1
|
Diamond NB, Simpson S, Baena D, Murray B, Fogel S, Levine B. Sleep selectively and durably enhances memory for the sequence of real-world experiences. Nat Hum Behav 2025; 9:746-757. [PMID: 40069368 DOI: 10.1038/s41562-025-02117-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/16/2025] [Indexed: 04/25/2025]
Abstract
Sleep is thought to play a critical role in the retention of memory for past experiences (episodic memory), reducing the rate of forgetting compared with wakefulness. Yet it remains unclear whether and how sleep actively transforms the way we remember multidimensional real-world experiences, and how such memory transformation unfolds over the days, months and years that follow. In an exception to the law of forgetting, we show that sleep actively and selectively improves the accuracy of memory for a one-time, real-world experience (an art tour)-specifically boosting memory for the order of tour items (sequential associations) versus perceptual details from the tour (featural associations). This above-baseline boost in sequence memory was not evident after a matched period of wakefulness. Moreover, the preferential retention of sequence relative to featural memory observed after a night's sleep grew over time up to 1 year post-encoding. Finally, overnight polysomnography showed that sleep-related memory enhancement was associated with the duration and neurophysiological hallmarks of slow-wave sleep previously linked to sequential neural replay, particularly spindle-slow wave coupling. These results suggest that sleep serves a crucial and selective role in enhancing sequential organization in our memory for past events at the expense of perceptual details, linking sleep-related neural mechanisms to the days-to-years-long transformation of memory for complex real-life experiences.
Collapse
Affiliation(s)
- N B Diamond
- Rotman Research Institute at Baycrest Academy for Research and Education, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - S Simpson
- Rotman Research Institute at Baycrest Academy for Research and Education, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - D Baena
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
- Sleep Research Unit, The Royal's Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - B Murray
- Department of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - S Fogel
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
- Sleep Research Unit, The Royal's Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - B Levine
- Rotman Research Institute at Baycrest Academy for Research and Education, Toronto, Ontario, Canada.
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada.
- Department of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Yang Y, Huang Z, Yang Y, Fan M, Yin D. Time-dependent consolidation mechanisms of durable memory in spaced learning. Commun Biol 2025; 8:535. [PMID: 40169798 PMCID: PMC11962080 DOI: 10.1038/s42003-025-07964-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/19/2025] [Indexed: 04/03/2025] Open
Abstract
Emerging studies suggest that time-dependent consolidation enables memory stabilization by promoting memory integration and hippocampal-cortical transfer. Compared to massed learning, how time-dependent consolidation contributes to forming durable memory and what neural signatures predict durable memory in spaced learning remain unclear. We recruited 48 participants who underwent either 3-day spaced learning or 1-day massed learning, and both resting-state and task-based fMRI data were collected in multiple delayed tests (i.e., immediate, 1-week, and 1-month). We use representational similarity analysis to assess neural integration and replay in the hippocampus and default mode network (DMN) subsystems. In contrast with massed learning, spaced learning induces higher neural pattern similarity during immediate retrieval only in DMN subsystems. Particularly, the neural pattern similarity in the dorsal-medial DMN (DMNdm) and medial-temporal DMN subsystems predicts the durable memory defined by 1-month delay. Moreover, we find increased neural replay of durable memory in the DMNdm for spaced learning and in the hippocampus for both spaced and massed learning. Our findings suggest that time-dependent consolidation promotes neural integration and replay in the cortex rather than in the hippocampus, which may underlie the formation of durable memory after spaced learning.
Collapse
Affiliation(s)
- Yifeixue Yang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Ziyi Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yun Yang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Mingxia Fan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Dazhi Yin
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.
