1
|
Otomo A, Hui Zhu LG, Okuni Y, Yamamoto M, Iino R. ATP synthesis of Enterococcus hirae V-ATPase driven by sodium motive force. J Biol Chem 2025; 301:108422. [PMID: 40118453 PMCID: PMC12018189 DOI: 10.1016/j.jbc.2025.108422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025] Open
Abstract
V-ATPases generally function as ion pumps driven by ATP hydrolysis in the cell, but their capability of ATP synthesis remains largely unexplored. Here we show ATP synthesis of Na+-transporting Enterococcus hirae V-ATPase (EhVoV1) driven by the electrochemical potential gradient of Na+ across the membrane (sodium motive force, smf). We reconstituted EhVoV1 into liposome and performed a luciferin/luciferase-based assay to analyze ATP synthesis quantitatively. Our result demonstrates that EhVoV1 synthesizes ATP with a rate of 4.7 s-1 under high smf (269.3 mV). The Michaelis constants for ADP (21 μM) and inorganic phosphate (2.1 mM) in ATP synthesis reaction were comparable to those for ATP synthases, suggesting similar substrate affinities among rotary ATPases regardless of their physiological functions. Both components of smf, Na+ concentration gradient across the membrane (ΔpNa) and membrane potential (Δψ), contributed to ATP synthesis, with ΔpNa showing a slightly larger impact. At the equilibrium points where smf and Gibbs free energy of ATP synthesis are balanced, EhVoV1 showed reversible reactions between ATP synthesis and hydrolysis. The obtained Na+/ATP ratio (3.2 ± 0.4) closely matched the value expected from the structural symmetry ratio between EhVo and EhV1 (10/3 = 3.3), indicating tight coupling between ATP synthesis/hydrolysis and Na+ transport. These results reveal the inherent functional reversibility of EhVoV1. We propose that the physiological function of EhVoV1in vivo is determined by relatively small smf against large Gibbs free energy of ATP synthesis, in addition to the absence of inhibitory mechanisms of ATP hydrolysis which are known for ATP synthases.
Collapse
Affiliation(s)
- Akihiro Otomo
- Institute for Molecular Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Kanazawa, Japan.
| | | | - Yasuko Okuni
- Institute for Molecular Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Mayuko Yamamoto
- Institute for Molecular Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Ryota Iino
- Institute for Molecular Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Kanazawa, Japan.
| |
Collapse
|
2
|
Bruman SM, Zubareva VM, Shugaeva TE, Lapashina AS, Feniouk BA. Activation of Bacterial F-ATPase by LDAO: Deciphering the Molecular Mechanism. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:374-388. [PMID: 40367080 DOI: 10.1134/s0006297924602600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 12/06/2024] [Accepted: 01/29/2025] [Indexed: 05/16/2025]
Abstract
Proton FOF1 ATP synthase catalyzes the formation of ATP from ADP and inorganic phosphate coupled with transmembrane proton transfer using the energy of the protonmotive force (pmf). As pmf decreases, the direction of the reaction is reversed and the enzyme generates pmf, transferring protons across the membrane using the energy of ATP hydrolysis. ATPase activity of the enzyme can be suppressed by ADP in a non-competitive manner (ADP-inhibition), and in a number of bacteria, it can be inhibited by conformational changes in the regulatory C-terminal domain of the ε subunit. Lauryldimethylamine oxide (LDAO), a zwitterionic detergent, is known to attenuate both of these inhibitory mechanisms, significantly increasing the ATPase activity of the enzyme. For this reason, LDAO is sometimes used for semi-quantitative estimation of the enzyme's susceptibility to these regulatory mechanisms. However, the binding site of LDAO in ATP synthase remains unknown. The mechanism by which the detergent counteracts ADP-inhibition and the inhibition involving the ε subunit is also unclear. We performed molecular docking and predicted that LDAO binding might occur at the catalytic site of ATP synthase, whether empty or containing nucleotides. Molecular dynamics simulations showed that LDAO could affect the mobility of the loop in the β subunit (residues β404-415 in Escherichia coli ATP synthase) near the catalytic site. Mutagenesis of residue β409 in the E. coli enzyme and the corresponding β419 residue in the Bacillus subtilis ATP synthase revealed that the type of side chain of this residue indeed affects LDAO-dependent stimulation of ATPase activity. We also found that LDAO activates the enzyme more strongly in the presence of 100 mM sulfate compared to sulfate-free medium. This phenomenon is likely due to the enhancement of ADP-inhibition of the enzyme by sulfate.
Collapse
Affiliation(s)
- Sofya M Bruman
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Valeria M Zubareva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Tatiana E Shugaeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Anna S Lapashina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Boris A Feniouk
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
3
|
Zharova TV, Grivennikova VG. F o·F 1 ATP-synthase/ATPase of Paracoccus denitrificans: Mystery of Unidirectional Catalysis. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S86-S104. [PMID: 40164154 DOI: 10.1134/s000629792460399x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 10/16/2024] [Indexed: 04/02/2025]
Abstract
Fo·F1 ATP synthases/ATPases (Fo·F1) catalyze ATP synthesis by consuming energy of electrochemical potential of hydrogen ions (pmf), or ATP hydrolysis resulting in the pmf formation. It is generally accepted to consider Fo·F1 as a reversible chemomechanical-electrical molecular machine, however: (i) the mechanism of energy-dependent ATP synthesis is based only on the data on hydrolytic activity of the enzyme, (ii) Fo·F1 from a number of organisms effectively synthesize, but is unable to hydrolyze ATP, which indicates non-observance of the principle of microreversibility and requires development of a new hypotheses concerning the enzyme mechanism. Since 1980, the group of A. D. Vinogradov has been developing a concept according to which the elementary catalysis stages of ATP hydrolysis and ATP synthesis do not coincide, and there are two independently operating forms of Fo·F1 in the coupled membranes - pmf-generating ATPase and pmf-consuming ATP synthase. Fo·F1 of P. denitrificans as a natural model of an irreversibly functioning enzyme is a convenient object for experimental verification of the hypothesis of unidirectional energy conversion. The review considers modern concepts of the molecular mechanisms of regulation of Fo·F1 ATP synthase/ATPase of P. denitrificans and development of the hypothesis of two forms of Fo·F1.
Collapse
Affiliation(s)
- Tatiana V Zharova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Vera G Grivennikova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
4
|
Hatasaki YC, Kobayashi R, Watanabe RR, Hara M, Ueno H, Noji H. Engineering of IF 1 -susceptive bacterial F 1 -ATPase. Protein Sci 2024; 33:e4942. [PMID: 38501464 PMCID: PMC10949317 DOI: 10.1002/pro.4942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/25/2024] [Accepted: 02/11/2024] [Indexed: 03/20/2024]
Abstract
IF1 , an inhibitor protein of mitochondrial ATP synthase, suppresses ATP hydrolytic activity of F1 . One of the unique features of IF1 is the selective inhibition in mitochondrial F1 (MF1 ); it inhibits catalysis of MF1 but does not affect F1 with bacterial origin despite high sequence homology between MF1 and bacterial F1 . Here, we aimed to engineer thermophilic Bacillus F1 (TF1 ) to confer the susceptibility to IF1 for elucidating the molecular mechanism of selective inhibition of IF1 . We first examined the IF1 -susceptibility of hybrid F1 s, composed of each subunit originating from bovine MF1 (bMF1 ) or TF1 . It was clearly shown that only the hybrid with the β subunit of mitochondrial origin has the IF1 -susceptibility. Based on structural analysis and sequence alignment of bMF1 and TF1 , the five non-conserved residues on the C-terminus of the β subunit were identified as the candidate responsible for the IF1 -susceptibility. These residues in TF1 were substituted with the bMF1 residues. The resultant mutant TF1 showed evident IF1 -susceptibility. Reversely, we examined the bMF1 mutant with TF1 residues at the corresponding sites, which showed significant suppression of IF1 -susceptibility, confirming the critical role of these residues. We also tested additional three substitutions with bMF1 residues in α and γ subunits that further enhanced the IF1 -susceptibility, suggesting the additive role of these residues. We discuss the molecular mechanism by which IF1 specifically recognizes F1 with mitochondrial origin, based on the present result and the structure of F1 -IF1 complex. These findings would help the development of the inhibitors targeting bacterial F1 .
