1
|
McGlinchey RP, Ramos S, Dimitriadis EK, Wilson CB, Lee JC. Defining essential charged residues in fibril formation of a lysosomal derived N-terminal α-synuclein truncation. Nat Commun 2025; 16:3825. [PMID: 40268916 PMCID: PMC12019160 DOI: 10.1038/s41467-025-58899-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 04/03/2025] [Indexed: 04/25/2025] Open
Abstract
N- and C-terminal α-synuclein (α-syn) truncations are prevalent in Parkinson's disease. Effects of the N- and C-terminal residues on α-syn aggregation and fibril propagation are distinct, where the N-terminus dictates fibril structure. Here, the majority of α-syn truncations are assigned by intact mass spectrometry to lysosomal activity. To delineate essential charged residues in fibril formation, we selected an N-terminal truncation (66-140) that is generated solely from soluble α-syn by asparagine endopeptidase. Ala-substitutions at K80 and E83 impact aggregation kinetics, revealing their vital roles in defining fibril polymorphism. K80, E83, and K97 are identified to be critical for fibril elongation. Based on solid-state NMR, mutational and Raman studies, and molecular dynamics simulations, a E83-K97 salt bridge is proposed. Finally, participation of C-terminal Lys residues in the full-length α-syn fibril assembly process is also shown, highlighting that individual residues can be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Ryan P McGlinchey
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sashary Ramos
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emilios K Dimitriadis
- Biomedical Engineering and Physical Science Shared Resource Program, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - C Blake Wilson
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer C Lee
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Huang F, Yan J, Xu H, Wang Y, Zhang X, Zou Y, Lian J, Ding F, Sun Y. Exploring the Impact of Physiological C-Terminal Truncation on α-Synuclein Conformations to Unveil Mechanisms Regulating Pathological Aggregation. J Chem Inf Model 2024; 64:8616-8627. [PMID: 39504036 PMCID: PMC11588551 DOI: 10.1021/acs.jcim.4c01839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
Emerging evidence suggests that physiological C-terminal truncation of α-synuclein (αS) plays a critical role in regulating liquid-liquid phase separation and promoting amyloid aggregation, processes implicated in neurodegenerative diseases such as Parkinson's disease (PD). However, the molecular mechanisms through which C-terminal truncation influences αS conformation and modulates its aggregation remain poorly understood. In this study, we investigated the impact of C-terminal truncation on αS conformational dynamics by comparing full-length αS1-140 with truncated αS1-103 monomers using atomistic discrete molecular dynamics simulations. Our findings revealed that both αS1-140 and αS1-103 primarily adopted helical conformations around residues 7-32, while residues 36-95, located in the second half of the N-terminal and NAC domains, predominantly formed a dynamic β-sheet core. The C-terminus of αS1-140 was largely unstructured and dynamically wrapped around the β-sheet core. While residues 1-95 exhibited similar secondary structure propensities in both αS1-140 and αS1-103, the dynamic capping by the C-terminus in αS1-140 slightly enhanced β-sheet formation around residues 36-95. In contrast, key aggregation-driving regions (residues 2-9, 36-42, 45-57, and 68-78) were dynamically shielded by the C-terminus in αS1-140, reducing their exposure and potentially preventing interpeptide interactions that drive aggregation. C-terminal truncation, on the other hand, increased the exposed surface area of these aggregation-prone regions, thereby enhancing interpeptide interactions, phase separation, and amyloid aggregation. Overall, our simulations provide valuable insights into the conformational effects of C-terminal truncation on αS and its role in promoting pathological aggregation.
Collapse
Affiliation(s)
- Fengjuan Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315211, China
| | - Jiajia Yan
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Huan Xu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Ying Wang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Xiaohan Zhang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yu Zou
- Department of Sport and Exercise Science, Zhejiang University, Hangzhou 310058, China
| | - Jiangfang Lian
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315211, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
3
|
Shimanovich U, Hartl FU. Protein folding: From physics-chemical rules and cellular machineries of protein quality control to AI solutions. Proc Natl Acad Sci U S A 2024; 121:e2411135121. [PMID: 39133840 PMCID: PMC11348304 DOI: 10.1073/pnas.2411135121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Affiliation(s)
- Ulyana Shimanovich
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, Rehovot7610001, Israel
| | - F. Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried82152, Germany
| |
Collapse
|
4
|
Dewison KM, Rowlinson B, Machin JM, Crossley JA, Thacker D, Wilkinson M, Ulamec SM, Khan GN, Ranson NA, van Oosten-Hawle P, Brockwell DJ, Radford SE. Residues 2 to 7 of α-synuclein regulate amyloid formation via lipid-dependent and lipid-independent pathways. Proc Natl Acad Sci U S A 2024; 121:e2315006121. [PMID: 39133842 PMCID: PMC11348338 DOI: 10.1073/pnas.2315006121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/09/2024] [Indexed: 08/29/2024] Open
Abstract
Amyloid formation by α-synuclein (αSyn) occurs in Parkinson's disease, multiple system atrophy, and dementia with Lewy bodies. Deciphering the residues that regulate αSyn amyloid fibril formation will not only provide mechanistic insight but may also reveal targets to prevent and treat disease. Previous investigations have identified several regions of αSyn to be important in the regulation of amyloid formation, including the non-amyloid-β component (NAC), P1 region (residues 36 to 42), and residues in the C-terminal domain. Recent studies have also indicated the importance of the N-terminal region of αSyn for both its physiological and pathological roles. Here, the role of residues 2 to 7 in the N-terminal region of αSyn is investigated in terms of their ability to regulate amyloid fibril formation in vitro and in vivo. Deletion of these residues (αSynΔN7) slows the rate of fibril formation in vitro and reduces the capacity of the protein to be recruited by wild-type (αSynWT) fibril seeds, despite cryo-EM showing a fibril structure consistent with those of full-length αSyn. Strikingly, fibril formation of αSynΔN7 is not induced by liposomes, despite the protein binding to liposomes with similar affinity to αSynWT. A Caenorhabditis elegans model also showed that αSynΔN7::YFP forms few puncta and lacks motility and lifespan defects typified by expression of αSynWT::YFP. Together, the results demonstrate the involvement of residues 2 to 7 of αSyn in amyloid formation, revealing a target for the design of amyloid inhibitors that may leave the functional role of the protein in membrane binding unperturbed.
Collapse
Affiliation(s)
- Katherine M. Dewison
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Benjamin Rowlinson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Jonathan M. Machin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Joel A. Crossley
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Dev Thacker
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Martin Wilkinson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Sabine M. Ulamec
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - G. Nasir Khan
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Neil A. Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | | | - David J. Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| |
Collapse
|