1
|
Poore CL, Ibarra-Garibay EJ, Toth AL, Riddell EA. Lack of thermal acclimation in multiple indices of climate vulnerability in bumblebees. Proc Biol Sci 2025; 292:20242216. [PMID: 39809314 PMCID: PMC11732424 DOI: 10.1098/rspb.2024.2216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/28/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
Indices of climate vulnerability are used to predict species' vulnerability to climate change based on intrinsic physiological traits, such as thermal tolerance, thermal sensitivity and thermal acclimation, but rarely is the consistency among indices evaluated simultaneously. We compared the thermal physiology of queen bumblebees between a species experiencing local declines (Bombus auricomus) and a species exhibiting continent-wide increases (B. impatiens). We conducted a multi-week acclimation experiment under simulated climate warming to measure critical thermal maximum (CTmax), critical thermal minimum (CTmin), the thermal sensitivity of metabolic rate and water loss rate and acclimation in each of these traits. We also measured survival throughout the experiment and after the thermal tolerance trials. Neither species acclimated to the temperature treatments by adjusting any physiological trait. We found conflicting patterns among indices of vulnerability within and between species. We also found that individuals with the highest CTmax exhibited the lowest survival following the thermal tolerance trial. Our study highlights inconsistent patterns across multiple indices of climate vulnerability within and between species, indicating that physiological studies measuring only one index of climate vulnerability may be limited in their ability to inform species' responses to environmental change.
Collapse
Affiliation(s)
- C. L. Poore
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 2200 Osborn Drive, Ames, IA50010, USA
| | - E. J. Ibarra-Garibay
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 2200 Osborn Drive, Ames, IA50010, USA
| | - A. L. Toth
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 2200 Osborn Drive, Ames, IA50010, USA
| | - E. A. Riddell
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 2200 Osborn Drive, Ames, IA50010, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC27514, USA
| |
Collapse
|
2
|
Wang H, Qu Y, He X, Xu XL, Wang R, Xue M, Zeng ZJ. Foraging behavior and work patterns of Bombus terrestris (Hymenoptera: Apidae) in response to tomato greenhouse microclimate. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:2219-2227. [PMID: 39504581 DOI: 10.1093/jee/toae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/16/2024] [Accepted: 08/31/2024] [Indexed: 11/08/2024]
Abstract
Bumblebees play a significant role as pollinators for many wild plants and cultivated crops, owing to their elongated proboscis, resilience to diverse weather conditions, robustly furred bodies, and their unique capacity for buzz-pollination. To better understand the effect of greenhouse microclimates on bumblebee foraging behavior and working modes, a long-term record of foraging activity for each Bombus terrestris L. (Hymenoptera: Apidae) forager was monitored by the Radio-frequency identification system. The pattern of task performance, including constant housing, foraging, and day-off rotation, was examined under the microclimate. In addition, the correlation between foraging activity of bumblebees and temperature, relative humidity, illumination in the greenhouse, and pollen viability of tomato plants was further analyzed. Our findings revealed that B. terrestris can respond to microclimatic factors and plant resources while also exhibiting a suitable working pattern within the colony. Day-off rotation was observed as a strategy employed by foragers to prolong their survival time. This division of labor and task rotation may serve as strategies for the survival and development of the colony. Our research may contribute to fully understanding how microclimate and plants influence pollinator behavior within greenhouses, thereby optimizing the pollination management of bumblebees on greenhouse crops.