Collapse
Affiliation(s)
- Yuichiro C. Hatasaki
- Department of Applied Chemistry, Graduate School of EngineeringThe University of TokyoTokyoJapan
| | - Ryohei Kobayashi
- Department of Applied Chemistry, Graduate School of EngineeringThe University of TokyoTokyoJapan
- Research Center for Computational ScienceInstitute for Molecular ScienceOkazakiAichiJapan
| | - Ryo R. Watanabe
- Department of Applied Chemistry, Graduate School of EngineeringThe University of TokyoTokyoJapan
| | - Mayu Hara
- Department of Applied Chemistry, Graduate School of EngineeringThe University of TokyoTokyoJapan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of EngineeringThe University of TokyoTokyoJapan
- Digital Bioanalysis LaboratoryThe University of TokyoTokyoJapan
| | - Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of EngineeringThe University of TokyoTokyoJapan
- Digital Bioanalysis LaboratoryThe University of TokyoTokyoJapan
| |
Collapse
|
5
|
Nath S. Beyond binding change: the molecular mechanism of ATP hydrolysis by F 1-ATPase and its biochemical consequences. Front Chem 2023; 11:1058500. [PMID: 37324562 PMCID: PMC10266426 DOI: 10.3389/fchem.2023.1058500] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
F1-ATPase is a universal multisubunit enzyme and the smallest-known motor that, fueled by the process of ATP hydrolysis, rotates in 120o steps. A central question is how the elementary chemical steps occurring in the three catalytic sites are coupled to the mechanical rotation. Here, we performed cold chase promotion experiments and measured the rates and extents of hydrolysis of preloaded bound ATP and promoter ATP bound in the catalytic sites. We found that rotation was caused by the electrostatic free energy change associated with the ATP cleavage reaction followed by Pi release. The combination of these two processes occurs sequentially in two different catalytic sites on the enzyme, thereby driving the two rotational sub-steps of the 120o rotation. The mechanistic implications of this finding are discussed based on the overall energy balance of the system. General principles of free energy transduction are formulated, and their important physical and biochemical consequences are analyzed. In particular, how exactly ATP performs useful external work in biomolecular systems is discussed. A molecular mechanism of steady-state, trisite ATP hydrolysis by F1-ATPase, consistent with physical laws and principles and the consolidated body of available biochemical information, is developed. Taken together with previous results, this mechanism essentially completes the coupling scheme. Discrete snapshots seen in high-resolution X-ray structures are assigned to specific intermediate stages in the 120o hydrolysis cycle, and reasons for the necessity of these conformations are readily understood. The major roles played by the "minor" subunits of ATP synthase in enabling physiological energy coupling and catalysis, first predicted by Nath's torsional mechanism of energy transduction and ATP synthesis 25 years ago, are now revealed with great clarity. The working of nine-stepped (bMF1, hMF1), six-stepped (TF1, EF1), and three-stepped (PdF1) F1 motors and of the α3β3γ subcomplex of F1 is explained by the same unified mechanism without invoking additional assumptions or postulating different mechanochemical coupling schemes. Some novel predictions of the unified theory on the mode of action of F1 inhibitors, such as sodium azide, of great pharmaceutical importance, and on more exotic artificial or hybrid/chimera F1 motors have been made and analyzed mathematically. The detailed ATP hydrolysis cycle for the enzyme as a whole is shown to provide a biochemical basis for a theory of "unisite" and steady-state multisite catalysis by F1-ATPase that had remained elusive for a very long time. The theory is supported by a probability-based calculation of enzyme species distributions and analysis of catalytic site occupancies by Mg-nucleotides and the activity of F1-ATPase. A new concept of energy coupling in ATP synthesis/hydrolysis based on fundamental ligand substitution chemistry has been advanced, which offers a deeper understanding, elucidates enzyme activation and catalysis in a better way, and provides a unified molecular explanation of elementary chemical events occurring at enzyme catalytic sites. As such, these developments take us beyond binding change mechanisms of ATP synthesis/hydrolysis proposed for oxidative phosphorylation and photophosphorylation in bioenergetics.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
6
|
Kobayashi R, Ueno H, Okazaki KI, Noji H. Molecular mechanism on forcible ejection of ATPase inhibitory factor 1 from mitochondrial ATP synthase. Nat Commun 2023; 14:1682. [PMID: 37002198 PMCID: PMC10066207 DOI: 10.1038/s41467-023-37182-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/06/2023] [Indexed: 04/03/2023] Open
Abstract
IF1 is a natural inhibitor protein for mitochondrial FoF1 ATP synthase that blocks catalysis and rotation of the F1 by deeply inserting its N-terminal helices into F1. A unique feature of IF1 is condition-dependent inhibition; although IF1 inhibits ATP hydrolysis by F1, IF1 inhibition is relieved under ATP synthesis conditions. To elucidate this condition-dependent inhibition mechanism, we have performed single-molecule manipulation experiments on IF1-inhibited bovine mitochondrial F1 (bMF1). The results show that IF1-inhibited F1 is efficiently activated only when F1 is rotated in the clockwise (ATP synthesis) direction, but not in the counterclockwise direction. The observed rotational-direction-dependent activation explains the condition-dependent mechanism of IF1 inhibition. Investigation of mutant IF1 with N-terminal truncations shows that the interaction with the γ subunit at the N-terminal regions is crucial for rotational-direction-dependent ejection, and the middle long helix is responsible for the inhibition of F1.
Collapse
Affiliation(s)
- Ryohei Kobayashi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Research Center for Computational Science, Institute for Molecular Science, Okazaki, Aichi, 444-8585, Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kei-Ichi Okazaki
- Research Center for Computational Science, Institute for Molecular Science, Okazaki, Aichi, 444-8585, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Aichi, 444-8585, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
7
|
Sakuma M, Honda S, Ueno H, Tabata KV, Miyazaki K, Tokuriki N, Noji H. Genetic Perturbation Alters Functional Substates in Alkaline Phosphatase. J Am Chem Soc 2023; 145:2806-2814. [PMID: 36706363 PMCID: PMC9912328 DOI: 10.1021/jacs.2c06693] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Enzymes inherently exhibit molecule-to-molecule heterogeneity in their conformational and functional states, which is considered to be a key to the evolution of new functions. Single-molecule enzyme assays enable us to directly observe such multiple functional states or functional substates. Here, we quantitatively analyzed functional substates in the wild-type and 69 single-point mutants of Escherichia coli alkaline phosphatase by employing a high-throughput single-molecule assay with a femtoliter reactor array device. Interestingly, many mutant enzymes exhibited significantly heterogeneous functional substates with various types, while the wild-type enzyme showed a highly homogeneous substate. We identified a correlation between the degree of functional substates and the level of improvement in promiscuous activities. Our work provides much comprehensive evidence that the functional substates can be easily altered by mutations, and the evolution toward a new catalytic activity may involve the modulation of the functional substates.
Collapse
Affiliation(s)
- Morito Sakuma
- Department
of Applied Chemistry, The University of
Tokyo, Tokyo113-8656, Japan,Michael
Smith Laboratories, The University of British
Columbia, British
ColumbiaV6T1Z4, Canada
| | - Shingo Honda
- Department
of Applied Chemistry, The University of
Tokyo, Tokyo113-8656, Japan
| | - Hiroshi Ueno
- Department
of Applied Chemistry, The University of
Tokyo, Tokyo113-8656, Japan
| | - Kazuhito V. Tabata
- Department
of Applied Chemistry, The University of
Tokyo, Tokyo113-8656, Japan
| | - Kentaro Miyazaki
- International
Center for Biotechnology, Osaka University, Suita565-0871, Japan
| | - Nobuhiko Tokuriki
- Michael
Smith Laboratories, The University of British
Columbia, British
ColumbiaV6T1Z4, Canada,
| | - Hiroyuki Noji
- Department
of Applied Chemistry, The University of
Tokyo, Tokyo113-8656, Japan,
| |
Collapse
|
8
|
Krah A, Vogelaar T, de Jong SI, Claridge JK, Bond PJ, McMillan DGG. ATP binding by an F 1F o ATP synthase ε subunit is pH dependent, suggesting a diversity of ε subunit functional regulation in bacteria. Front Mol Biosci 2023; 10:1059673. [PMID: 36923639 PMCID: PMC10010621 DOI: 10.3389/fmolb.2023.1059673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/03/2023] [Indexed: 03/03/2023] Open
Abstract
It is a conjecture that the ε subunit regulates ATP hydrolytic function of the F1Fo ATP synthase in bacteria. This has been proposed by the ε subunit taking an extended conformation, with a terminal helix probing into the central architecture of the hexameric catalytic domain, preventing ATP hydrolysis. The ε subunit takes a contracted conformation when bound to ATP, thus would not interfere with catalysis. A recent crystallographic study has disputed this; the Caldalkalibacillus thermarum TA2.A1 F1Fo ATP synthase cannot natively hydrolyse ATP, yet studies have demonstrated that the loss of the ε subunit terminal helix results in an ATP synthase capable of ATP hydrolysis, supporting ε subunit function. Analysis of sequence and crystallographic data of the C. thermarum F1Fo ATP synthase revealed two unique histidine residues. Molecular dynamics simulations suggested that the protonation state of these residues may influence ATP binding site stability. Yet these residues lie outside the ATP/Mg2+ binding site of the ε subunit. We then probed the effect of pH on the ATP binding affinity of the ε subunit from the C. thermarum F1Fo ATP synthase at various physiologically relevant pH values. We show that binding affinity changes 5.9 fold between pH 7.0, where binding is weakest, to pH 8.5 where it is strongest. Since the C. thermarum cytoplasm is pH 8.0 when it grows optimally, this correlates to the ε subunit being down due to ATP/Mg2+ affinity, and not being involved in blocking ATP hydrolysis. Here, we have experimentally correlated that the pH of the bacterial cytoplasm is of critical importance for ε subunit ATP affinity regulated by second-shell residues thus the function of the ε subunit changes with growth conditions.
Collapse
Affiliation(s)
- Alexander Krah
- Korea Institute for Advanced Study, School of Computational Sciences, Seoul, South Korea.,Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Timothy Vogelaar
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Sam I de Jong
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Jolyon K Claridge
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Peter J Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Duncan G G McMillan
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands.,School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
9
|
Structural Elements Involved in ATP Hydrolysis Inhibition and ATP Synthesis of Tuberculosis and Nontuberculous Mycobacterial F-ATP Synthase Decipher New Targets for Inhibitors. Antimicrob Agents Chemother 2022; 66:e0105622. [PMID: 36445139 PMCID: PMC9764993 DOI: 10.1128/aac.01056-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The F1FO-ATP synthase is required for the viability of tuberculosis (TB) and nontuberculous mycobacteria (NTM) and has been validated as a drug target. Here, we present the cryo-EM structures of the Mycobacterium smegmatis F1-ATPase and the F1FO-ATP synthase with different nucleotide occupation within the catalytic sites and visualize critical elements for latent ATP hydrolysis and efficient ATP synthesis. Mutational studies reveal that the extended C-terminal domain (αCTD) of subunit α is the main element for the self-inhibition mechanism of ATP hydrolysis for TB and NTM bacteria. Rotational studies indicate that the transition between the inhibition state by the αCTD and the active state is a rapid process. We demonstrate that the unique mycobacterial γ-loop and subunit δ are critical elements required for ATP formation. The data underline that these mycobacterium-specific elements of α, γ, and δ are attractive targets, providing a platform for the discovery of species-specific inhibitors.
