1
|
Król S, Fedotovskaya O, Högbom M, Ädelroth P, Brzezinski P. Electron and proton transfer in the M. smegmatis III 2IV 2 supercomplex. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148585. [PMID: 35753381 DOI: 10.1016/j.bbabio.2022.148585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/25/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The M. smegmatis respiratory III2IV2 supercomplex consists of a complex III (CIII) dimer flanked on each side by a complex IV (CIV) monomer, electronically connected by a di-heme cyt. cc subunit of CIII. The supercomplex displays a quinol oxidation‑oxygen reduction activity of ~90 e-/s. In the current work we have investigated the kinetics of electron and proton transfer upon reaction of the reduced supercomplex with molecular oxygen. The data show that, as with canonical CIV, oxidation of reduced CIV at pH 7 occurs in three resolved components with time constants ~30 μs, 100 μs and 4 ms, associated with the formation of the so-called peroxy (P), ferryl (F) and oxidized (O) intermediates, respectively. Electron transfer from cyt. cc to the primary electron acceptor of CIV, CuA, displays a time constant of ≤100 μs, while re-reduction of cyt. cc by heme b occurs with a time constant of ~4 ms. In contrast to canonical CIV, neither the P → F nor the F → O reactions are pH dependent, but the P → F reaction displays a H/D kinetic isotope effect of ~3. Proton uptake through the D pathway in CIV displays a single time constant of ~4 ms, i.e. a factor of ~40 slower than with canonical CIV. The slowed proton uptake kinetics and absence of pH dependence are attributed to binding of a loop from the QcrB subunit of CIII at the D proton pathway of CIV. Hence, the data suggest that function of CIV is modulated by way of supramolecular interactions with CIII.
Collapse
Affiliation(s)
- Sylwia Król
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Olga Fedotovskaya
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
2
|
Brzezinski P, Moe A, Ädelroth P. Structure and Mechanism of Respiratory III-IV Supercomplexes in Bioenergetic Membranes. Chem Rev 2021; 121:9644-9673. [PMID: 34184881 PMCID: PMC8361435 DOI: 10.1021/acs.chemrev.1c00140] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 12/12/2022]
Abstract
In the final steps of energy conservation in aerobic organisms, free energy from electron transfer through the respiratory chain is transduced into a proton electrochemical gradient across a membrane. In mitochondria and many bacteria, reduction of the dioxygen electron acceptor is catalyzed by cytochrome c oxidase (complex IV), which receives electrons from cytochrome bc1 (complex III), via membrane-bound or water-soluble cytochrome c. These complexes function independently, but in many organisms they associate to form supercomplexes. Here, we review the structural features and the functional significance of the nonobligate III2IV1/2 Saccharomyces cerevisiae mitochondrial supercomplex as well as the obligate III2IV2 supercomplex from actinobacteria. The analysis is centered around the Q-cycle of complex III, proton uptake by CytcO, as well as mechanistic and structural solutions to the electronic link between complexes III and IV.
Collapse
Affiliation(s)
- Peter Brzezinski
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Agnes Moe
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
3
|
Vilhjálmsdóttir J, Albertsson I, Blomberg MRA, Ädelroth P, Brzezinski P. Proton transfer in uncoupled variants of cytochrome c oxidase. FEBS Lett 2019; 594:813-822. [PMID: 31725900 DOI: 10.1002/1873-3468.13679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/31/2019] [Accepted: 11/09/2019] [Indexed: 11/08/2022]
Abstract
Cytochrome c oxidase is a membrane-bound redox-driven proton pump that harbors two proton-transfer pathways, D and K, which are used at different stages of the reaction cycle. Here, we address the question if a D pathway with a modified energy landscape for proton transfer could take over the role of the K pathway when the latter is blocked by a mutation. Our data indicate that structural alterations near the entrance of the D pathway modulate energy barriers that influence proton transfer to the proton-loading site. The data also suggest that during reduction of the catalytic site, its protonation has to occur via the K pathway and that this proton transfer to the catalytic site cannot take place through the D pathway.
