1
|
Liu S, Rathi M, Chen Y, Barman S, Iasella SV, Hinnant KM, Zasadzinski JA, Dutcher CS. Curvature- and temperature-dependent transport of soluble surfactant mixtures to the air-aqueous surface with applications in fluorine-free firefighting foams. J Colloid Interface Sci 2025; 690:137082. [PMID: 40138923 PMCID: PMC11993333 DOI: 10.1016/j.jcis.2025.02.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/28/2025] [Accepted: 02/14/2025] [Indexed: 03/29/2025]
Abstract
Understanding surfactant adsorption to air-water interfaces is crucial to eliminating toxic fluorocarbon-based surfactants while retaining firefighting performance. The adsorption of commercial siloxane and Glucopon surfactants is investigated by measuring dynamic surface tension at different length scales using a pendant drop tensiometer and capillary pressure microtensiometer (CPM) for millimeter and micrometer sized bubbles at 23 °C and 60 °C. Higher surfactant concentration and higher curvature favor surfactant adsorption. The effect of interfacial curvature can be rationalized by rescaling respective times scales for diffusion-limited adsorption. For constant area adsorption in the capillary pressure microtensiometer, surfactants relevant to firefighting foams show stepwise adsorption. Model mixtures of ethoxylated surfactants of different chain lengths also show this stepwise adsorption, suggesting heterogeneity in tail lengths in the commercial surfactants. Surfactant adsorption is modeled by treating the mixtures as a quasi-single component using the Ward-Tordai equation and the Langmuir adsorption isotherm to characterize the temperature-dependent surfactant properties. While temperature increases the diffusivity of both Dow 502W and Triton X100, Dow 502W demonstrates key differences in surfactant adsorption compared to Triton X100 and the Glucopon surfactants at elevated temperatures. A deeper understanding of how different head and tail group lengths and temperature affect surfactant adsorption will help optimize new surfactant replacements for enhanced firefighting performance.
Collapse
Affiliation(s)
- Shihao Liu
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Meenal Rathi
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Yun Chen
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Sourav Barman
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Steven V Iasella
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Katherine M Hinnant
- Chemistry Division, U.S. Naval Research Lab (NRL), Washington, DC 20375, USA
| | - Joseph A Zasadzinski
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Cari S Dutcher
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA; Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Gaver DP, Kollisch-Singule M, Nieman G, Satalin J, Habashi N, Bates JHT. Mechanical ventilation energy analysis: Recruitment focuses injurious power in the ventilated lung. Proc Natl Acad Sci U S A 2025; 122:e2419374122. [PMID: 40030025 PMCID: PMC11912383 DOI: 10.1073/pnas.2419374122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/22/2025] [Indexed: 03/19/2025] Open
Abstract
The progression of acute respiratory distress syndrome (ARDS) from its onset due to disease or trauma to either recovery or death is poorly understood. Currently, there are no generally accepted treatments aside from supportive care using mechanical ventilation. However, this can lead to ventilator-induced lung injury (VILI), which contributes to a 30 to 40% mortality rate. In this study, we develop and demonstrate a technique to quantify forms of energy transport and dissipation during mechanical ventilation to directly evaluate their relationship to VILI. A porcine ARDS model was used, with ventilation parameters independently controlling lung overdistension and alveolar/airway recruitment/derecruitment (RD). Hourly measurements of airflow, tracheal and esophageal pressures, respiratory system impedance, and oxygen transport were taken for six hours following lung injury to track energy transfer and lung function. The final degree of injury was assessed histologically. Total and dissipated energies were quantified from lung pressure-volume relationships and subdivided into contributions from airflow, tissue viscoelasticity, and RD. Only RD correlated with physiologic recovery. Despite accounting for a very small fraction (2 to 5%) of the total energy dissipation, RD is damaging because it occurs quickly over a very small area. We estimate power intensity of RD energy dissipation to be 100 W/m2, equivalent to 10% of the Sun's luminance at the Earth's surface. Minimizing repetitive RD events may thus be crucial for mitigating VILI.
Collapse
Affiliation(s)
- Donald P. Gaver
- Department of Biomedical Engineering, Tulane University, New Orleans, LA70118
| | | | - Gary Nieman
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY13210
| | - Joshua Satalin
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY13210
| | - Nader Habashi
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD21201
| | | |
Collapse
|
3
|
Huang B, Iasella SV, Rathi M, Hassler J, Ciutara CO, He Z, Morse DC, Zasadzinski JA. New experiments and models to describe soluble surfactant adsorption above and below the critical micelle concentration. J Colloid Interface Sci 2025; 677:557-568. [PMID: 39111091 PMCID: PMC11461105 DOI: 10.1016/j.jcis.2024.07.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 10/09/2024]
Abstract
HYPOTHESIS Lysopalmitoylphosphatidylcholine (LysoPC) is a soluble single-chain surfactant product of the innate immune system degradation of double-chain phospholipids. LysoPC adsorption to the air-water interface in lung alveoli can be modeled using alveolar-sized bubbles of constant surface area in a capillary pressure microtensiometer to show that adsorption is diffusion limited both below and above the critical micelle concentration (CMC). Above the CMC, a local equilibrium model is proposed in which depletion of the local monomer concentration drives dissociation of micelles in a region near the bubble surface. EXPERIMENTAL A capillary pressure microtensiometer in which a feedback loop maintains a constant bubble radius and surface area is used to measure dynamic surface tension during LysoPC adsorption. Direct numerical solution of the spherical diffusion equations, a new three parameter virial equation of state for interface thermodynamics, and a local equilibrium model of micellization above the CMC are used to accurately model the dynamic surface tension experiments both below and above the LysoPC CMC. FINDINGS LysoPC adsorption is shown to be diffusion-limited over concentrations ranging from below to well above the CMC, and to be well described by a local equilibrium model at concentrations above the CMC. Modelling the dynamic surface tension provides a reliable estimate of the micelle diffusivity near the CMC that is difficult to obtain by other methods in systems with low CMCs.
