1
|
Guo M, Li Y, Zhao B. Clonal hematopoiesis of indeterminate potential: recent developments and perspectives. Curr Opin Hematol 2025; 32:193-198. [PMID: 40063624 DOI: 10.1097/moh.0000000000000870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
PURPOSE OF REVIEW This review encompasses the recently published information on clonal hematopoiesis of indeterminate potential (CHIP) and discusses its future prospects. By announcing advances in the research of CHIP risk factors and related diseases, with the purpose of offering new insights to treat both hematologic and nonhematologic disorders. RECENT FINDINGS The majority of studies have shown that CHIP is a common biological condition associated with aging and the incidence of clonal hematopoiesis increases with age. The pathophysiology of blood diseases is projected to be significantly influenced by CHIP. Nevertheless, increasing studies have expanded the application of CHIP to cover nonhematologic diseases such as cardiovascular, renal, liver, and pulmonary diseases. Furthermore, with the fast advancement of genetic testing technology and preventive medicine, the involvement of CHIP in a variety of disorders shows promise as an essential target for preventing disease onset and progression. SUMMARY CHIP is linked to a variety of illnesses and has a significant influence on an individual's health outlook. Thus, identifying and managing CHIP is critical for improving the clinical results of the individuals concerned.
Collapse
Affiliation(s)
- Meiqi Guo
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yuan Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Baobing Zhao
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Yao Y, Liu YY, Li JF, Chen YS, Shi L, Shen Y, Yang LL, Yang Q. Indoleamine 2,3-dioxygenase 1 alters the proportions of B cell subpopulations in the microenvironment of acute myeloid leukemia. MOLECULAR BIOMEDICINE 2025; 6:23. [PMID: 40234305 PMCID: PMC12000501 DOI: 10.1186/s43556-025-00262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 04/17/2025] Open
Abstract
Acute myeloid leukemia (AML), the most common leukemia in adults, exhibits immune escape characteristics like solid tumors. The expression of indoleamine 2,3-dioxygenase 1 (IDO1), a well-recognized immune checkpoint, has been detected in AML blast cells and is associated with poor clinical outcome. Although an imbalance of B cell subpopulations exists in AML patients' bone marrow microenvironment, the role of B cells and their interaction with IDO1 in AML have yet to be elucidated. Herein, with bioinformatic analysis, we found the close correlations between IDO1 expression and survival and B cell subpopulation proportions in AML patients. Further, our investigation into IDO1 expression and activity, B cell subpopulation proportions and immunosuppressive interleukin-10 (IL-10) level in AML cells and clinical samples revealed significant findings. Using a co-culture system of healthy human PBMCs and AML cell lines, we demonstrated that high IDO1 expression in AML cells could alter the proportions of total B, regulatory B and memory B cells, and increased the level of IL-10. Finally, with the IDO1 inhibitor RY103 designed by our laboratory, we found that IDO1 inhibition had good anti-leukemic effect and restored the abnormal proportions of B cell subpopulations in AML mice. Our study is the first to reveal the modulation of IDO1 on B cell subpopulations in AML, making a significant breakthrough in understanding the immune escape mechanisms of AML. Application of IDO1 inhibitor, such as RY103, targeting the imbalance of B cell subpopulations can lead to innovative treatments for AML.
Collapse
MESH Headings
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Humans
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/genetics
- Tumor Microenvironment/immunology
- Animals
- Interleukin-10/metabolism
- Mice
- Cell Line, Tumor
- Male
- Female
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Middle Aged
- Adult
Collapse
Affiliation(s)
- Yu Yao
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Yu-Ying Liu
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Jian-Feng Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yun-Shuo Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lei Shi
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Yang Shen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Li-Li Yang
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Qing Yang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China.