Collapse
Affiliation(s)
- Huan Wang
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Institute of Plant Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Yanyan Qu
- Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Institute of Plant Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Xujiang He
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Xi-Lian Xu
- Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Institute of Plant Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Rufang Wang
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Meijing Xue
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Zhi-Jiang Zeng
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
3
|
Gonzalez VH, Rancher W, Vigil R, Garino-Heisey I, Oyen K, Tscheulin T, Petanidou T, Hranitz JM, Barthell JF. Bees remain heat tolerant after acute exposure to desiccation and starvation. J Exp Biol 2024; 227:jeb249216. [PMID: 39699535 PMCID: PMC11698041 DOI: 10.1242/jeb.249216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
Organisms may simultaneously face thermal, desiccation and nutritional stress under climate change. Understanding the effects arising from the interactions among these stressors is relevant for predicting organisms' responses to climate change and for developing effective conservation strategies. Using both dynamic and static protocols, we assessed for the first time how sublethal desiccation exposure (at 16.7%, 50.0% and 83.3% of LD50) impacts the heat tolerance of foragers from two social bee species found on the Greek island of Lesbos: the managed European honey bee, Apis mellifera, and the wild, ground-nesting sweat bee Lasioglossum malachurum. In addition, we explored how a short-term starvation period (24 h), followed by a moderate sublethal desiccation exposure (50% of LD50), influences honey bee heat tolerance. We found that neither the critical thermal maximum (CTmax) nor the time to heat stupor was significantly impacted by sublethal desiccation exposure in either species. Similarly, starvation followed by moderate sublethal desiccation did not affect the average CTmax estimate, but it did increase its variance. Our results suggest that sublethal exposure to these environmental stressors may not always lead to significant changes in bees' heat tolerance or increase vulnerability to rapid temperature changes during extreme weather events, such as heat waves. However, the increase in CTmax variance suggests greater variability in individual responses to temperature stress under climate change, which may impact colony-level performance. The ability to withstand desiccation may be impacted by unmeasured hypoxic conditions and the overall effect of these stressors on solitary species remains to be assessed.
Collapse
Affiliation(s)
- Victor H. Gonzalez
- Undergraduate Biology Program and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - Wesley Rancher
- Department of Geography, University of Oregon, 1321 Kincaid St., Eugene, OR 97401, USA
| | - Rylee Vigil
- Samford University, 800 Lakeshore Drive, Birmingham, AL 35229, USA
| | | | - Kennan Oyen
- United States Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit & Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Thomas Tscheulin
- Laboratory of Biogeography and Ecology, Department of Geography, University of the Aegean, University Hill, GR-81100, Mytilene, Greece
| | - Theodora Petanidou
- Laboratory of Biogeography and Ecology, Department of Geography, University of the Aegean, University Hill, GR-81100, Mytilene, Greece
| | - John M. Hranitz
- Department of Biology, Commonwealth University of Pennsylvania, Bloomsburg, PA 17815, USA
| | - John F. Barthell
- Department of Biology, University of Central Oklahoma, Edmond, OK 73034, USA
| |
Collapse
|
4
|
Santos VACL, Garcia ACL, Montes MA. Adaptation to different temperatures results in wing size divergence of the invading species Drosophila nasuta (Diptera: Drosophilidae) in Brazil. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:756-762. [PMID: 39494803 DOI: 10.1017/s0007485324000580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Invasive species threaten biodiversity on a global scale. The success of invasions depends on the species' adaptation to the different environmental conditions of new territories. Studies show that invasive insects present evolutionary changes in wing morphology in areas they are introduced to in response to abiotic conditions. In the last decade, the Asian Drosophila nasuta fly invaded and spread widely throughout Brazil. This insect has preferences for conserved environments and is related to the likely reduction in the abundance of native drosophilids in the Atlantic Forest. Ecological niche modelling analyses showed that rainfall and temperature are the main factors which delimit the geographic distribution of this species. Herein, we verified the existence of significant differences in the wing sizes of D. nasuta in Brazil and evaluated the influence of abiotic factors (rainfall and temperature) on the observed patterns. We conducted 11 measurements on the right-side wings of 240 D. nasuta males collected in the Amazon Forest, Caatinga, Cerrado and Atlantic Forest. Statistical analyses revealed the existence of two groups: one with larger wings, which brought together samples from locations with the lowest temperatures; and one with smaller wings, which corresponded to places with a hotter climate. One explanation for this result is the fact that large wings favour greater heat capture by flies in colder climates, increasing their survival chances in these environments. These rapid evolutionary changes in D. nasuta in this first decade of invasion in Brazil reveal the enormous adaptive potential of this species in this megadiverse country.