Collapse
|
10
|
Frasch WD, Bukhari ZA, Yanagisawa S. F1FO ATP synthase molecular motor mechanisms. Front Microbiol 2022; 13:965620. [PMID: 36081786 PMCID: PMC9447477 DOI: 10.3389/fmicb.2022.965620] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
The F-ATP synthase, consisting of F1 and FO motors connected by a central rotor and the stators, is the enzyme responsible for synthesizing the majority of ATP in all organisms. The F1 (αβ)3 ring stator contains three catalytic sites. Single-molecule F1 rotation studies revealed that ATP hydrolysis at each catalytic site (0°) precedes a power-stroke that rotates subunit-γ 120° with angular velocities that vary with rotational position. Catalytic site conformations vary relative to subunit-γ position (βE, empty; βD, ADP bound; βT, ATP-bound). During a power stroke, βE binds ATP (0°–60°) and βD releases ADP (60°–120°). Årrhenius analysis of the power stroke revealed that elastic energy powers rotation via unwinding the γ-subunit coiled-coil. Energy from ATP binding at 34° closes βE upon subunit-γ to drive rotation to 120° and forcing the subunit-γ to exchange its tether from βE to βD, which changes catalytic site conformations. In F1FO, the membrane-bound FO complex contains a ring of c-subunits that is attached to subunit-γ. This c-ring rotates relative to the subunit-a stator in response to transmembrane proton flow driven by a pH gradient, which drives subunit-γ rotation in the opposite direction to force ATP synthesis in F1. Single-molecule studies of F1FO embedded in lipid bilayer nanodisks showed that the c-ring transiently stopped F1-ATPase-driven rotation every 36° (at each c-subunit in the c10-ring of E. coli F1FO) and was able to rotate 11° in the direction of ATP synthesis. Protonation and deprotonation of the conserved carboxyl group on each c-subunit is facilitated by separate groups of subunit-a residues, which were determined to have different pKa’s. Mutations of any of any residue from either group changed both pKa values, which changed the occurrence of the 11° rotation proportionately. This supports a Grotthuss mechanism for proton translocation and indicates that proton translocation occurs during the 11° steps. This is consistent with a mechanism in which each 36° of rotation the c-ring during ATP synthesis involves a proton translocation-dependent 11° rotation of the c-ring, followed by a 25° rotation driven by electrostatic interaction of the negatively charged unprotonated carboxyl group to the positively charged essential arginine in subunit-a.
Collapse
|
11
|
Lapashina AS, Kashko ND, Zubareva VM, Galkina KV, Markova OV, Knorre DA, Feniouk BA. Attenuated ADP-inhibition of F OF 1 ATPase mitigates manifestations of mitochondrial dysfunction in yeast. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148544. [PMID: 35331734 DOI: 10.1016/j.bbabio.2022.148544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/01/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Proton-translocating FOF1 ATP synthase (F-ATPase) couples ATP synthesis or hydrolysis to transmembrane proton transport in bacteria, chloroplasts, and mitochondria. The primary function of the mitochondrial FOF1 is ATP synthesis driven by protonmotive force (pmf) generated by the respiratory chain. However, when pmf is low or absent (e.g. during anoxia), FOF1 consumes ATP and functions as a proton-pumping ATPase. Several regulatory mechanisms suppress the ATPase activity of FOF1 at low pmf. In yeast mitochondria they include special inhibitory proteins Inh1p and Stf1p, and non-competitive inhibition of ATP hydrolysis by MgADP (ADP-inhibition). Presumably, these mechanisms help the cell to preserve the ATP pool upon membrane de-energization. However, no direct evidence was presented to support this hypothesis so far. Here we report that a point mutation Q263L in subunit beta of Saccharomyces cerevisiae ATP synthase significantly attenuated ADP-inhibition of the enzyme without major effect on the rate of ATP production by mitochondria. The mutation also decreased the sensitivity of the enzyme ATPase activity to azide. Similar effects of the corresponding mutations were observed in earlier studies in bacterial enzymes. This observation indicates that the molecular mechanism of ADP-inhibition is probably the same in mitochondrial and in bacterial FOF1. The mutant yeast strain had lower growth rate and had a longer lag period preceding exponential growth phase when starved cells were transferred to fresh growth medium. However, upon the loss of mitochondrial DNA (ρ0) the βQ263L mutation effect was reversed: the βQ263L ρ0 mutant grew faster than the wild-type ρ0 yeast. The results suggest that ADP-inhibition might play a role in prevention of wasteful ATP hydrolysis in the mitochondrial matrix.
Collapse
Affiliation(s)
- Anna S Lapashina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia; Sechenov First Moscow State Medical University, Department of Biological Chemistry, Moscow, Russia
| | - Nataliia D Kashko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Valeria M Zubareva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Kseniia V Galkina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Olga V Markova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry A Knorre
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Boris A Feniouk
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
12
|
Abstract
ATP synthases are macromolecular machines consisting of an ATP-hydrolysis-driven F1 motor and a proton-translocation-driven FO motor. The F1 and FO motors oppose each other’s action on a shared rotor subcomplex and are held stationary relative to each other by a peripheral stalk. Structures of resting mitochondrial ATP synthases revealed a left-handed curvature of the peripheral stalk even though rotation of the rotor, driven by either ATP hydrolysis in F1 or proton translocation through FO, would apply a right-handed bending force to the stalk. We used cryoEM to image yeast mitochondrial ATP synthase under strain during ATP-hydrolysis-driven rotary catalysis, revealing a large deformation of the peripheral stalk. The structures show how the peripheral stalk opposes the bending force and suggests that during ATP synthesis proton translocation causes accumulation of strain in the stalk, which relaxes by driving the relative rotation of the rotor through six sub-steps within F1, leading to catalysis. CryoEM of mitochondrial ATP synthase frozen during rotary catalysis reveals dramatic conformational changes in the peripheral stalk subcomplex, which enable the enzyme’s efficient synthesis of ATP.
Collapse
|
13
|
Kobayashi R, Mori S, Ueno H, Noji H. Kinetic analysis of the inhibition mechanism of bovine mitochondrial F1-ATPase inhibitory protein using biochemical assay. J Biochem 2021; 170:79-87. [PMID: 33693769 PMCID: PMC8457647 DOI: 10.1093/jb/mvab022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
ATPase inhibitory factor 1 (IF1) is a mitochondrial regulatory protein that blocks ATP hydrolysis of F1-ATPase, by inserting its N-terminus into the rotor-stator interface of F1-ATPase. Although previous studies have proposed a two-step model for IF1-mediated inhibition, the underlying molecular mechanism remains unclear. Here, we analysed the kinetics of IF1-mediated inhibition under a wide range of [ATP]s and [IF1]s, using bovine mitochondrial IF1 and F1-ATPase. Typical hyperbolic curves of inhibition rates with [IF1]s were observed at all [ATP]s tested, suggesting a two-step mechanism: the initial association of IF1 to F1-ATPase and the locking process, where IF1 blocks rotation by inserting its N-terminus. The initial association was dependent on ATP. Considering two principal rotation dwells, binding dwell and catalytic dwell, in F1-ATPase, this result means that IF1 associates with F1-ATPase in the catalytic-waiting state. In contrast, the isomerization process to the locking state was almost independent of ATP, suggesting that it is also independent of the F1-ATPase state. Further, we investigated the role of Glu30 or Tyr33 of IF1 in the two-step mechanism. Kinetic analysis showed that Glu30 is involved in the isomerization, whereas Tyr33 contributes to the initial association. Based on these findings, we propose an IF1-mediated inhibition scheme.
Collapse
Affiliation(s)
- Ryohei Kobayashi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sougo Mori
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
14
|
Heitkamp T, Börsch M. Fast ATP-Dependent Subunit Rotation in Reconstituted F oF 1-ATP Synthase Trapped in Solution. J Phys Chem B 2021; 125:7638-7650. [PMID: 34254808 DOI: 10.1021/acs.jpcb.1c02739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
FoF1-ATP synthases are ubiquitous membrane-bound, rotary motor enzymes that can catalyze ATP synthesis and hydrolysis. Their enzyme kinetics are controlled by internal subunit rotation, by substrate and product concentrations, and by mechanical inhibitory mechanisms but also by the electrochemical potential of protons across the membrane. Single-molecule Förster resonance energy transfer (smFRET) has been used to detect subunit rotation within FoF1-ATP synthases embedded in freely diffusing liposomes. We now report that kinetic monitoring of functional rotation can be prolonged from milliseconds to seconds by utilizing an anti-Brownian electrokinetic trap (ABEL trap). These extended observation times allowed us to observe fluctuating rates of functional rotation for individual FoF1-liposomes in solution. Broad distributions of ATP-dependent catalytic rates were revealed. The buildup of an electrochemical potential of protons was confirmed to limit the maximum rate of ATP hydrolysis. In the presence of ionophores or uncouplers, the fastest subunit rotation speeds measured in single reconstituted FoF1-ATP synthases were 180 full rounds per second. This was much faster than measured by biochemical ensemble averaging, but not as fast as the maximum rotational speed reported previously for isolated single F1 complexes uncoupled from the membrane-embedded Fo complex. Further application of ABEL trap measurements should help resolve the mechanistic causes of such fluctuating rates of subunit rotation.
Collapse
Affiliation(s)
- Thomas Heitkamp
- Single-Molecule Microscopy Group, Jena University Hospital, Nonnenplan 2-4, 07743 Jena, Germany
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Nonnenplan 2-4, 07743 Jena, Germany
| |
Collapse
|
15
|
Nakayama Y, Toyabe S. Optimal Rectification without Forward-Current Suppression by Biological Molecular Motor. PHYSICAL REVIEW LETTERS 2021; 126:208101. [PMID: 34110213 DOI: 10.1103/physrevlett.126.208101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
We experimentally show that biological molecular motor F_{1}-ATPase (F_{1}) implements an optimal rectification mechanism. The rectification mechanism hardly suppresses the synthesis of adenosine triphosphate by F_{1}, which is F_{1}'s physiological role, while inhibiting the unfavorable hydrolysis of adenosine triphosphate. This optimal rectification contrasts highly with that of a simple ratchet model, where the inhibition of the backward current is inevitably accompanied by the suppression of the forward current. Our detailed analysis of single-molecule trajectories demonstrates a novel but simple rectification mechanism of F_{1} with parallel landscapes and asymmetric transition rates.
Collapse
Affiliation(s)
- Yohei Nakayama
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Aoba 6-6-05, Sendai 980-8579, Japan
| | - Shoichi Toyabe
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Aoba 6-6-05, Sendai 980-8579, Japan
| |
Collapse
|
16
|
The Unique C-Terminal Extension of Mycobacterial F-ATP Synthase Subunit α Is the Major Contributor to Its Latent ATP Hydrolysis Activity. Antimicrob Agents Chemother 2020; 64:AAC.01568-20. [PMID: 32988828 DOI: 10.1128/aac.01568-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/16/2020] [Indexed: 01/03/2023] Open
Abstract
Mycobacterial F1Fo-ATP synthases (α3:β3:γ:δ:ε:a:b:b':c9 ) are incapable of ATP-driven proton translocation due to their latent ATPase activity. This prevents wasting of ATP and altering of the proton motive force, whose dissipation is lethal to mycobacteria. We demonstrate that the mycobacterial C-terminal extension of nucleotide-binding subunit α contributes mainly to the suppression of ATPase activity in the recombinant mycobacterial F1-ATPase. Using C-terminal deletion mutants, the regions responsible for the enzyme's latency were mapped, providing a new compound epitope.