Collapse
Affiliation(s)
- Jóhanna Vilhjálmsdóttir
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | - Ingrid Albertsson
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | - Margareta R A Blomberg
- Department of Organic Chemistry, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| |
Collapse
|
4
|
Berg J, Liu J, Svahn E, Ferguson-Miller S, Brzezinski P. Structural changes at the surface of cytochrome c oxidase alter the proton-pumping stoichiometry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148116. [PMID: 31733183 DOI: 10.1016/j.bbabio.2019.148116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/22/2019] [Accepted: 11/08/2019] [Indexed: 10/25/2022]
Abstract
Data from earlier studies showed that minor structural changes at the surface of cytochrome c oxidase, in one of the proton-input pathways (the D pathway), result in dramatically decreased activity and a lower proton-pumping stoichiometry. To further investigate how changes around the D pathway orifice influence functionality of the enzyme, here we modified the nearby C-terminal loop of subunit I of the Rhodobacter sphaeroides cytochrome c oxidase. Removal of 16 residues from this flexible surface loop resulted in a decrease in the proton-pumping stoichiometry to <50% of that of the wild-type enzyme. Replacement of the protonatable residue Glu552, part of the same loop, by an Ala, resulted in a similar decrease in the proton-pumping stoichiometry without loss of the O2-reduction activity or changes in the proton-uptake kinetics. The data show that minor structural changes at the orifice of the D pathway, at a distance of ~40 Å from the proton gate of cytochrome c oxidase, may alter the proton-pumping stoichiometry of the enzyme.
Collapse
Affiliation(s)
- Johan Berg
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jian Liu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States
| | - Emelie Svahn
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States.
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
5
|
Duarte AG, Catarino T, White GF, Lousa D, Neukirchen S, Soares CM, Sousa FL, Clarke TA, Pereira IAC. An electrogenic redox loop in sulfate reduction reveals a likely widespread mechanism of energy conservation. Nat Commun 2018; 9:5448. [PMID: 30575735 PMCID: PMC6303296 DOI: 10.1038/s41467-018-07839-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/27/2018] [Indexed: 02/02/2023] Open
Abstract
The bioenergetics of anaerobic metabolism frequently relies on redox loops performed by membrane complexes with substrate- and quinone-binding sites on opposite sides of the membrane. However, in sulfate respiration (a key process in the biogeochemical sulfur cycle), the substrate- and quinone-binding sites of the QrcABCD complex are periplasmic, and their role in energy conservation has not been elucidated. Here we show that the QrcABCD complex of Desulfovibrio vulgaris is electrogenic, as protons and electrons required for quinone reduction are extracted from opposite sides of the membrane, with a H+/e− ratio of 1. Although the complex does not act as a H+-pump, QrcD may include a conserved proton channel leading from the N-side to the P-side menaquinone pocket. Our work provides evidence of how energy is conserved during dissimilatory sulfate reduction, and suggests mechanisms behind the functions of related bacterial respiratory complexes in other bioenergetic contexts. The bacterial complex QrcABCD plays a key role in the bioenergetics of sulfate respiration. Here, Duarte et al. show that this complex is electrogenic, with protons and electrons required for quinone reduction being extracted from opposite sides of the membrane.
