1
|
Floryan M, Cambria E, Blazeski A, Coughlin MF, Wan Z, Offeddu G, Vinayak V, Kant A, Shenoy V, Kamm RD. Remodeling of self-assembled microvascular networks under long term flow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643791. [PMID: 40166169 PMCID: PMC11956984 DOI: 10.1101/2025.03.17.643791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The incorporation of a functional perfusable microvascular network (MVN) is a common requirement for most organ on-chip-models. Long-term perfusion of MVNs is often required for the maturation of organ phenotypes and disease pathologies and to model the transport of cells and drugs entering organs. In our microphysiological system, we observe that flow can recover perfusion in regressed MVNs and maintain perfusable MVNs for at least 51 days. Throughout the 51 days, however, the MVNs are continuously remodeling to align with the direction of bulk flow and only appear to attain morphological homeostasis with the use of maintenance medium without growth factors. We observed that the flow resistance of the MVNs decreases over time, and using a computational model, we show that stable vessels have higher flow rates and velocities compared to regressing vessels. Cytokine analysis suggests that static conditions generate an inflammatory state, and that continuous flow reduces inflammation over an extended period. Finally, through bulk RNA sequencing we identify that both the endothelial and fibroblast cells are actively engaged in vascular and matrix remodeling due to flow and that these effects persist for at least 2 weeks. This MPS can be applied to study hemodynamically driven processes, such as metastatic dissemination or drug distribution, or to model long-term diseases previously not captured by MPS, such as chronic inflammation or aging-associated diseases.
Collapse
Affiliation(s)
- Marie Floryan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Elena Cambria
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Adriana Blazeski
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mark F Coughlin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhengpeng Wan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Giovanni Offeddu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vinayak Vinayak
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aayush Kant
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vivek Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
2
|
Papagiannakis N, Ragias D, Ntalarizou N, Laou E, Kyriakaki A, Mavridis T, Vahedian-Azimi A, Sakellakis M, Chalkias A. Transitions from Aerobic to Anaerobic Metabolism and Oxygen Debt during Elective Major and Emergency Non-Cardiac Surgery. Biomedicines 2024; 12:1754. [PMID: 39200218 PMCID: PMC11351305 DOI: 10.3390/biomedicines12081754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
INTRODUCTION Intraoperative hemodynamic and metabolic optimization of both the high-risk surgical patients and critically ill patients remains challenging. Reductions in oxygen delivery or increases in oxygen consumption can initiate complex cellular processes precipitating oxygen debt (OXD). METHODS This study tested the hypothesis that intraoperative changes in sublingual microcirculatory flow reflect clinically relevant transitions from aerobic to anaerobic metabolism (TRANAM). We included patients undergoing elective major and emergency non-cardiac surgery. Macro- and microcirculatory variables, oxygen extraction, and transitions of metabolism were assessed in both cohorts. RESULTS In the elective group, OXD was progressively increased over time, with an estimated 2.24 unit increase every 30 min (adjusted p < 0.001). Also, OXD was negatively correlated with central venous pressure (ρ = -0.247, adjusted p = 0.006) and positively correlated with stroke volume variation (ρ = 0.185, adjusted p = 0.041). However, it was not significantly correlated with sublingual microcirculation variables. In the emergency surgery group, OXD increased during the first two intraoperative hours and then gradually decreased until the end of surgery. In that cohort, OXD was positively correlated with diastolic arterial pressure (ρ = 0.338, adjpatients and the critically ill patients remains challengingsted p = 0.015). Also, OXD was negatively correlated with cardiac index (ρ = -0.352, adjusted p = 0.003), Consensus Proportion of Perfused Vessels (PPV) (ρ = -0.438, adjusted p < 0.001), and Consensus PPV (small) (ρ = -0.434, adjusted p < 0.001). CONCLUSIONS TRANAM were evident in both the elective major and emergency non-cardiac surgery cohorts independent of underlying alterations in the sublingual microcirculation.
Collapse
Affiliation(s)
- Nikolaos Papagiannakis
- First Department of Neurology, Eginition University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Dimitrios Ragias
- Medical Center of Sofades, General Hospital of Karditsa, 43100 Karditsa, Greece;
| | - Nicoleta Ntalarizou
- Postgraduate Study Program (MSc) “Resuscitation”, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Eleni Laou
- Department of Anesthesiology, Agia Sophia Children’s Hospital, 11527 Athens, Greece;
| | - Aikaterini Kyriakaki
- Department of Anesthesiology, General Hospital of Syros Vardakeio and Proio, 84100 Syros, Greece;
| | - Theodoros Mavridis
- Department of Neurology, Tallaght University Hospital (TUH)/The Adelaide and Meath Hospital Incorporating the National Children’s Hospital (AMNCH), D24 NR0A Dublin, Ireland;
| | - Amir Vahedian-Azimi
- Nursing Care Research Center, Clinical Sciences Institute, Nursing Faculty, Baqiyatallah University of Medical Sciences, Tehran 1435915371, Iran;
| | - Minas Sakellakis
- Department of Medicine, Jacobi Medical Center-North Central Bronx Hospital, Bronx, NY 10467, USA;
| | - Athanasios Chalkias
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5158, USA
- Outcomes Research Consortium, Cleveland, OH 44195, USA
| |
Collapse
|