Collapse
|
17
|
The 3 × 120° rotary mechanism of Paracoccus denitrificans F 1-ATPase is different from that of the bacterial and mitochondrial F 1-ATPases. Proc Natl Acad Sci U S A 2020; 117:29647-29657. [PMID: 33168750 PMCID: PMC7703542 DOI: 10.1073/pnas.2003163117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The rotation of Paracoccus denitrificans F1-ATPase (PdF1) was studied using single-molecule microscopy. At all concentrations of adenosine triphosphate (ATP) or a slowly hydrolyzable ATP analog (ATPγS), above or below K m, PdF1 showed three dwells per turn, each separated by 120°. Analysis of dwell time between steps showed that PdF1 executes binding, hydrolysis, and probably product release at the same dwell. The comparison of ATP binding and catalytic pauses in single PdF1 molecules suggested that PdF1 executes both elementary events at the same rotary position. This point was confirmed in an inhibition experiment with a nonhydrolyzable ATP analog (AMP-PNP). Rotation assays in the presence of adenosine diphosphate (ADP) or inorganic phosphate at physiological concentrations did not reveal any obvious substeps. Although the possibility of the existence of substeps remains, all of the datasets show that PdF1 is principally a three-stepping motor similar to bacterial vacuolar (V1)-ATPase from Thermus thermophilus This contrasts with all other known F1-ATPases that show six or nine dwells per turn, conducting ATP binding and hydrolysis at different dwells. Pauses by persistent Mg-ADP inhibition or the inhibitory ζ-subunit were also found at the same angular position of the rotation dwell, supporting the simplified chemomechanical scheme of PdF1 Comprehensive analysis of rotary catalysis of F1 from different species, including PdF1, suggests a clear trend in the correlation between the numbers of rotary steps of F1 and Fo domains of F-ATP synthase. F1 motors with more distinctive steps are coupled with proton-conducting Fo rings with fewer proteolipid subunits, giving insight into the design principle the F1Fo of ATP synthase.
Collapse
|
18
|
Krah A, Marzinek JK, Bond PJ. Characterizing the Hydration Properties of Proton Binding Sites in the ATP Synthase c-Rings of Bacillus Species. J Phys Chem B 2020; 124:7176-7183. [PMID: 32687713 DOI: 10.1021/acs.jpcb.0c03896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The membrane-embedded domain of ATP synthases contains the c-ring, which translocates ions across the membrane, and its resultant rotation is coupled to ATP synthesis in the extramembranous domain. During rotation, the c-ring becomes accessible on both sides of the lipid bilayer to solvent via channels connected to the other membrane-embedded component, the a subunit, and thereby allows the ion to be released into the solvent environment. In recent times, many experimental structures of c-rings from different species have been solved. In some of these, a water molecule with a proposed "structural role" has been identified within the c-ring ion binding site, but in general, the requirement for high resolution to resolve specific water densities complicates their interpretation. In the present study, we use molecular dynamics (MD) simulations and rigorous free energy calculations to characterize the dynamics and energetics of a water molecule within the ion binding site of the c-ring from Bacillus pseudofirmus OF4, in its wild type (WT) and P51A mutant forms, along with the c-ring from thermophilic Bacillus PS3. Our data suggest that a water molecule stably binds to the P51A mutant, as well as helping to identify a bound water molecule in Bacillus PS3 whose presence was previously overlooked due to the limited resolution of the structural data. Sequence analysis further identifies a novel conserved sequence motif that is likely required to harbor a water molecule for stable ion coordination in the binding site of such proteins.
Collapse
Affiliation(s)
- Alexander Krah
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Jan K Marzinek
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Peter J Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| |
Collapse
|
19
|
Krah A, Huber RG, McMillan DGG, Bond PJ. The Molecular Basis for Purine Binding Selectivity in the Bacterial ATP Synthase ϵ Subunit. Chembiochem 2020; 21:3249-3254. [PMID: 32608105 DOI: 10.1002/cbic.202000291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/30/2020] [Indexed: 12/21/2022]
Abstract
The ϵ subunit of ATP synthases has been proposed to regulate ATP hydrolysis in bacteria. Prevailing evidence supports the notion that when the ATP concentration falls below a certain threshold, the ϵ subunit changes its conformation from a non-inhibitory down-state to an extended up-state that then inhibits enzymatic ATP hydrolysis by binding to the catalytic domain. It has been demonstrated that the ϵ subunit from Bacillus PS3 is selective for ATP over other nucleotides, including GTP. In this study, the purine triphosphate selectivity is rationalized by using results from MD simulations and free energy calculations for the R103A/R115A mutant of the ϵ subunit from Bacillus PS3, which binds ATP more strongly than the wild-type protein. Our results are in good agreement with experimental data, and the elucidated molecular basis for selectivity could help to guide the design of novel GTP sensors.
Collapse
Affiliation(s)
- Alexander Krah
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Str. #07-01 Matrix, Singapore, 138671, Singapore.,Korea Institute for Advanced Study, School of Computational Sciences, 85 Hoegiro, Dongdaemun-gu, Seoul, 02455, Republic of Korea
| | - Roland G Huber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Str. #07-01 Matrix, Singapore, 138671, Singapore
| | - Duncan G G McMillan
- Delft University of Technology, Department of Biotechnology, Van der Maasweg 9, Delft, 2629HZ, The Netherlands
| | - Peter J Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Str. #07-01 Matrix, Singapore, 138671, Singapore.,National University of Singapore, Department of Biological Sciences, 14 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
20
|
Tanaka M, Kawakami T, Okaniwa T, Nakayama Y, Toyabe S, Ueno H, Muneyuki E. Tight Chemomechanical Coupling of the F 1 Motor Relies on Structural Stability. Biophys J 2020; 119:48-54. [PMID: 32531205 DOI: 10.1016/j.bpj.2020.04.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 11/19/2022] Open
Abstract
The F1 motor is a rotating molecular motor that ensures a tight chemomechanical coupling between ATP hydrolysis/synthesis reactions and rotation steps. However, the mechanism underlying this tight coupling remains to be elucidated. In this study, we used electrorotation in single-molecule experiments using an F1βE190D mutant to demonstrate that the stall torque was significantly smaller than the wild-type F1, indicating a loose coupling of this mutant, despite showing similar stepping torque as the wild-type. Experiments on the ATPase activity after heat treatment and gel filtration of the α3β3-subcomplex revealed the unstable structure of the βE190D mutant. Our results suggest that the tight chemomechanical coupling of the F1 motor relies on the structural stability of F1. We also discuss the difference between the stepping torque and the stall torque.
Collapse
Affiliation(s)
- Mana Tanaka
- Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Tomohiro Kawakami
- Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Tomoaki Okaniwa
- Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Yohei Nakayama
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Shoichi Toyabe
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Eiro Muneyuki
- Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo, Japan.
| |
Collapse
|
21
|
Milgrom YM, Duncan TM. F-ATP-ase of Escherichia coli membranes: The ubiquitous MgADP-inhibited state and the inhibited state induced by the ε-subunit's C-terminal domain are mutually exclusive. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148189. [PMID: 32194063 DOI: 10.1016/j.bbabio.2020.148189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
ATP synthases are important energy-coupling, rotary motor enzymes in all kingdoms of life. In all F-type ATP synthases, the central rotor of the catalytic F1 complex is composed of the γ subunit and the N-terminal domain (NTD) of the ε subunit. In the enzymes of diverse bacteria, the C-terminal domain of ε (εCTD) can undergo a dramatic conformational change to trap the enzyme in a transiently inactive state. This inhibitory mechanism is absent in the mitochondrial enzyme, so the εCTD could provide a means to selectively target ATP synthases of pathogenic bacteria for antibiotic development. For Escherichia coli and other bacterial model systems, it has been difficult to dissect the relationship between ε inhibition and a MgADP-inhibited state that is ubiquitous for FOF1 from bacteria and eukaryotes. A prior study with the isolated catalytic complex from E. coli, EcF1, showed that these two modes of inhibition are mutually exclusive, but it has long been known that interactions of F1 with the membrane-embedded FO complex modulate inhibition by the εCTD. Here, we study membranes containing EcFOF1 with wild-type ε, ε lacking the full εCTD, or ε with a small deletion at the C-terminus. By using compounds with distinct activating effects on F-ATP-ase activity, we confirm that εCTD inhibition and ubiquitous MgADP inhibition are mutually exclusive for membrane-bound E. coli F-ATP-ase. We determine that most of the enzyme complexes in wild-type membranes are in the ε-inhibited state (>50%) or in the MgADP-inhibited state (30%).
Collapse
Affiliation(s)
- Yakov M Milgrom
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY 13210, USA.
| | - Thomas M Duncan
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY 13210, USA.
| |
Collapse
|
22
|
Rotary catalysis of bovine mitochondrial F 1-ATPase studied by single-molecule experiments. Proc Natl Acad Sci U S A 2020; 117:1447-1456. [PMID: 31896579 PMCID: PMC6983367 DOI: 10.1073/pnas.1909407117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The reaction scheme of rotary catalysis and the torque generation mechanism of bovine mitochondrial F1 (bMF1) were studied in single-molecule experiments. Under ATP-saturated concentrations, high-speed imaging of a single 40-nm gold bead attached to the γ subunit of bMF1 showed 2 types of intervening pauses during the rotation that were discriminated by short dwell and long dwell. Using ATPγS as a slowly hydrolyzing ATP derivative as well as using a functional mutant βE188D with slowed ATP hydrolysis, the 2 pausing events were distinctively identified. Buffer-exchange experiments with a nonhydrolyzable analog (AMP-PNP) revealed that the long dwell corresponds to the catalytic dwell, that is, the waiting state for hydrolysis, while it remains elusive which catalytic state short pause represents. The angular position of catalytic dwell was determined to be at +80° from the ATP-binding angle, mostly consistent with other F1s. The position of short dwell was found at 50 to 60° from catalytic dwell, that is, +10 to 20° from the ATP-binding angle. This is a distinct difference from human mitochondrial F1, which also shows intervening dwell that probably corresponds to the short dwell of bMF1, at +65° from the binding pause. Furthermore, we conducted "stall-and-release" experiments with magnetic tweezers to reveal how the binding affinity and hydrolysis equilibrium are modulated by the γ rotation. Similar to thermophilic F1, bMF1 showed a strong exponential increase in ATP affinity, while the hydrolysis equilibrium did not change significantly. This indicates that the ATP binding process generates larger torque than the hydrolysis process.