Collapse
Affiliation(s)
- Américo G Duarte
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Teresa Catarino
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.,Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Gaye F White
- Centre for Molecular and Structural Biochemistry, School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Diana Lousa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Sinje Neukirchen
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14 UZA I, 1090, Vienna, Austria
| | - Cláudio M Soares
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Filipa L Sousa
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14 UZA I, 1090, Vienna, Austria
| | - Thomas A Clarke
- Centre for Molecular and Structural Biochemistry, School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
6
|
Ahn YO, Albertsson I, Gennis RB, Ädelroth P. Mechanism of proton transfer through the K C proton pathway in the Vibrio cholerae cbb 3 terminal oxidase. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2018; 1859:1191-1198. [PMID: 30251700 PMCID: PMC6260837 DOI: 10.1016/j.bbabio.2018.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 11/17/2022]
Abstract
The heme‑copper oxidases (HCuOs) are terminal components of the respiratory chain, catalyzing oxygen reduction coupled to the generation of a proton motive force. The C-family HCuOs, found in many pathogenic bacteria under low oxygen tension, utilize a single proton uptake pathway to deliver protons both for O2 reduction and for proton pumping. This pathway, called the KC-pathway, starts at Glu-49P in the accessory subunit CcoP, and connects into the catalytic subunit CcoN via the polar residues Tyr-(Y)-227, Asn (N)-293, Ser (S)-244, Tyr (Y)-321 and internal water molecules, and continues to the active site. However, although the residues are known to be functionally important, little is known about the mechanism and dynamics of proton transfer in the KC-pathway. Here, we studied variants of Y227, N293 and Y321. Our results show that in the N293L variant, proton-coupled electron transfer is slowed during single-turnover oxygen reduction, and moreover it shows a pH dependence that is not observed in wildtype. This suggests that there is a shift in the pKa of an internal proton donor into an experimentally accessible range, from >10 in wildtype to ~8.8 in N293L. Furthermore, we show that there are distinct roles for the conserved Y321 and Y227. In Y321F, proton uptake from bulk solution is greatly impaired, whereas Y227F shows wildtype-like rates and retains ~50% turnover activity. These tyrosines have evolutionary counterparts in the K-pathway of B-family HCuOs, but they do not have the same roles, indicating diversity in the proton transfer dynamics in the HCuO superfamily.
Collapse
Affiliation(s)
- Young O Ahn
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden; Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Street, Urbana, IL 61801, USA
| | - Ingrid Albertsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Street, Urbana, IL 61801, USA
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
7
|
Kopcova K, Blascakova L, Kozar T, Jancura D, Fabian M. Response of Heme Symmetry to the Redox State of Bovine Cytochrome c Oxidase. Biochemistry 2018; 57:4105-4113. [PMID: 29901388 DOI: 10.1021/acs.biochem.8b00459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Second-derivative absorption spectroscopy was employed to monitor the response of effective symmetry of cytochromes a and a3 to the redox and ligation states of bovine cytochrome c oxidase (CcO). The Soret band π → π* electronic transitions were used to display the changes in symmetry of these chromophores induced by the reduction of CcO inhibited by the exogenous ligands and during catalytic turnover. The second derivative of the difference absorption spectra revealed only a single Soret band for the oxidized cytochromes a and a3 and cyanide-ligated oxidized cytochrome a3. In contrast, two absorption bands were resolved in ferrous cytochrome a and ferrous cytochrome a3 ligated with cyanide. A transition from one-band spectrum to two-band spectrum indicates the lowering of symmetry of these hemes due to the alteration of their immediate surroundings. It is suggested that the changes in polarity occurring in the vicinity of these cofactors are main reason for the split of the Soret band of both ferrous cytochrome a and cyanide-bound ferrous cytochrome a3.