| |
Collapse
|
3
|
Ryu G, Koh Y, Jaiswal S, Yoon SS. Clonal hematopoiesis: elements associated with clonal expansion and diseases. Blood Res 2025; 60:17. [PMID: 40080235 PMCID: PMC11906933 DOI: 10.1007/s44313-025-00065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Clonal hematopoiesis (CH), characterized by the expansion of hematopoietic stem and progenitor cells harboring somatic mutations, has emerged as a significant age-related phenomenon with profound implications for human health. While initially recognized in the 1960s, recent technological advances have revealed its complex nature and widespread prevalence, affecting up to 84% of individuals aged ≥ 70 years. The clinical significance of CH extends beyond its well-established role as a precursor to hematological malignancies, encompassing its association with cardiovascular diseases, chronic kidney disease, and other non-malignant disorders. This comprehensive review synthesizes the current understanding of CH, focusing on recent advances in genetic and molecular mechanisms, particularly the roles of commonly mutated genes such as DNMT3A, TET2, and ASXL1. We address the emerging distinction between myeloid and lymphoid CH, their differential impacts on disease progression, and the complex interplay between CH and inflammation. Special attention is given to newly identified genetic determinants of clonal expansion rates and their implications for disease progression. The review also examines the revolutionary concept of passenger-approximated clonal expansion rate and its utility in understanding CH dynamics. Furthermore, we discuss therapeutic strategies targeting inflammatory pathways and their potential in mitigating CH-associated complications. By integrating recent findings from genetic, molecular, and clinical studies, this review provides a framework for understanding CH as a systemic condition and highlights promising directions for therapeutic interventions.
Collapse
Affiliation(s)
- Gangpyo Ryu
- Cancer Research Institute, Seoul National University, Seoul, Korea
- The Interdisciplinary Program of Cancer Biology, Seoul National University, Seoul, Korea
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Youngil Koh
- Cancer Research Institute, Seoul National University, Seoul, Korea.
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.
| | - Siddhartha Jaiswal
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| | - Sung-Soo Yoon
- Cancer Research Institute, Seoul National University, Seoul, Korea.
- The Interdisciplinary Program of Cancer Biology, Seoul National University, Seoul, Korea.
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.
- College of Medicine, Seoul National University, Seoul, Korea.
| |
Collapse
|
4
|
Liu Y, Xi Z, Zhou J, Ling F, Zhang Y, Xie H, Zheng J, Xia B, Feng H, Li Y. Clonal Hematopoiesis of Indeterminate Potential as a Predictor of Colorectal Cancer Risk: Insights from the UK Biobank Cohort. Cancer Epidemiol Biomarkers Prev 2025; 34:405-411. [PMID: 39804050 DOI: 10.1158/1055-9965.epi-24-1342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/20/2024] [Accepted: 01/09/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Clonal hematopoiesis of indeterminate potential (CHIP) has been shown to be associated with the occurrence of solid tumors, but its relationship with colorectal cancer still needs to be studied. METHODS We conducted a prospective matched case-control study using data from the UK Biobank, including 5,310 incident colorectal cancer cases and 26,550 controls matched for age, sex, and body mass index. RESULTS Analysis of the UK Biobank data revealed that the presence of CHIP was associated with an increased risk of colorectal cancer. The odds ratio (OR) for colorectal cancer in the presence of CHIP was 1.20 (P = 0.006). This association remained significant even after excluding participants with a family history of bowel cancer (multivariate OR, 1.19; P = 0.007). Subgroup analyses demonstrated that CHIP independently increased the risk of colorectal cancer in females (multivariate OR, 1.25; P = 0.018) and in individuals older than 60 years (multivariate OR, 1.17; P = 0.046). Gene-specific analyses revealed that mutations in TET2 and ATM were particularly significant in relation to colorectal cancer risk, with an OR of 1.62 (P = 0.002) for TET2 and 2.98 (P < 0.001) for ATM. CONCLUSIONS Our findings indicate that CHIP is associated with an increased risk of colorectal cancer, particularly in individuals more than 60 years of age or in females. IMPACT Screening for CHIP in the population may improve the early detection and diagnosis rates of colorectal cancer.