Collapse
|
23
|
Unique structural and mechanistic properties of mycobacterial F-ATP synthases: Implications for drug design. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 152:64-73. [PMID: 31743686 DOI: 10.1016/j.pbiomolbio.2019.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/25/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022]
Abstract
The causative agent of Tuberculosis (TB) Mycobacterium tuberculosis (Mtb) encounters unfavourable environmental conditions in the lungs, including nutrient limitation, low oxygen tensions and/or low/high pH values. These harsh conditions in the host triggers Mtb to enter a dormant state in which the pathogen does not replicate and uses host-derived fatty acids instead of carbohydrates as an energy source. Independent to the energy source, the bacterium's energy currency ATP is generated by oxidative phosphorylation, in which the F1FO-ATP synthase uses the proton motive force generated by the electron transport chain. This catalyst is essential in Mtb and inhibition by the diarylquinoline class of drugs like Bedaquilline, TBAJ-587, TBAJ-876 or squaramides demonstrated that this engine is an attractive target in TB drug discovery. A special feature of the mycobacterial F-ATP synthase is its inability to establish a significant proton gradient during ATP hydrolysis, and its latent ATPase activity, to prevent energy waste and to control the membrane potential. Recently, unique epitopes of mycobacterial F1FO-ATP synthase subunits absent in their prokaryotic or mitochondrial counterparts have been identified to contribute to the regulation of the low ATPase activity. Most recent structural insights into individual subunits, the F1 domain or the entire mycobacterial enzyme added to the understanding of mechanisms, regulation and differences of the mycobacterial F1FO-ATP synthase compared to other bacterial and eukaryotic engines. These novel insights provide the basis for the design of new compounds targeting this engine and even novel regimens for multidrug resistant TB.
Collapse
|
24
|
Insights into the origin of the high energy-conversion efficiency of F 1-ATPase. Proc Natl Acad Sci U S A 2019; 116:15924-15929. [PMID: 31341091 DOI: 10.1073/pnas.1906816116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Our understanding of the rotary-coupling mechanism of F1-ATPase has been greatly enhanced in the last decade by advances in X-ray crystallography, single-molecular imaging, and theoretical models. Recently, Volkán-Kacsó and Marcus [S. Volkán-Kacsó, R. A. Marcus, Proc. Natl. Acad. Sci. U.S.A. 112, 14230 (2015)] presented an insightful thermodynamic model based on the Marcus reaction theory coupled with an elastic structural deformation term to explain the observed γ-rotation angle dependence of the adenosine triphosphate (ATP)/adenosine diphosphate (ADP) exchange rates of F1-ATPase. Although the model is successful in correlating single-molecule data, it is not in agreement with the available theoretical results. We describe a revision of the model, which leads to consistency with the simulation results and other experimental data on the F1-ATPase rotor compliance. Although the free energy liberated on ATP hydrolysis by F1-ATPase is rapidly dissipated as heat and so cannot contribute directly to the rotation, we show how, nevertheless, F1-ATPase functions near the maximum possible efficiency. This surprising result is a consequence of the differential binding of ATP and its hydrolysis products ADP and Pi along a well-defined pathway.
Collapse
|
25
|
Bahuguna A, Rawat DS. An overview of new antitubercular drugs, drug candidates, and their targets. Med Res Rev 2019; 40:263-292. [PMID: 31254295 DOI: 10.1002/med.21602] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022]
Abstract
The causative agent of tuberculosis (TB), Mycobacterium tuberculosis and more recently totally drug-resistant strains of M. tuberculosis, display unique mechanisms to survive in the host. A four-drug treatment regimen was introduced 40 years ago but the emergence of multidrug-resistance and more recently TDR necessitates the identification of new targets and drugs for the cure of M. tuberculosis infection. The current efforts in the drug development process are insufficient to completely eradicate the TB epidemic. For almost five decades the TB drug development process remained stagnant. The last 10 years have made sudden progress giving some new and highly promising drugs including bedaquiline, delamanid, and pretomanid. Many of the candidates are repurposed compounds, which were developed to treat other infections but later, exhibited anti-TB properties also. Each class of drug has a specific target and a definite mode of action. These targets are either involved in cell wall biosynthesis, protein synthesis, DNA/RNA synthesis, or metabolism. This review discusses recent progress in the discovery of newly developed and Food and Drug Administration approved drugs as well as repurposed drugs, their targets, mode of action, drug-target interactions, and their structure-activity relationship.
Collapse
Affiliation(s)
| | - Diwan S Rawat
- Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
26
|
Petri J, Nakatani Y, Montgomery MG, Ferguson SA, Aragão D, Leslie AGW, Heikal A, Walker JE, Cook GM. Structure of F 1-ATPase from the obligate anaerobe Fusobacterium nucleatum. Open Biol 2019; 9:190066. [PMID: 31238823 PMCID: PMC6597759 DOI: 10.1098/rsob.190066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The crystal structure of the F1-catalytic domain of the adenosine triphosphate (ATP) synthase has been determined from the pathogenic anaerobic bacterium Fusobacterium nucleatum. The enzyme can hydrolyse ATP but is partially inhibited. The structure is similar to those of the F1-ATPases from Caldalkalibacillus thermarum, which is more strongly inhibited in ATP hydrolysis, and in Mycobacterium smegmatis, which has a very low ATP hydrolytic activity. The βE-subunits in all three enzymes are in the conventional ‘open’ state, and in the case of C. thermarum and M. smegmatis, they are occupied by an ADP and phosphate (or sulfate), but in F. nucleatum, the occupancy by ADP appears to be partial. It is likely that the hydrolytic activity of the F. nucleatum enzyme is regulated by the concentration of ADP, as in mitochondria.
Collapse
Affiliation(s)
- Jessica Petri
- 1 Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago , Dunedin 9054 , New Zealand
| | - Yoshio Nakatani
- 1 Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago , Dunedin 9054 , New Zealand.,2 Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland , Private Bag 92019, Auckland 1042 , New Zealand
| | - Martin G Montgomery
- 3 Medical Research Council Mitochondrial Biology Unit , Cambridge Biomedical Campus, Cambridge CB2 0XY , UK
| | - Scott A Ferguson
- 1 Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago , Dunedin 9054 , New Zealand
| | - David Aragão
- 4 Australian Synchrotron , 800 Blackburn Road, Clayton, Victoria 3168 , Australia
| | - Andrew G W Leslie
- 5 Medical Research Council Laboratory of Molecular Biology , Cambridge Biomedical Campus, Cambridge CB2 0QH , UK
| | - Adam Heikal
- 1 Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago , Dunedin 9054 , New Zealand.,2 Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland , Private Bag 92019, Auckland 1042 , New Zealand
| | - John E Walker
- 3 Medical Research Council Mitochondrial Biology Unit , Cambridge Biomedical Campus, Cambridge CB2 0XY , UK
| | - Gregory M Cook
- 1 Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago , Dunedin 9054 , New Zealand.,2 Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland , Private Bag 92019, Auckland 1042 , New Zealand
| |
Collapse
|
27
|
Single-molecule pull-out manipulation of the shaft of the rotary motor F 1-ATPase. Sci Rep 2019; 9:7451. [PMID: 31092848 PMCID: PMC6520343 DOI: 10.1038/s41598-019-43903-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 04/29/2019] [Indexed: 01/29/2023] Open
Abstract
F1-ATPase is a rotary motor protein in which the central γ-subunit rotates inside the cylinder made of α3β3 subunits. To investigate interactions between the γ shaft and the cylinder at the molecular scale, load was imposed on γ through a polystyrene bead by three-dimensional optical trapping in the direction along which the shaft penetrates the cylinder. Pull-out event was observed under high-load, and thus load-dependency of lifetime of the interaction was estimated. Notably, accumulated counts of lifetime were comprised of fast and slow components. Both components exponentially dropped with imposed loads, suggesting that the binding energy is compensated by the work done by optical trapping. Because the mutant, in which the half of the shaft was deleted, showed only one fast component in the bond lifetime, the slow component is likely due to the native interaction mode held by multiple interfaces.
Collapse
|
28
|
Sumi T, Klumpp S. Is F 1-ATPase a Rotary Motor with Nearly 100% Efficiency? Quantitative Analysis of Chemomechanical Coupling and Mechanical Slip. NANO LETTERS 2019; 19:3370-3378. [PMID: 31017791 DOI: 10.1021/acs.nanolett.9b01181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present a chemomechanical network model of the rotary molecular motor F1-ATPase which quantitatively describes not only the rotary motor dynamics driven by ATP hydrolysis but also the ATP synthesis caused by forced reverse rotations. We observe a high reversibility of F1-ATPase, that is, the main cycle of ATP synthesis corresponds to the reversal of the main cycle in the hydrolysis-driven motor rotation. However, our quantitative analysis indicates that torque-induced mechanical slip without chemomechanical coupling occurs under high external torque and reduces the maximal efficiency of the free energy transduction to 40-80% below the optimal efficiency. Heat irreversibly dissipates not only through the viscous friction of the probe but also directly from the motor due to torque-induced mechanical slip. Such irreversible heat dissipation is a crucial limitation for achieving a 100% free-energy transduction efficiency with biological nanomachines because biomolecules are easily deformed by external torque.
Collapse
Affiliation(s)
| | - Stefan Klumpp
- Institute for the Dynamics of Complex Systems , University of Göttingen , Friedrich-Hund-Platz 1 , 37077 Göttingen , Germany
- Department Theory and Bio-Systems , Max Planck Institute of Colloids and Interfaces , 14424 Potsdam , Germany
| |
Collapse
|
29
|
Krah A, Marzinek JK, Bond PJ. Insights into water accessible pathways and the inactivation mechanism of proton translocation by the membrane-embedded domain of V-type ATPases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1004-1010. [DOI: 10.1016/j.bbamem.2019.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/29/2019] [Accepted: 02/27/2019] [Indexed: 01/25/2023]
|
30
|
Meyrat A, von Ballmoos C. ATP synthesis at physiological nucleotide concentrations. Sci Rep 2019; 9:3070. [PMID: 30816129 PMCID: PMC6395684 DOI: 10.1038/s41598-019-38564-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/31/2018] [Indexed: 12/23/2022] Open
Abstract
Synthesis of ATP by the F1F0 ATP synthase in mitochondria and most bacteria is energized by the proton motive force (pmf) established and maintained by respiratory chain enzymes. Conversely, in the presence of ATP and in the absence of a pmf, the enzyme works as an ATP-driven proton pump. Here, we investigate how high concentrations of ATP affect the enzymatic activity of the F1F0 ATP synthase under high pmf conditions, which is the typical situation in mitochondria or growing bacteria. Using the ATP analogue adenosine 5′-O-(1-thiotriphosphate) (ATPαS), we have developed a modified luminescence-based assay to measure ATP synthesis in the presence of millimolar ATP concentrations, replacing an assay using radioactive nucleotides. In inverted membrane vesicles of E. coli, we found that under saturating pmf conditions, ATP synthesis was reduced to ~10% at 5 mM ATPαS. This reduction was reversed by ADP, but not Pi, indicating that the ATP/ADP ratio controls the ATP synthesis rate. Our data suggests that the ATP/ADP ratio ~30 in growing E. coli limits the ATP synthesis rate to ~20% of the maximal rate possible at the applied pmf and that the rate reduction occurs via product inhibition rather than an increased ATP hydrolysis rate.