Collapse
Affiliation(s)
- Katarina Kopcova
- Department of Biophysics, Faculty of Science , University of P. J. Safarik , Jesenna 5 , 041 54 Kosice , Slovak Republic
| | - Ludmila Blascakova
- Center for Interdisciplinary Biosciences, Technology and Innovation Park , University of P. J. Safarik , Jesenna 5 , 041 54 Kosice , Slovak Republic
| | - Tibor Kozar
- Center for Interdisciplinary Biosciences, Technology and Innovation Park , University of P. J. Safarik , Jesenna 5 , 041 54 Kosice , Slovak Republic
| | - Daniel Jancura
- Department of Biophysics, Faculty of Science , University of P. J. Safarik , Jesenna 5 , 041 54 Kosice , Slovak Republic.,Center for Interdisciplinary Biosciences, Technology and Innovation Park , University of P. J. Safarik , Jesenna 5 , 041 54 Kosice , Slovak Republic
| | - Marian Fabian
- Center for Interdisciplinary Biosciences, Technology and Innovation Park , University of P. J. Safarik , Jesenna 5 , 041 54 Kosice , Slovak Republic
| |
Collapse
|
8
|
Ghane T, Gorriz RF, Wrzalek S, Volkenandt S, Dalatieh F, Reidelbach M, Imhof P. Hydrogen-Bonded Network and Water Dynamics in the D-channel of Cytochrome c Oxidase. J Membr Biol 2018; 251:299-314. [PMID: 29435610 DOI: 10.1007/s00232-018-0019-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/06/2018] [Indexed: 01/09/2023]
Abstract
Proton transfer in cytochrome c oxidase (CcO) from the cellular inside to the binuclear redox centre as well as proton pumping through the membrane takes place through proton entrance via two distinct pathways, the D- and K-channel. Both channels show a dependence of their hydration level on the protonation states of their key residues, K362 for the K-channel, and E286 or D132 for the D-channel. In the oxidative half of CcO's catalytic cycle the D-channel is the proton-conducting path. For this channel, an interplay of protonation state of the D-channel residues with the water and hydrogen-bond dynamics has been observed in molecular dynamics simulations of the CcO protein, embedded in a lipid bi-layer, modelled in different protonation states. Protonation of residue E286 at the end of the D-channel results in a hydrogen-bonded network pointing from E286 to N139, that is against proton transport, and favouring N139 conformations which correspond to a closed asparagine gate (formed by residues N121 and N139). Consequently, the hydration level is lower than with unprotonated E286. In those models, the Asn gate is predominantly open, allowing water molecules to pass and thus increase the hydration level. The hydrogen-bonded network in these states exhibits longer life times of the Asn residues with water than other models and shows the D-channel to be traversable from the entrance, D132, to exit, E286. The D-channel can thus be regarded as auto-regulated with respect to proton transport, allowing proton passage only when required, that is the proton is located at the lower part of the D-channel (D132 to Asn gate) and not at the exit (E286).
Collapse
Affiliation(s)
- Tahereh Ghane
- Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Rene F Gorriz
- Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Sandro Wrzalek
- Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Senta Volkenandt
- Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Ferand Dalatieh
- Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.,R Institute GmbH, Dortustraße 48, 14467, Potsdam, Germany
| | - Marco Reidelbach
- Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Petra Imhof
- Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
| |
Collapse
|
9
|
Liang R, Swanson JMJ, Wikström M, Voth GA. Understanding the essential proton-pumping kinetic gates and decoupling mutations in cytochrome c oxidase. Proc Natl Acad Sci U S A 2017; 114:5924-5929. [PMID: 28536198 PMCID: PMC5468613 DOI: 10.1073/pnas.1703654114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cytochrome c oxidase (CcO) catalyzes the reduction of oxygen to water and uses the released free energy to pump protons against the transmembrane proton gradient. To better understand the proton-pumping mechanism of the wild-type (WT) CcO, much attention has been given to the mutation of amino acid residues along the proton translocating D-channel that impair, and sometimes decouple, proton pumping from the chemical catalysis. Although their influence has been clearly demonstrated experimentally, the underlying molecular mechanisms of these mutants remain unknown. In this work, we report multiscale reactive molecular dynamics simulations that characterize the free-energy profiles of explicit proton transport through several important D-channel mutants. Our results elucidate the mechanisms by which proton pumping is impaired, thus revealing key kinetic gating features in CcO. In the N139T and N139C mutants, proton back leakage through the D-channel is kinetically favored over proton pumping due to the loss of a kinetic gate in the N139 region. In the N139L mutant, the bulky L139 side chain inhibits timely reprotonation of E286 through the D-channel, which impairs both proton pumping and the chemical reaction. In the S200V/S201V double mutant, the proton affinity of E286 is increased, which slows down both proton pumping and the chemical catalysis. This work thus not only provides insight into the decoupling mechanisms of CcO mutants, but also explains how kinetic gating in the D-channel is imperative to achieving high proton-pumping efficiency in the WT CcO.