- Shanghai Changning Mental Health Center, Shanghai, China.
| |
Collapse
|
3
|
Yu X, He H, Wen J, Xu X, Ruan Z, Hu R, Wang F, Ju H. Diabetes-related cognitive impairment: Mechanisms, symptoms, and treatments. Open Med (Wars) 2025; 20:20241091. [PMID: 39822993 PMCID: PMC11737369 DOI: 10.1515/med-2024-1091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/23/2024] [Accepted: 10/18/2024] [Indexed: 01/19/2025] Open
Abstract
Background Diabetes-related cognitive impairment is increasingly recognized as a significant complication, profoundly impacting patients' quality of life. This review aims to examine the pathophysiological mechanisms, clinical manifestations, risk factors, assessment and diagnosis, management strategies, and future research directions of cognitive impairment in diabetes. Methodology A comprehensive literature search was conducted using PubMed, Medline, and other medical databases to identify, review, and evaluate published articles on cognitive impairment in diabetes. The search focused on studies examining pathophysiology, clinical presentations, risk factors, diagnostic approaches, and management strategies. Results The review of current literature revealed that chronic hyperglycemia, insulin resistance, and vascular factors are major contributing factors to cognitive deficits in diabetes. Clinical manifestations include impairments in attention, memory, executive function, visuospatial abilities, and language. Risk factors encompass disease duration, glycemic control, presence of complications, age, education level, and comorbidities. Assessment tools include cognitive screening instruments, neuropsychological testing, and neuroimaging techniques. Management strategies involve glycemic control optimization, lifestyle modifications, cognitive training, and pharmacological interventions. Conclusion This review highlights the significant prevalence and impact of cognitive impairment in diabetes, resulting from complex metabolic and vascular disturbances. Early detection and multifaceted interventions are crucial for preserving cognitive function and improving patient outcomes. Future research should focus on neuroprotective strategies, biomarker identification, and personalized approaches. Collaborative efforts between clinicians and researchers are essential to effectively address this growing healthcare challenge and enhance the quality of life for individuals with diabetes-related cognitive impairment.
Collapse
Affiliation(s)
- Xueting Yu
- Endocrine Department, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650000, Yunnan, China
| | - Huimei He
- Endocrine Department, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650000, Yunnan, China
| | - Jie Wen
- Executive Ward Department, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650000, Yunnan, China
| | - Xiuyuan Xu
- Endocrine Department, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650000, Yunnan, China
| | - Zhaojuan Ruan
- Endocrine Department, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650000, Yunnan, China
| | - Rui Hu
- Department of Hematology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650000, Yunnan, China
| | - Fang Wang
- Executive Ward Department, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650000, Yunnan, China
| | - Haibing Ju
- Endocrine Department, 920th Hospital of Joint Logistics Support Force, PLA, No. 212 Daguan Road, Xishan District, Kunming, 650000, Yunnan, China
| |
Collapse
|
4
|
Antony J, Lozano A, Dhoat P, Chen J, Bennion K. Causal and Chronological Relationships Predict Memory Organization for Nonlinear Narratives. J Cogn Neurosci 2024; 36:2368-2385. [PMID: 38991132 PMCID: PMC11887591 DOI: 10.1162/jocn_a_02216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
While recounting an experience, one can employ multiple strategies to transition from one part to the next. For instance, if the event was learned out of linear order, one can recall events according to the time they were learned (temporal), similar events (semantic), events occurring nearby in time (chronological), or events produced by the current event (causal). To disentangle the importance of these factors, we had participants watch the nonlinear narrative, Memento, under different task instructions and presentation orders. For each scene of the film, we also separately computed semantic and causal networks. We then contrasted the evidence for temporal, semantic, chronological, or causal strategies during recall. Critically, there was stronger evidence for the causal and chronological strategies than semantic or temporal strategies. Moreover, the causal and chronological strategies outperformed the temporal one even when we asked participants to recall the film in the presented order, underscoring the fundamental nature of causal structure in scaffolding understanding and organizing recall. Nevertheless, time still marginally predicted recall transitions, suggesting it operates as a weak signal in the presence of more salient forms of structure. In addition, semantic and causal network properties predicted scene memorability, including a stronger role for incoming causes to an event than its outgoing effects. In summary, these findings highlight the importance of accounting for complex, causal networks in knowledge building and memory.
Collapse
|
5
|
Schechtman E. When memories get complex, sleep comes to their rescue. Proc Natl Acad Sci U S A 2024; 121:e2402178121. [PMID: 38466857 PMCID: PMC10962965 DOI: 10.1073/pnas.2402178121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Affiliation(s)
- Eitan Schechtman
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA92697
- Center for Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA92697
| |
Collapse
|