Collapse
Affiliation(s)
- Axel Meyrat
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Christoph von Ballmoos
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.
| |
Collapse
|
31
|
Akanuma G, Tagana T, Sawada M, Suzuki S, Shimada T, Tanaka K, Kawamura F, Kato-Yamada Y. C-terminal regulatory domain of the ε subunit of F o F 1 ATP synthase enhances the ATP-dependent H + pumping that is involved in the maintenance of cellular membrane potential in Bacillus subtilis. Microbiologyopen 2019; 8:e00815. [PMID: 30809948 PMCID: PMC6692558 DOI: 10.1002/mbo3.815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 01/23/2023] Open
Abstract
The ε subunit of FoF1‐ATPase/synthase (FoF1) plays a crucial role in regulating FoF1 activity. To understand the physiological significance of the ε subunit‐mediated regulation of FoF1 in Bacillus subtilis, we constructed and characterized a mutant harboring a deletion in the C‐terminal regulatory domain of the ε subunit (ε∆C). Analyses using inverted membrane vesicles revealed that the ε∆C mutation decreased ATPase activity and the ATP‐dependent H+‐pumping activity of FoF1. To enhance the effects of ε∆C mutation, this mutation was introduced into a ∆rrn8 strain harboring only two of the 10 rrn (rRNA) operons (∆rrn8 ε∆C mutant strain). Interestingly, growth of the ∆rrn8 ε∆C mutant stalled at late‐exponential phase. During the stalled growth phase, the membrane potential of the ∆rrn8 ε∆C mutant cells was significantly reduced, which led to a decrease in the cellular level of 70S ribosomes. The growth stalling was suppressed by adding glucose into the culture medium. Our findings suggest that the C‐terminal region of the ε subunit is important for alleviating the temporal reduction in the membrane potential, by enhancing the ATP‐dependent H+‐pumping activity of FoF1.
Collapse
Affiliation(s)
- Genki Akanuma
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan.,Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| | - Tomoaki Tagana
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| | - Maho Sawada
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| | - Shota Suzuki
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| | - Tomohiro Shimada
- Laboratory for Chemistry and Life Science, Institute of Innovative Science, Tokyo Institute of Technology, Yokohama, Midori-ku, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Science, Tokyo Institute of Technology, Yokohama, Midori-ku, Japan
| | - Fujio Kawamura
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| | - Yasuyuki Kato-Yamada
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan.,Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| |
Collapse
|
32
|
Sielaff H, Yanagisawa S, Frasch WD, Junge W, Börsch M. Structural Asymmetry and Kinetic Limping of Single Rotary F-ATP Synthases. Molecules 2019; 24:E504. [PMID: 30704145 PMCID: PMC6384691 DOI: 10.3390/molecules24030504] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
F-ATP synthases use proton flow through the FO domain to synthesize ATP in the F₁ domain. In Escherichia coli, the enzyme consists of rotor subunits γεc10 and stator subunits (αβ)₃δab₂. Subunits c10 or (αβ)₃ alone are rotationally symmetric. However, symmetry is broken by the b₂ homodimer, which together with subunit δa, forms a single eccentric stalk connecting the membrane embedded FO domain with the soluble F₁ domain, and the central rotating and curved stalk composed of subunit γε. Although each of the three catalytic binding sites in (αβ)₃ catalyzes the same set of partial reactions in the time average, they might not be fully equivalent at any moment, because the structural symmetry is broken by contact with b₂δ in F₁ and with b₂a in FO. We monitored the enzyme's rotary progression during ATP hydrolysis by three single-molecule techniques: fluorescence video-microscopy with attached actin filaments, Förster resonance energy transfer between pairs of fluorescence probes, and a polarization assay using gold nanorods. We found that one dwell in the three-stepped rotary progression lasting longer than the other two by a factor of up to 1.6. This effect of the structural asymmetry is small due to the internal elastic coupling.
Collapse
Affiliation(s)
- Hendrik Sielaff
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, 07743 Jena, Germany.
| | - Seiga Yanagisawa
- School of Life Sciences, Arizona State University, Tempe, Arizona, AZ 85287, USA.
| | - Wayne D Frasch
- School of Life Sciences, Arizona State University, Tempe, Arizona, AZ 85287, USA.
| | - Wolfgang Junge
- Department of Biology & Chemistry, University of Osnabrück, 49076 Osnabrück, Germany.
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, 07743 Jena, Germany.
| |
Collapse
|
33
|
Mutation Q259L in subunit beta in Bacillus subtilis ATP synthase attenuates ADP-inhibition and decreases fitness in mixed cultures. Biochem Biophys Res Commun 2018; 509:102-107. [PMID: 30580998 DOI: 10.1016/j.bbrc.2018.12.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/11/2018] [Indexed: 11/23/2022]
Abstract
The ATPase activity of H+-FOF1-ATP synthase (FOF1) is down-regulated by several mechanisms. The most universal of them found in bacterial, chloroplast and mitochondrial enzymes is non-competitive inhibition by MgADP (ADP-inhibition). When MgADP binds in a catalytic site in the absence of phosphate, the nucleotide might be trapped instead of being released and replaced by new MgATP. In this case the enzyme becomes inactivated, and MgADP release is required for re-activation. The degree of ADP-inhibition varies between different organisms: it is strong in mitochondrial and chloroplast FOF1 and in enzymes of some bacteria (including Bacillus PS3 sp., and Bacillus subtilis), but in FOF1 of Escherichia coli it is much weaker. It was shown that mutation betaGln259Leu in Bacillus PS3 FOF1 noticeably relieves its strong ADP-inhibition. In this work, we introduced the same mutation in FOF1 from B. subtilis. ADP-inhibition in the mutant FOF1 was also attenuated in comparison to the wild-type enzyme. The ATPase activity in membrane preparations was 3 fold higher in the mutant. Mutant enzyme was capable of ATP-driven proton pumping, and its ATPase activity was stimulated by dissipation of the protonmotive force, implying that the coupling efficiency between ATP hydrolysis and proton transport was not impaired by the mutation. We observed no effect of mutation on the growth rate of B. subtilis in pure cultures. However, in competition growth experiments when the wild type and the mutant strains were cultivated together in mixed cultures, the wild type strain always crowded out the mutant. To our knowledge, this is the first demonstration of the negative effect of FOF1 ADP-inhibition attenuation in vivo.
Collapse
|
34
|
Lapashina AS, Feniouk BA. ADP-Inhibition of H+-F OF 1-ATP Synthase. BIOCHEMISTRY (MOSCOW) 2018; 83:1141-1160. [PMID: 30472953 DOI: 10.1134/s0006297918100012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
H+-FOF1-ATP synthase (F-ATPase, F-type ATPase, FOF1 complex) catalyzes ATP synthesis from ADP and inorganic phosphate in eubacteria, mitochondria, chloroplasts, and some archaea. ATP synthesis is powered by the transmembrane proton transport driven by the proton motive force (PMF) generated by the respiratory or photosynthetic electron transport chains. When the PMF is decreased or absent, ATP synthase catalyzes the reverse reaction, working as an ATP-dependent proton pump. The ATPase activity of the enzyme is regulated by several mechanisms, of which the most conserved is the non-competitive inhibition by the MgADP complex (ADP-inhibition). When ADP binds to the catalytic site without phosphate, the enzyme may undergo conformational changes that lock bound ADP, resulting in enzyme inactivation. PMF can induce release of inhibitory ADP and reactivate ATP synthase; the threshold PMF value required for enzyme reactivation might exceed the PMF for ATP synthesis. Moreover, membrane energization increases the catalytic site affinity to phosphate, thereby reducing the probability of ADP binding without phosphate and preventing enzyme transition to the ADP-inhibited state. Besides phosphate, oxyanions (e.g., sulfite and bicarbonate), alcohols, lauryldimethylamine oxide, and a number of other detergents can weaken ADP-inhibition and increase ATPase activity of the enzyme. In this paper, we review the data on ADP-inhibition of ATP synthases from different organisms and discuss the in vivo role of this phenomenon and its relationship with other regulatory mechanisms, such as ATPase activity inhibition by subunit ε and nucleotide binding in the noncatalytic sites of the enzyme. It should be noted that in Escherichia coli enzyme, ADP-inhibition is relatively weak and rather enhanced than prevented by phosphate.
Collapse
Affiliation(s)
- A S Lapashina
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - B A Feniouk
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
35
|
Murcia Rios A, Vahidi S, Dunn SD, Konermann L. Evidence for a Partially Stalled γ Rotor in F 1-ATPase from Hydrogen-Deuterium Exchange Experiments and Molecular Dynamics Simulations. J Am Chem Soc 2018; 140:14860-14869. [PMID: 30339028 DOI: 10.1021/jacs.8b08692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
F1-ATPase uses ATP hydrolysis to drive rotation of the γ subunit. The γ C-terminal helix constitutes the rotor tip that is seated in an apical bearing formed by α3β3. It remains uncertain to what extent the γ conformation during rotation differs from that seen in rigid crystal structures. Existing models assume that the entire γ subunit participates in every rotation. Here we interrogated E. coli F1-ATPase by hydrogen-deuterium exchange (HDX) mass spectrometry. Rotation of γ caused greatly enhanced deuteration in the γ C-terminal helix. The HDX kinetics implied that most F1 complexes operate with an intact rotor at any given time, but that the rotor tip is prone to occasional unfolding. A molecular dynamics (MD) strategy was developed to model the off-axis forces acting on γ. MD runs showed stalling of the rotor tip and unfolding of the γ C-terminal helix. MD-predicted H-bond opening events coincided with experimental HDX patterns. Our data suggest that in vitro operation of F1-ATPase is associated with significant rotational resistance in the apical bearing. These conditions cause the γ C-terminal helix to get "stuck" (and unfold) sporadically while the remainder of γ continues to rotate. This scenario contrasts the traditional "greasy bearing" model that envisions smooth rotation of the γ C-terminal helix. The fragility of the apical rotor tip in F1-ATPase is attributed to the absence of a c10 ring that stabilizes the rotation axis in intact FoF1. Overall, the MD/HDX strategy introduced here appears well suited for interrogating the inner workings of molecular motors.