Collapse
Affiliation(s)
- Ruibin Liang
- Department of Chemistry, Institute for Biophysical Dynamics and James Franck Institute, The University of Chicago, Chicago, IL 60637
| | - Jessica M J Swanson
- Department of Chemistry, Institute for Biophysical Dynamics and James Franck Institute, The University of Chicago, Chicago, IL 60637;
| | - Mårten Wikström
- Helsinki Bioenergetics Group, Programme for Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Gregory A Voth
- Department of Chemistry, Institute for Biophysical Dynamics and James Franck Institute, The University of Chicago, Chicago, IL 60637;
| |
Collapse
|
10
|
Graf S, Fedotovskaya O, Kao WC, Hunte C, Ädelroth P, Bott M, von Ballmoos C, Brzezinski P. Rapid Electron Transfer within the III-IV Supercomplex in Corynebacterium glutamicum. Sci Rep 2016; 6:34098. [PMID: 27682138 PMCID: PMC5040959 DOI: 10.1038/srep34098] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022] Open
Abstract
Complex III in C. glutamicum has an unusual di-heme cyt. c1 and it co-purifies with complex IV in a supercomplex. Here, we investigated the kinetics of electron transfer within this supercomplex and in the cyt. aa3 alone (cyt. bc1 was removed genetically). In the reaction of the reduced cyt. aa3 with O2, we identified the same sequence of events as with other A-type oxidases. However, even though this reaction is associated with proton uptake, no pH dependence was observed in the kinetics. For the cyt. bc1-cyt. aa3 supercomplex, we observed that electrons from the c-hemes were transferred to CuA with time constants 0.1–1 ms. The b-hemes were oxidized with a time constant of 6.5 ms, indicating that this electron transfer is rate-limiting for the overall quinol oxidation/O2 reduction activity (~210 e−/s). Furthermore, electron transfer from externally added cyt. c to cyt. aa3 was significantly faster upon removal of cyt. bc1 from the supercomplex, suggesting that one of the c-hemes occupies a position near CuA. In conclusion, isolation of the III-IV-supercomplex allowed us to investigate the kinetics of electron transfer from the b-hemes, via the di-heme cyt. c1 and heme a to the heme a3-CuB catalytic site of cyt. aa3.
Collapse
Affiliation(s)
- Simone Graf
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.,Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Olga Fedotovskaya
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Wei-Chun Kao
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Carola Hunte
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany
| | - Christoph von Ballmoos
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
11
|
Multiscale simulations reveal key features of the proton-pumping mechanism in cytochrome c oxidase. Proc Natl Acad Sci U S A 2016; 113:7420-5. [PMID: 27339133 DOI: 10.1073/pnas.1601982113] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytochrome c oxidase (CcO) reduces oxygen to water and uses the released free energy to pump protons across the membrane. We have used multiscale reactive molecular dynamics simulations to explicitly characterize (with free-energy profiles and calculated rates) the internal proton transport events that enable proton pumping during first steps of oxidation of the fully reduced enzyme. Our results show that proton transport from amino acid residue E286 to both the pump loading site (PLS) and to the binuclear center (BNC) are thermodynamically driven by electron transfer from heme a to the BNC, but that the former (i.e., pumping) is kinetically favored whereas the latter (i.e., transfer of the chemical proton) is rate-limiting. The calculated rates agree with experimental measurements. The backflow of the pumped proton from the PLS to E286 and from E286 to the inside of the membrane is prevented by large free-energy barriers for the backflow reactions. Proton transport from E286 to the PLS through the hydrophobic cavity and from D132 to E286 through the D-channel are found to be strongly coupled to dynamical hydration changes in the corresponding pathways and, importantly, vice versa.