Collapse
Affiliation(s)
- Yongfeng Liu
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhihui Xi
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Jianlong Zhou
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Fa Ling
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yucheng Zhang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Huajie Xie
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiabin Zheng
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Baijin Xia
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Huolun Feng
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yong Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
5
|
Jin GB, Rong SQ, Yin DR, Deng ZH, Ding X, Sheng MY, Gao H, Kohli RM, Xu GL, Zhou D. Neomorphic leukemia-derived mutations in the TET2 enzyme induce genome instability via a substrate shift from 5-methylcytosine to thymine. Proc Natl Acad Sci U S A 2025; 122:e2418318122. [PMID: 39874291 PMCID: PMC11804724 DOI: 10.1073/pnas.2418318122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
Ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (mC) in DNA, contributing to the regulation of gene transcription. Diverse mutations of TET2 are frequently found in various blood cancers, yet the full scope of their functional consequences has been unexplored. Here, we report that a subset of TET2 mutations identified in leukemia patients alter the substrate specificity of TET2 from acting on mC to thymine. This neomorphic activity results from substitutions at key residues involved in the interactions with the mC base, including Asn1387 and His1904. Recombinant human TET2 proteins harboring the mutation of these residues can catalyze the oxidation of thymine to 5-hydroxymethyluracil (hmU) and 5-formyluracil (fU). Exogenous expression of the mutant TET2 Asn1387Thr (N1387T) in HEK293T cells leads to hmU accumulation, with levels further increased in cells lacking the glycosylase SMUG1. Endogenous knock-in of N1300T, the murine equivalent of N1387T, in mouse embryonic stem cells induces hmU production, causing DNA lesions and transcriptional activation of DNA damage response genes. N1300T cells accumulate more additional mutations with extended culture and exhibit heightened sensitivity to ATR inhibition compared to Tet2 knockout cells. Our study reveals that certain patient-derived TET2 mutations can acquire unexpected gain-of-function activities beyond impairing mC oxidation, offering a fresh perspective on the diverse molecular etiology of mutant TET2-related leukemogenesis.
Collapse
Affiliation(s)
- Guang-Bo Jin
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) and Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai200032, China
| | - Shao-Qin Rong
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) and Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai200032, China
| | - Dong-Rui Yin
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) and Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai200032, China
| | - Zhou-Hao Deng
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) and Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai200032, China
| | - Xiao Ding
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) and Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai200032, China
| | - Meng-Yao Sheng
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) and Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai200032, China
| | - Hai Gao
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) and Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai200032, China
| | - Rahul M. Kohli
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA19104
- Department of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA19104
| | - Guo-Liang Xu
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) and Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai200032, China
- Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai200031, China
| | - Dan Zhou
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069), Medical College of Fudan University, Shanghai201399, China
| |
Collapse
|
6
|
Zhang Q, Yim R, Lee P, Chin L, Li V, Gill H. Implications of Clonal Hematopoiesis in Hematological and Non-Hematological Disorders. Cancers (Basel) 2024; 16:4118. [PMID: 39682303 DOI: 10.3390/cancers16234118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Clonal hematopoiesis (CH) is associated with an increased risk of developing myeloid neoplasms (MNs) such as myelodysplastic neoplasm (MDS) and acute myeloid leukemia (AML). In general, CH comprises clonal hematopoiesis of indeterminate potential (CHIP) and clonal cytopenia of undetermined significance (CCUS). It is an age-related phenomenon characterized by the presence of somatic mutations in hematopoietic stem cells (HSCs) and hematopoietic stem and progenitor cells (HSPCs) that acquire a fitness advantage under selection pressure. Individuals with CHIP have an absolute risk of 0.5-1.0% per year for progressing to MDS or AML. Inflammation, smoking, cytotoxic therapy, and radiation can promote the process of clonal expansion and leukemic transformation. Of note, exposure to chemotherapy or radiation for patients with solid tumors or lymphomas can increase the risk of therapy-related MN. Beyond hematological malignancies, CH also serves as an independent risk factor for heart disease, stroke, chronic obstructive pulmonary disease, and chronic kidney disease. Prognostic models such as the CH risk score and MN-prediction models can provide a framework for risk stratification and clinical management of CHIP/CCUS and identify high-risk individuals who may benefit from close surveillance. For CH or related disorders, therapeutic strategies targeting specific CH-associated mutations and specific selection pressure may have a potential role in the future.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Rita Yim
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Paul Lee
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lynn Chin
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Vivian Li
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Harinder Gill
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
7
|
Pendse S, Loeffler D. Decoding Clonal Hematopoiesis: Emerging Themes and Novel Mechanistic Insights. Cancers (Basel) 2024; 16:2634. [PMID: 39123361 PMCID: PMC11311828 DOI: 10.3390/cancers16152634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Clonal hematopoiesis (CH), the relative expansion of mutant clones, is derived from hematopoietic stem cells (HSCs) with acquired somatic or cytogenetic alterations that improve cellular fitness. Individuals with CH have a higher risk for hematological and non-hematological diseases, such as cardiovascular disease, and have an overall higher mortality rate. Originally thought to be restricted to a small fraction of elderly people, recent advances in single-cell sequencing and bioinformatics have revealed that CH with multiple expanded mutant clones is universal in the elderly population. Just a few years ago, phylogenetic reconstruction across the human lifespan and novel sensitive sequencing techniques showed that CH can start earlier in life, decades before it was thought possible. These studies also suggest that environmental factors acting through aberrant inflammation might be a common theme promoting clonal expansion and disease progression. However, numerous aspects of this phenomenon remain to be elucidated and the precise mechanisms, context-specific drivers, and pathways of clonal expansion remain to be established. Here, we review our current understanding of the cellular mechanisms driving CH and specifically focus on how pro-inflammatory factors affect normal and mutant HSC fates to promote clonal selection.