Collapse
Affiliation(s)
- Angela Murcia Rios
- Departments of Chemistry and Biochemistry , The University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | - Siavash Vahidi
- Departments of Chemistry and Biochemistry , The University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | - Stanley D Dunn
- Departments of Chemistry and Biochemistry , The University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | - Lars Konermann
- Departments of Chemistry and Biochemistry , The University of Western Ontario , London , Ontario N6A 5B7 , Canada
| |
Collapse
|
36
|
Krah A, Bond PJ. Single mutations in the ε subunit from thermophilic Bacillus PS3 generate a high binding affinity site for ATP. PeerJ 2018; 6:e5505. [PMID: 30202650 PMCID: PMC6129141 DOI: 10.7717/peerj.5505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/02/2018] [Indexed: 01/23/2023] Open
Abstract
The ε subunit from ATP synthases acts as an ATP sensor in the bacterial cell to prevent ATP hydrolysis and thus the waste of ATP under conditions of low ATP concentration. However, the ATP binding affinities from various bacterial organisms differ markedly, over several orders of magnitude. For example, the ATP synthases from thermophilic Bacillus PS3 and Escherichia coli exhibit affinities of 4 µM and 22 mM, respectively. The recently reported R103A/R115A double mutant of Bacillus PS3 ATP synthase demonstrated an increased binding affinity by two orders of magnitude with respect to the wild type. Here, we used atomic-resolution molecular dynamics simulations to determine the role of the R103A and R115A single mutations. These lead us to predict that both single mutations also cause an increased ATP binding affinity. Evolutionary analysis reveals R103 and R115 substitutions in the ε subunit from other bacillic organisms, leading us to predict they likely have a higher ATP binding affinity than previously expected.
Collapse
Affiliation(s)
- Alexander Krah
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Republic of Korea.,Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Peter J Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
37
|
Sielaff H, Duncan TM, Börsch M. The regulatory subunit ε in Escherichia coli F OF 1-ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:775-788. [PMID: 29932911 DOI: 10.1016/j.bbabio.2018.06.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 11/16/2022]
Abstract
F-type ATP synthases are extraordinary multisubunit proteins that operate as nanomotors. The Escherichia coli (E. coli) enzyme uses the proton motive force (pmf) across the bacterial plasma membrane to drive rotation of the central rotor subunits within a stator subunit complex. Through this mechanical rotation, the rotor coordinates three nucleotide binding sites that sequentially catalyze the synthesis of ATP. Moreover, the enzyme can hydrolyze ATP to turn the rotor in the opposite direction and generate pmf. The direction of net catalysis, i.e. synthesis or hydrolysis of ATP, depends on the cell's bioenergetic conditions. Different control mechanisms have been found for ATP synthases in mitochondria, chloroplasts and bacteria. This review discusses the auto-inhibitory behavior of subunit ε found in FOF1-ATP synthases of many bacteria. We focus on E. coli FOF1-ATP synthase, with insights into the regulatory mechanism of subunit ε arising from structural and biochemical studies complemented by single-molecule microscopy experiments.
Collapse
Affiliation(s)
- Hendrik Sielaff
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Thomas M Duncan
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
38
|
Elastic coupling power stroke mechanism of the F 1-ATPase molecular motor. Proc Natl Acad Sci U S A 2018; 115:5750-5755. [PMID: 29760063 PMCID: PMC5984535 DOI: 10.1073/pnas.1803147115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The angular velocity profile of the 120° F1-ATPase power stroke was resolved as a function of temperature from 16.3 to 44.6 °C using a ΔμATP = -31.25 kBT at a time resolution of 10 μs. Angular velocities during the first 60° of the power stroke (phase 1) varied inversely with temperature, resulting in negative activation energies with a parabolic dependence. This is direct evidence that phase 1 rotation derives from elastic energy (spring constant, κ = 50 kBT·rad-2). Phase 2 of the power stroke had an enthalpic component indicating that additional energy input occurred to enable the γ-subunit to overcome energy stored by the spring after rotating beyond its 34° equilibrium position. The correlation between the probability distribution of ATP binding to the empty catalytic site and the negative Ea values of the power stroke during phase 1 suggests that this additional energy is derived from the binding of ATP to the empty catalytic site. A second torsion spring (κ = 150 kBT·rad-2; equilibrium position, 90°) was also evident that mitigated the enthalpic cost of phase 2 rotation. The maximum ΔGǂ was 22.6 kBT, and maximum efficiency was 72%. An elastic coupling mechanism is proposed that uses the coiled-coil domain of the γ-subunit rotor as a torsion spring during phase 1, and then as a crankshaft driven by ATP-binding-dependent conformational changes during phase 2 to drive the power stroke.
Collapse
|
39
|
Krah A, Zarco-Zavala M, McMillan DGG. Insights into the regulatory function of the ɛ subunit from bacterial F-type ATP synthases: a comparison of structural, biochemical and biophysical data. Open Biol 2018; 8:170275. [PMID: 29769322 PMCID: PMC5990651 DOI: 10.1098/rsob.170275] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/24/2018] [Indexed: 01/07/2023] Open
Abstract
ATP synthases catalyse the formation of ATP, the most common chemical energy storage unit found in living cells. These enzymes are driven by an electrochemical ion gradient, which allows the catalytic evolution of ATP by a binding change mechanism. Most ATP synthases are capable of catalysing ATP hydrolysis to varying degrees, and to prevent wasteful ATP hydrolysis, bacteria and mitochondria have regulatory mechanisms such as ADP inhibition. Additionally, ɛ subunit inhibition has also been described in three bacterial systems, Escherichia coli, Bacillus PS3 and Caldalkalibacillus thermarum TA2.A1. Previous studies suggest that the ɛ subunit is capable of undergoing an ATP-dependent conformational change from the ATP hydrolytic inhibitory 'extended' conformation to the ATP-induced non-inhibitory 'hairpin' conformation. A recently published crystal structure of the F1 domain of the C. thermarum TA2.A1 F1Fo ATP synthase revealed a mutant ɛ subunit lacking the ability to bind ATP in a hairpin conformation. This is a surprising observation considering it is an organism that performs no ATP hydrolysis in vivo, and appears to challenge the current dogma on the regulatory role of the ɛ subunit. This has prompted a re-examination of present knowledge of the ɛ subunits role in different organisms. Here, we compare published biochemical, biophysical and structural data involving ɛ subunit-mediated ATP hydrolysis regulation in a variety of organisms, concluding that the ɛ subunit from the bacterial F-type ATP synthases is indeed capable of regulating ATP hydrolysis activity in a wide variety of bacteria, making it a potentially valuable drug target, but its exact role is still under debate.
Collapse
Affiliation(s)
- Alexander Krah
- School of Computational Sciences, Korea Institute for Advanced Study, 85 Hoegiro Dongdaemun-gu, Seoul 02455, Republic of Korea
| | - Mariel Zarco-Zavala
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Duncan G G McMillan
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, The Netherlands
| |
Collapse
|
40
|
Krah A, Kato-Yamada Y, Takada S. The structural basis of a high affinity ATP binding ε subunit from a bacterial ATP synthase. PLoS One 2017; 12:e0177907. [PMID: 28542497 PMCID: PMC5436830 DOI: 10.1371/journal.pone.0177907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 05/04/2017] [Indexed: 01/09/2023] Open
Abstract
The ε subunit from bacterial ATP synthases functions as an ATP sensor, preventing ATPase activity when the ATP concentration in bacterial cells crosses a certain threshold. The R103A/R115A double mutant of the ε subunit from thermophilic Bacillus PS3 has been shown to bind ATP two orders of magnitude stronger than the wild type protein. We use molecular dynamics simulations and free energy calculations to derive the structural basis of the high affinity ATP binding to the R103A/R115A double mutant. Our results suggest that the double mutant is stabilized by an enhanced hydrogen-bond network and fewer repulsive contacts in the ligand binding site. The inferred structural basis of the high affinity mutant may help to design novel nucleotide sensors based on the ε subunit from bacterial ATP synthases.
Collapse
Affiliation(s)
- Alexander Krah
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan
- School of Computational Sciences, Korea Institute for Advanced Study, Dongdaemun-gu, Seoul, Republic of Korea
- * E-mail:
| | - Yasuyuki Kato-Yamada
- Department of Life Science, College of Science, Rikkyo University, Nishi-Ikebukuro, Toshima-ku, Tokyo, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
41
|
Noji H, Ueno H, McMillan DGG. Catalytic robustness and torque generation of the F 1-ATPase. Biophys Rev 2017; 9:103-118. [PMID: 28424741 PMCID: PMC5380711 DOI: 10.1007/s12551-017-0262-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/13/2017] [Indexed: 12/28/2022] Open
Abstract
The F1-ATPase is the catalytic portion of the FoF1 ATP synthase and acts as a rotary molecular motor when it hydrolyzes ATP. Two decades have passed since the single-molecule rotation assay of F1-ATPase was established. Although several fundamental issues remain elusive, basic properties of F-type ATPases as motor proteins have been well characterized, and a large part of the reaction scheme has been revealed by the combination of extensive structural, biochemical, biophysical, and theoretical studies. This review is intended to provide a concise summary of the fundamental features of F1-ATPases, by use of the well-described model F1 from the thermophilic Bacillus PS3 (TF1). In the last part of this review, we focus on the robustness of the rotary catalysis of F1-ATPase to provide a perspective on the re-designing of novel molecular machines.
