PA, 19104, USA.
| | - Yuxin Xie
- University of Pennsylvania, Chemistry Department, 231 South 34th Street, Philadelphia, PA, 19104, USA.
| | - Zheyuan Li
- University of Pennsylvania, Chemistry Department, 231 South 34th Street, Philadelphia, PA, 19104, USA.
| | - Warner Carnero
- University of Pennsylvania, Chemistry Department, 231 South 34th Street, Philadelphia, PA, 19104, USA.
| | - Tobias Baumgart
- University of Pennsylvania, Chemistry Department, 231 South 34th Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
Segars B, Makhoul-Mansour M, Beyrouthy J, Freeman EC. Measuring the Transmembrane Registration of Lipid Domains in Droplet Interface Bilayers through Tensiometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11228-11238. [PMID: 38753461 PMCID: PMC11140749 DOI: 10.1021/acs.langmuir.4c00958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Diverse collections of lipids self-assemble into domains within biological membranes, and these domains are typically organized in both the transverse and lateral directions of the membrane. The ability of the membrane to link these domains across the membrane's interior grants cells control over features on the external cellular surface. Numerous hypothesized factors drive the cross-membrane (or transverse) coupling of lipid domains. In this work we seek to isolate these transverse lipid-lipid influences in a simple model system using droplet interface bilayers (DIBs) to better understand the associated mechanics. DIBs enable symmetric and asymmetric combinations of domain-forming lipid mixtures within a model bilayer, and the evolving energetics of the membrane may be tracked using drop-shape analysis. We find that symmetric distributions of domain-forming lipids produce long-lasting, gradual shifts in the DIB membrane energetics that are not observed in asymmetric distributions of the lipids where the domain-forming lipids are only within one leaflet. The approach selected for this work provides experimental measurement of the mismatch penalty associated with antiregistered lipid domains as well as measurements of the influence of rafts on DIB behaviors with suggestions for their future use as a model platform.
Collapse
Affiliation(s)
- Braydon
G. Segars
- School
of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, 110 Riverbend Road, Athens, Georgia 30605, United States
| | - Michelle Makhoul-Mansour
- School
of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, 110 Riverbend Road, Athens, Georgia 30605, United States
- Mechanical,
Agricultural, Biomedical, and Environmental Engineering Department,
Tickle College of Engineering, University
of Tennessee Knoxville, 1512 Middle Dr., Knoxville, Tennessee 37916, United States
| | - Joyce Beyrouthy
- School
of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, 110 Riverbend Road, Athens, Georgia 30605, United States
| | - Eric C. Freeman
- School
of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, 110 Riverbend Road, Athens, Georgia 30605, United States
| |
Collapse
|