Collapse
Affiliation(s)
- Shalmali Pendse
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Comprehensive Cancer Center, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Pathology & Laboratory Medicine, The University of Tennessee, Memphis, TN 37996, USA
| | - Dirk Loeffler
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Comprehensive Cancer Center, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Pathology & Laboratory Medicine, The University of Tennessee, Memphis, TN 37996, USA
| |
Collapse
|
8
|
Zeng YP, Li B, Qin TJ, Xu ZF, Qu SJ, Pan LJ, Gao QY, Jiao M, Wu JY, Wang HJ, Li CW, Ja YJ, Sun Q, Xiao ZJ. [Clinical characteristics and prognosis of patients with myelodysplastic syndrome with a bone marrow nucleated erythroid cell proportion of greater than or equal to 50]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:651-659. [PMID: 39231769 PMCID: PMC11388124 DOI: 10.3760/cma.j.cn121090-20240517-00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Indexed: 09/06/2024]
Abstract
Objective: To analyze the clinical characteristics and prognosis of patients with myelodysplastic syndrome (MDS) with a bone marrow nucleated erythroid cell proportion of greater than or equal to 50% (MDS-E) . Methods: The clinical characteristics and prognostic factors of patients with MDS-E were retrospectively analyzed by collecting the case data of 1 436 newly treated patients with MDS diagnosed in the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences from May 2014 to June 2023. Results: A total of 1 436 newly diagnosed patients with complete data were included in the study, of which 337 (23.5%) patients with MDS-E had a younger age of onset and lower neutrophil and platelet counts compared with those in patients with an erythroid cell proportion of less than 50% (MDS-NE) (all P<0.05). The proportion of MDS cases with ring sideroblasts (MDS-RS) was higher in the MDS-E group than in the MDS-NE group, and multi-hit TP53 mutations were more enriched in the MDS-E group than in the MDS-NE group (all P<0.05). Among patients with MDS-RS, the frequency of complex karyotypes and the TP53 mutation rate were significantly lower in the MDS-E group than in the MDS-NE group (0 vs 11.9%, P=0.048 and 2.4% vs 15.1%, P=0.053, respectively). Among patients with TP53 mutations, the frequencies of complex karyotypes and multi-hit TP53 mutations were significantly higher in the MDS-E group than in the MDS-NE group (87.5% vs 64.6%, P=0.003 and 84.0% vs 54.2%, P<0.001, respectively). Survival analysis of patients with MDS-RS found that the overall survival (OS) in the MDS-E group was better than that in the MDS-NE group [not reached vs 63 (95% CI 53.3-72.7) months, P=0.029]. Among patients with TP53 mutations and excess blasts, the OS in the MDS-E group was worse than that in the MDS-NE group [6 (95% CI 2.2-9.8) months vs 12 (95% CI 8.9-15.1) months, P=0.022]. Multivariate analysis showed that age of ≥65 years (HR=2.47, 95% CI 1.43-4.26, P=0.001), mean corpuscular volume (MCV) of ≤100 fl (HR=2.62, 95% CI 1.54-4.47, P<0.001), and TP53 mutation (HR=2.31, 95% CI 1.29-4.12, P=0.005) were poor prognostic factors independent of the Revised International Prognostic Scoring System (IPSS-R) prognosis stratification in patients with MDS-E. Conclusion: Among patients with MDS-RS, MDS-E was strongly associated with a lower proportion of complex karyotypes and TP53 mutations, and the OS in the MDS-E group was longer than that in the MDS-NE group. Among patients with TP53 mutations, MDS-E was strongly associated with complex karyotypes and multi-hit TP53 mutations, and among TP53-mutated patients with excess blasts, the OS in the MDS-E group was shorter than that in the MDS-NE group. Age of ≥65 years, MCV of ≤100 fl, and TP53 mutation were independent adverse prognostic factors affecting OS in patients with MDS-E.