Collapse
Affiliation(s)
- Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656 Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656 Japan
| | - Duncan G. G. McMillan
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656 Japan
| |
Collapse
|
42
|
Sielaff H, Martin J, Singh D, Biuković G, Grüber G, Frasch WD. Power Stroke Angular Velocity Profiles of Archaeal A-ATP Synthase Versus Thermophilic and Mesophilic F-ATP Synthase Molecular Motors. J Biol Chem 2016; 291:25351-25363. [PMID: 27729450 PMCID: PMC5207238 DOI: 10.1074/jbc.m116.745240] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/03/2016] [Indexed: 01/21/2023] Open
Abstract
The angular velocities of ATPase-dependent power strokes as a function of the rotational position for the A-type molecular motor A3B3DF, from the Methanosarcina mazei Gö1 A-ATP synthase, and the thermophilic motor α3β3γ, from Geobacillus stearothermophilus (formerly known as Bacillus PS3) F-ATP synthase, are resolved at 5 μs resolution for the first time. Unexpectedly, the angular velocity profile of the A-type was closely similar in the angular positions of accelerations and decelerations to the profiles of the evolutionarily distant F-type motors of thermophilic and mesophilic origins, and they differ only in the magnitude of their velocities. M. mazei A3B3DF power strokes occurred in 120° steps at saturating ATP concentrations like the F-type motors. However, because ATP-binding dwells did not interrupt the 120° steps at limiting ATP, ATP binding to A3B3DF must occur during the catalytic dwell. Elevated concentrations of ADP did not increase dwells occurring 40° after the catalytic dwell. In F-type motors, elevated ADP induces dwells 40° after the catalytic dwell and slows the overall velocity. The similarities in these power stroke profiles are consistent with a common rotational mechanism for A-type and F-type rotary motors, in which the angular velocity is limited by the rotary position at which ATP binding occurs and by the drag imposed on the axle as it rotates within the ring of stator subunits.
Collapse
Affiliation(s)
- Hendrik Sielaff
- the School of Biological Sciences, Nanyang Technological University, Singapore 637551, Republic of Singapore
| | - James Martin
- From the School of Life Sciences, Arizona State University, Tempe, Arizona 85287 and
| | - Dhirendra Singh
- the School of Biological Sciences, Nanyang Technological University, Singapore 637551, Republic of Singapore
| | - Goran Biuković
- the School of Biological Sciences, Nanyang Technological University, Singapore 637551, Republic of Singapore
| | - Gerhard Grüber
- the School of Biological Sciences, Nanyang Technological University, Singapore 637551, Republic of Singapore
| | - Wayne D Frasch
- From the School of Life Sciences, Arizona State University, Tempe, Arizona 85287 and
| |
Collapse
|
43
|
McMillan DGG, Watanabe R, Ueno H, Cook GM, Noji H. Biophysical Characterization of a Thermoalkaliphilic Molecular Motor with a High Stepping Torque Gives Insight into Evolutionary ATP Synthase Adaptation. J Biol Chem 2016; 291:23965-23977. [PMID: 27624936 DOI: 10.1074/jbc.m116.743633] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/12/2016] [Indexed: 11/06/2022] Open
Abstract
F1F0 ATP synthases are bidirectional molecular motors that translocate protons across the cell membrane by either synthesizing or hydrolyzing ATP. Alkaliphile ATP synthases are highly adapted, performing oxidative phosphorylation at high pH against an inverted pH gradient (acidin/alkalineout). Unlike mesophilic ATP synthases, alkaliphilic enzymes have tightly regulated ATP hydrolysis activity, which can be relieved in the presence of lauryldimethylamine oxide. Here, we characterized the rotary dynamics of the Caldalkalibacillus thermarum TA2.A1 F1 ATPase (TA2F1) with two forms of single molecule analysis, a magnetic bead duplex and a gold nanoparticle. TA2F1 rotated in a counterclockwise direction in both systems, adhering to Michaelis-Menten kinetics with a maximum rotation rate (Vmax) of 112.4 revolutions/s. TA2F1 displayed 120° unitary steps coupled with ATP hydrolysis. Torque measurements revealed the highest torque (52.4 piconewtons) derived from an F1 molecule using fluctuation theorem. The implications of high torque in terms of extreme environment adaptation are discussed.
Collapse
Affiliation(s)
- Duncan G G McMillan
- From the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan and
| | - Rikiya Watanabe
- From the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan and
| | - Hiroshi Ueno
- From the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan and
| | - Gregory M Cook
- the Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, P. O. Box 56, Dunedin 9054, New Zealand
| | - Hiroyuki Noji
- From the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan and
| |
Collapse
|
44
|
On the ATP binding site of the ε subunit from bacterial F-type ATP synthases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:332-40. [PMID: 26780667 DOI: 10.1016/j.bbabio.2016.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/11/2015] [Accepted: 01/14/2016] [Indexed: 11/20/2022]
Abstract
F-type ATP synthases are reversible machinery that not only synthesize adenosine triphosphate (ATP) using an electrochemical gradient across the membrane, but also can hydrolyze ATP to pump ions under certain conditions. To prevent wasteful ATP hydrolysis, subunit ε in bacterial ATP synthases changes its conformation from the non-inhibitory down- to the inhibitory up-state at a low cellular ATP concentration. Recently, a crystal structure of the ε subunit in complex with ATP was solved in a non-biologically relevant dimeric form. Here, to derive the functional ATP binding site motif, we carried out molecular dynamics simulations and free energy calculations. Our results suggest that the ATP binding site markedly differs from the experimental resolved one; we observe a reorientation of several residues, which bind to ATP in the crystal structure. In addition we find that an Mg(2+) ion is coordinated by ATP, replacing interactions of the second chain in the crystal structure. Thus we demonstrate more generally the influence of crystallization effects on ligand binding sites and their respective binding modes. Furthermore, we propose a role for two highly conserved residues to control the ATP binding/unbinding event, which have not been considered before. Additionally our results provide the basis for the rational development of new biosensors based on subunit ε, as shown previously for novel sensors measuring the ATP concentration in cells.
Collapse
|
45
|
Linking structural features from mitochondrial and bacterial F-type ATP synthases to their distinct mechanisms of ATPase inhibition. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 119:94-102. [DOI: 10.1016/j.pbiomolbio.2015.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 01/11/2023]
|
46
|
On the Mg2+ binding site of the ε subunit from bacterial F-type ATP synthases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1101-12. [DOI: 10.1016/j.bbabio.2015.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 11/19/2022]
|
47
|
Affiliation(s)
- Sundus Erbas-Cakmak
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - David A. Leigh
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Charlie T. McTernan
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Alina
L. Nussbaumer
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
48
|
Mechanism of the αβ conformational change in F1-ATPase after ATP hydrolysis: free-energy simulations. Biophys J 2015; 108:85-97. [PMID: 25564855 DOI: 10.1016/j.bpj.2014.11.1853] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/06/2014] [Accepted: 11/10/2014] [Indexed: 12/14/2022] Open
Abstract
One of the motive forces for F1-ATPase rotation is the conformational change of the catalytically active β subunit due to closing and opening motions caused by ATP binding and hydrolysis, respectively. The closing motion is accomplished in two steps: the hydrogen-bond network around ATP changes and then the entire structure changes via B-helix sliding, as shown in our previous study. Here, we investigated the opening motion induced by ATP hydrolysis using all-atom free-energy simulations, combining the nudged elastic band method and umbrella sampling molecular-dynamics simulations. Because hydrolysis requires residues in the α subunit, the simulations were performed with the αβ dimer. The results indicate that the large-scale opening motion is also achieved by the B-helix sliding (in the reverse direction). However, the sliding mechanism is different from that of ATP binding because sliding is triggered by separation of the hydrolysis products ADP and Pi. We also addressed several important issues: 1), the timing of the product Pi release; 2), the unresolved half-closed β structure; and 3), the ADP release mechanism. These issues are fundamental for motor function; thus, the rotational mechanism of the entire F1-ATPase is also elucidated through this αβ study. During the conformational change, conserved residues among the ATPase proteins play important roles, suggesting that the obtained mechanism may be shared with other ATPase proteins. When combined with our previous studies, these results provide a comprehensive view of the β-subunit conformational change that drives the ATPase.
Collapse
|
49
|
Simple mechanism whereby the F1-ATPase motor rotates with near-perfect chemomechanical energy conversion. Proc Natl Acad Sci U S A 2015. [PMID: 26195785 DOI: 10.1073/pnas.1422885112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
F1-ATPase is a motor enzyme in which a central shaft γ subunit rotates 120° per ATP in the cylinder made of α3β3 subunits. During rotation, the chemical energy of ATP hydrolysis (ΔGATP) is converted almost entirely into mechanical work by an elusive mechanism. We measured the force for rotation (torque) under various ΔGATP conditions as a function of rotation angles of the γ subunit with quasi-static, single-molecule manipulation and estimated mechanical work (torque × traveled angle) from the area of the function. The torque functions show three sawtooth-like repeats of a steep jump and linear descent in one catalytic turnover, indicating a simple physical model in which the motor is driven by three springs aligned along a 120° rotation angle. Although the second spring is unaffected by ΔGATP, activation of the first spring (timing of the torque jump) delays at low [ATP] (or high [ADP]) and activation of the third spring delays at high [Pi]. These shifts decrease the size and area of the sawtooth (magnitude of the work). Thus, F1-ATPase responds to the change of ΔGATP by shifting the torque jump timing and uses ΔGATP for the mechanical work with near-perfect efficiency.
Collapse
|
50
|
Kinetic and hysteretic behavior of ATP hydrolysis of the highly stable dimeric ATP synthase of Polytomella sp. Arch Biochem Biophys 2015; 575:30-7. [PMID: 25843420 DOI: 10.1016/j.abb.2015.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/20/2015] [Accepted: 03/21/2015] [Indexed: 11/21/2022]
Abstract
The F1FO-ATP synthase of the colorless alga Polytomella sp. exhibits a robust peripheral arm constituted by nine atypical subunits only present in chlorophycean algae. The isolated dimeric enzyme exhibits a latent ATP hydrolytic activity which can be activated by some detergents. To date, the kinetic behavior of the algal ATPase has not been studied. Here we show that while the soluble F1 sector exhibits Michaelis-Menten kinetics, the dimer exhibits a more complex behavior. The kinetic parameters (Vmax and Km) were obtained for both the F1 sector and the dimeric enzyme as isolated or activated by detergent, and this activation was also seen on the enzyme reconstituted in liposomes. Unlike other ATP synthases, the algal dimer hydrolyzes ATP on a wide range of pH and temperature. The enzyme was inhibited by oligomycin, DCCD and Mg-ADP, although oligomycin induced a peculiar inhibition pattern that can be attributed to structural differences in the algal subunit-c. The hydrolytic activity was temperature-dependent and exhibited activation energy of 4 kcal/mol. The enzyme also exhibited a hysteretic behavior with a lag phase strongly dependent on temperature but not on pH, that may be related to a possible regulatory role in vivo.
Collapse
|