Collapse
|
12
|
Vilhjálmsdóttir J, Johansson AL, Brzezinski P. Structural Changes and Proton Transfer in Cytochrome c Oxidase. Sci Rep 2015; 5:12047. [PMID: 26310633 PMCID: PMC4550891 DOI: 10.1038/srep12047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/16/2015] [Indexed: 01/28/2023] Open
Abstract
In cytochrome c oxidase electron transfer from cytochrome c to O2 is linked to transmembrane proton pumping, which contributes to maintaining a proton electrochemical gradient across the membrane. The mechanism by which cytochrome c oxidase couples the exergonic electron transfer to the endergonic proton translocation is not known, but it presumably involves local structural changes that control the alternating proton access to the two sides of the membrane. Such redox-induced structural changes have been observed in X-ray crystallographic studies at residues 423-425 (in the R. sphaeroides oxidase), located near heme a. The aim of the present study is to investigate the functional effects of these structural changes on reaction steps associated with proton pumping. Residue Ser425 was modified using site-directed mutagenesis and time-resolved spectroscopy was used to investigate coupled electron-proton transfer upon reaction of the oxidase with O2. The data indicate that the structural change at position 425 propagates to the D proton pathway, which suggests a link between redox changes at heme a and modulation of intramolecular proton-transfer rates.
Collapse
Affiliation(s)
- Jóhanna Vilhjálmsdóttir
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ann-Louise Johansson
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
13
|
Kotani H, Yagi T, Ishizuka T, Kojima T. Enhancement of 4-electron O2 reduction by a Cu(ii)–pyridylamine complex via protonation of a pendant pyridine in the second coordination sphere in water. Chem Commun (Camb) 2015. [DOI: 10.1039/c5cc03012a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic four-electron reduction of O2 by a Cu(ii)–pyridylamine complex is selectively enhanced via protonation of a pendant pyridine in the second coordination sphere in water.
Collapse
Affiliation(s)
- Hiroaki Kotani
- Department of Chemistry
- Faculty of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | - Tomomi Yagi
- Department of Chemistry
- Faculty of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | - Tomoya Ishizuka
- Department of Chemistry
- Faculty of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | - Takahiko Kojima
- Department of Chemistry
- Faculty of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| |
Collapse
|
14
|
Svahn E, Faxén K, Gennis RB, Brzezinski P. Proton pumping by an inactive structural variant of cytochrome c oxidase. J Inorg Biochem 2014; 140:6-11. [PMID: 25042731 DOI: 10.1016/j.jinorgbio.2014.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/23/2014] [Accepted: 06/23/2014] [Indexed: 12/12/2022]
Abstract
The aa3-type cytochrome c oxidases (CytcOs) from e.g. Rhodobacter sphaeroides and Paracoccus denitrificans harbor two proton-transfer pathways. The K pathway is used for proton uptake upon reduction of the CytcO, while the D pathway is used after binding of O2 to the catalytic site. The aim of the present study was to determine whether or not CytcO in which the K pathway is blocked (by e.g. the Lys362Met replacement) is capable of pumping protons. The process can not be studied using conventional assays because the O2-reduction activity is too low when the K pathway is blocked. Consequently, proton pumping with a blocked K pathway has not been demonstrated directly. Here, the Lys362Met and Ser299Glu structural variants were reconstituted in liposomes and allowed to (slowly) become completely reduced. Then, the reaction with O2 was studied with μs time resolution after flash photolysis of a blocking CO ligand bound to heme a3. The data show that with both the inactive Lys362Met and partly active Ser299Glu variants proton release occurred with the same time constants as with the wild-type oxidase, i.e. ~200μs and ~3ms, corresponding in time to formation of the ferryl and oxidized states, respectively. Thus, the data show that the K pathway is not required for proton pumping, suggesting that D and K pathways operate independently of each other after binding of O2 to the catalytic site.