Collapse
Affiliation(s)
- Y P Zeng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - B Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - T J Qin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Z F Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - S J Qu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - L J Pan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Q Y Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - M Jiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - J Y Wu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - H J Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - C W Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Y J Ja
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Q Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Z J Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|
9
|
Li JF, Cheng WY, Lin XJ, Wen LJ, Wang K, Zhu YM, Zhu HM, Chen XJ, Zhang YL, Yin W, Zhang JN, Yi X, Zhang F, Weng XQ, Wang SY, Jiang L, Wu HY, Ren JQ, Lin XJ, Qiao N, Dai YT, Fang H, Tan Y, Sun XJ, Lv G, Yan XY, Chen SN, Chen Z, Jin J, Wu DP, Ren RB, Chen SJ, Shen Y. Aging and comprehensive molecular profiling in acute myeloid leukemia. Proc Natl Acad Sci U S A 2024; 121:e2319366121. [PMID: 38422020 PMCID: PMC10927507 DOI: 10.1073/pnas.2319366121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aging-related and heterogeneous hematopoietic malignancy. In this study, a total of 1,474 newly diagnosed AML patients with RNA sequencing data were enrolled, and targeted or whole exome sequencing data were obtained in 94% cases. The correlation of aging-related factors including age and clonal hematopoiesis (CH), gender, and genomic/transcriptomic profiles (gene fusions, genetic mutations, and gene expression networks or pathways) was systematically analyzed. Overall, AML patients aged 60 y and older showed an apparently dismal prognosis. Alongside age, the frequency of gene fusions defined in the World Health Organization classification decreased, while the positive rate of gene mutations, especially CH-related ones, increased. Additionally, the number of genetic mutations was higher in gene fusion-negative (GF-) patients than those with GF. Based on the status of CH- and myelodysplastic syndromes (MDS)-related mutations, three mutant subgroups were identified among the GF- AML cohort, namely, CH-AML, CH-MDS-AML, and other GF- AML. Notably, CH-MDS-AML demonstrated a predominance of elderly and male cases, cytopenia, and significantly adverse clinical outcomes. Besides, gene expression networks including HOXA/B, platelet factors, and inflammatory responses were most striking features associated with aging and poor prognosis in AML. Our work has thus unraveled the intricate regulatory circuitry of interactions among different age, gender, and molecular groups of AML.
Collapse
Affiliation(s)
- Jian-Feng Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Wen-Yan Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Xiang-Jie Lin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang310003, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang310003, China
| | - Li-Jun Wen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou215006, China
| | - Kai Wang
- International Center for Aging and Cancer, Department of Hematology of The First Affiliated Hospital, Hainan Medical University, Haikou571199, China
| | - Yong-Mei Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Hong-Ming Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Xin-Jie Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Yu-Liang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Wei Yin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Jia-Nan Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Xiao Yi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Fan Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Xiang-Qin Weng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Sheng-Yue Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Lu Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Hui-Yi Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Jia-Qi Ren
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Xiao-Jing Lin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Niu Qiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Yu-Ting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Yun Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Xiao-Jian Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Gang Lv
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Xiao-Yu Yan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Su-Ning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou215006, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang310003, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang310003, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang310003, China
| | - De-Pei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou215006, China
| | - Rui-Bao Ren
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
- International Center for Aging and Cancer, Department of Hematology of The First Affiliated Hospital, Hainan Medical University, Haikou571199, China
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Yang Shen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| |
Collapse
|