Collapse
Affiliation(s)
| | - Ana Cristina Lauer Garcia
- Universidade Federal de Pernambuco, Centro Acadêmico de Vitória, Vitória de Santo Antão, Pernambuco, Brazil
| | - Martín Alejandro Montes
- Universidade Federal Rural de Pernambuco, Campus Dois Irmãos, Departamento de Biologia, Recife, Pernambuco, Brazil
| |
Collapse
|
5
|
Treidel LA, Deem KD, Salcedo MK, Dickinson MH, Bruce HS, Darveau CA, Dickerson BH, Ellers O, Glass JR, Gordon CM, Harrison JF, Hedrick TL, Johnson MG, Lebenzon JE, Marden JH, Niitepõld K, Sane SP, Sponberg S, Talal S, Williams CM, Wold ES. Insect Flight: State of the Field and Future Directions. Integr Comp Biol 2024; 64:icae106. [PMID: 38982327 PMCID: PMC11406162 DOI: 10.1093/icb/icae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
The evolution of flight in an early winged insect ancestral lineage is recognized as a key adaptation explaining the unparalleled success and diversification of insects. Subsequent transitions and modifications to flight machinery, including secondary reductions and losses, also play a central role in shaping the impacts of insects on broadscale geographic and ecological processes and patterns in the present and future. Given the importance of insect flight, there has been a centuries-long history of research and debate on the evolutionary origins and biological mechanisms of flight. Here, we revisit this history from an interdisciplinary perspective, discussing recent discoveries regarding the developmental origins, physiology, biomechanics, and neurobiology and sensory control of flight in a diverse set of insect models. We also identify major outstanding questions yet to be addressed and provide recommendations for overcoming current methodological challenges faced when studying insect flight, which will allow the field to continue to move forward in new and exciting directions. By integrating mechanistic work into ecological and evolutionary contexts, we hope that this synthesis promotes and stimulates new interdisciplinary research efforts necessary to close the many existing gaps about the causes and consequences of insect flight evolution.
Collapse
Affiliation(s)
- Lisa A Treidel
- School of Biological Sciences, University of Nebraska, Lincoln, Lincoln NE, 68588, USA
| | - Kevin D Deem
- Department of Biology, University of Rochester, Rochester NY, 14627, USA
| | - Mary K Salcedo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca NY, 14853, USA
| | - Michael H Dickinson
- Department of Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | | | - Charles-A Darveau
- Department of Biology, University of Ottawa, Ottawa Ontario, K1N 6N5, Canada
| | - Bradley H Dickerson
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Olaf Ellers
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | - Jordan R Glass
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY 82070, USA
| | - Caleb M Gordon
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Tyson L Hedrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Meredith G Johnson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Jacqueline E Lebenzon
- Department of Integrative Biology, University of California, Berkeley, Berkeley CA, 94720, USA
| | - James H Marden
- Department of Biology, Pennsylvania State University, University Park, PA 16803, USA
| | | | - Sanjay P Sane
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065 India
| | - Simon Sponberg
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Stav Talal
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Caroline M Williams
- Department of Integrative Biology, University of California, Berkeley, Berkeley CA, 94720, USA
| | - Ethan S Wold
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
6
|
Glass JR, Harrison JF. A thermal performance curve perspective explains decades of disagreements over how air temperature affects the flight metabolism of honey bees. J Exp Biol 2024; 227:jeb246926. [PMID: 38487901 PMCID: PMC11058628 DOI: 10.1242/jeb.246926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
While multiple studies have shown that honey bees and some other flying insects lower their flight metabolic rates when flying at high air temperatures, critics have suggested such patterns result from poor experimental methods as, theoretically, air temperature should not appreciably affect aerodynamic force requirements. Here, we show that apparently contradictory studies can be reconciled by considering the thermal performance curve of flight muscle. We show that prior studies that found no effects of air temperature on flight metabolism of honey bees achieved flight muscle temperatures that were near or on equal, opposite sides of the thermal performance curve. Honey bees vary their wing kinematics and metabolic heat production to thermoregulate, and how air temperature affects the flight metabolic rate of honey bees is predictable using a non-linear thermal performance perspective of honey bee flight muscle.
Collapse
Affiliation(s)
- Jordan R. Glass
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Jon F. Harrison
- School of Life Sciences, Arizona State University, AZ 85281, USA
| |
Collapse
|