Collapse
Affiliation(s)
- Boxun Huang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Steven V Iasella
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Meenal Rathi
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph Hassler
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clara O Ciutara
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ziwen He
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - David C Morse
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Joseph A Zasadzinski
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
4
|
Fisher JM, Squires TM. Phospholipase-catalyzed degradation drives domain morphology and rheology transitions in model lung surfactant monolayers. SOFT MATTER 2024; 20:7321-7332. [PMID: 39248497 PMCID: PMC11530962 DOI: 10.1039/d4sm00306c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Lung surfactant is inactivated in acute respiratory distress syndrome (ARDS) by a mechanism that remains unclear. Phospholipase (PLA2) plays an essential role in the normal lipid recycling processes, but is present in elevated levels in ARDS, suggesting it plays a role in ARDS pathophysiology. PLA2 hydrolyzes lipids such as DPPC-the primary component of lung surfactant-into palmitic acid (PA) and lyso-PC (LPC). Because PA co-crystallizes with DPPC to form rigid, elastic domains, we hypothesize that PLA2-catalyzed degradation establishes a stiff, heterogeneous rheology in the monolayer, and suggests a potential mechanical role in disrupting lung surfactant function during ARDS. Here we study the morphological and rheological changes of DPPC monolayers as they are degraded by PLA2 using interfacial microbutton microrheometry coupled with fluorescence microscopy. While degrading, domain morphology passes through qualitatively distinct transitions: compactification, coarsening, solidification, aggregation, network percolation, network erosion, and nucleation of PLA2-rich domains. Initially, condensed domains relax to more compact shapes, and coarsen via Ostwald ripening and coalescence up until the domains solidify, marked by a distinct roughening of domain boundaries that does not relax. Domains aggregate and eventually form a percolated network, whose elements then erode and whose connections are broken as degradation continues. The relative enzymatic activity of PLA2, set by the age of the sample, impacts the order and the duration of morphology transitions. The fresher the PLA2, the faster the overall degradation, and the earlier the onset of domain solidification: domains solidify before aggregating with fresh PLA2 samples, but aggregate and percolate before solidification with aged PLA2. Irrespective of the activity of the PLA2, all measured linear viscoelastic surface shear moduli obey the same dependence on condensed phase area fraction (log|G*| ∝ ϕ) throughout monolayer degradation. Moreover, the onset of domain solidification coincides with the time when the relative surface elasticity begins to increase.
Collapse
Affiliation(s)
- Julia M Fisher
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Todd M Squires
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
5
|
He A, He L, Chen T, Li X, Cao C. Biomechanical Properties and Cellular Responses in Pulmonary Fibrosis. Bioengineering (Basel) 2024; 11:747. [PMID: 39199705 PMCID: PMC11351367 DOI: 10.3390/bioengineering11080747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024] Open
Abstract
Pulmonary fibrosis is a fatal lung disease affecting approximately 5 million people worldwide, with a 5-year survival rate of less than 50%. Currently, the only available treatments are palliative care and lung transplantation, as there is no curative drug for this condition. The disease involves the excessive synthesis of the extracellular matrix (ECM) due to alveolar epithelial cell damage, leading to scarring and stiffening of the lung tissue and ultimately causing respiratory failure. Although multiple factors contribute to the disease, the exact causes remain unclear. The mechanical properties of lung tissue, including elasticity, viscoelasticity, and surface tension, are not only affected by fibrosis but also contribute to its progression. This paper reviews the alteration in these mechanical properties as pulmonary fibrosis progresses and how cells in the lung, including alveolar epithelial cells, fibroblasts, and macrophages, respond to these changes, contributing to disease exacerbation. Furthermore, it highlights the importance of developing advanced in vitro models, based on hydrogels and 3D bioprinting, which can accurately replicate the mechanical and structural properties of fibrotic lungs and are conducive to studying the effects of mechanical stimuli on cellular responses. This review aims to summarize the current understanding of the interaction between the progression of pulmonary fibrosis and the alterations in mechanical properties, which could aid in the development of novel therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Andong He
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310028, China
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, 59 Liuting Road, Ningbo 315010, China
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Lizhe He
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | - Tianwei Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xuejin Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310028, China
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, 59 Liuting Road, Ningbo 315010, China
| |
Collapse
|
6
|
Maldarelli C. Respiratory distress when a lung surfactant loses one of its two hydrophobic tails. Proc Natl Acad Sci U S A 2024; 121:e2320426121. [PMID: 38408259 PMCID: PMC10927575 DOI: 10.1073/pnas.2320426121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Affiliation(s)
- Charles Maldarelli
- Levich Institute and Department of Chemical Engineering, City College of New York, New York, NY10031
| |
Collapse
|