Collapse
Affiliation(s)
- Emelie Svahn
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Kristina Faxén
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois at Urbana Champaign, Urbana, IL 61801, United States
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
15
|
Näsvik Öjemyr L, Maréchal A, Vestin H, Meunier B, Rich PR, Brzezinski P. Reaction of wild-type and Glu243Asp variant yeast cytochrome c oxidase with O2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1012-8. [PMID: 24685432 DOI: 10.1016/j.bbabio.2014.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/07/2014] [Accepted: 03/21/2014] [Indexed: 11/29/2022]
Abstract
We have studied internal electron transfer during the reaction of Saccharomyces cerevisiae mitochondrial cytochrome c oxidase with dioxygen. Similar absorbance changes were observed with this yeast oxidase as with the previously studied Rhodobacter sphaeroides and bovine mitochondrial oxidases, which suggests that the reaction proceeds along the same trajectory. However, notable differences were observed in rates and electron-transfer equilibrium constants of specific reaction steps, for example the ferryl (F) to oxidized (O) reaction was faster with the yeast (0.4ms) than with the bovine oxidase (~1ms) and a larger fraction CuA was oxidized with the yeast than with the bovine oxidase in the peroxy (PR) to F reaction. Furthermore, upon replacement of Glu243, located at the end of the so-called D proton pathway, by Asp the PR→F and F→O reactions were slowed by factors of ~3 and ~10, respectively, and electron transfer from CuA to heme a during the PR→F reaction was not observed. These data indicate that during reduction of dioxygen protons are transferred through the D pathway, via Glu243, to the catalytic site in the yeast mitochondrial oxidase. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Linda Näsvik Öjemyr
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Amandine Maréchal
- Glynn Laboratory of Bioenergetics, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Henrik Vestin
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Brigitte Meunier
- Centre de Génétique Moléculaire du CNRS, UPR 3404, avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Peter R Rich
- Glynn Laboratory of Bioenergetics, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
16
|
Rauhamäki V, Wikström M. The causes of reduced proton-pumping efficiency in type B and C respiratory heme-copper oxidases, and in some mutated variants of type A. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:999-1003. [PMID: 24583065 DOI: 10.1016/j.bbabio.2014.02.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 01/27/2014] [Accepted: 02/17/2014] [Indexed: 12/11/2022]
Abstract
The heme-copper oxidases may be divided into three categories, A, B, and C, which include cytochrome c and quinol-oxidising enzymes. All three types are known to be proton pumps and are found in prokaryotes, whereas eukaryotes only contain A-type cytochrome c oxidase in their inner mitochondrial membrane. However, the bacterial B- and C-type enzymes have often been reported to pump protons with an H(+)/e(-) ratio of only one half of the unit stoichiometry in the A-type enzyme. We will show here that these observations are likely to be the result of difficulties with the measuring technique together with a higher sensitivity of the B- and C-type enzymes to the protonmotive force that opposes pumping. We find that under optimal conditions the H(+)/e(-) ratio is close to unity in all the three heme-copper oxidase subfamilies. A higher tendency for proton leak in the B- and C-type enzymes may result from less efficient gating of a proton pump mechanism that we suggest evolved before the so-called D-channel of proton transfer. There is also a discrepancy between results using whole bacterial cells vs. phospholipid vesicles inlaid with oxidase with respect to the observed proton pumping after modification of the D-channel residue asparagine-139 (Rhodobacter sphaeroides numbering) to aspartate in A-type cytochrome c oxidase. This discrepancy might also be explained by a higher sensitivity of proton pumping to protonmotive force in the mutated variant. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Virve Rauhamäki
- Institute of Biotechnology, University of Helsinki, Viikinkaari 1, 00014 Helsinki, Finland
| | - Mårten Wikström
- Institute of Biotechnology, University of Helsinki, Viikinkaari 1, 00014 Helsinki, Finland.
| |
Collapse
|
17
|
Brzezinski P, Öjemyr LN, Ädelroth P. Intermediates generated during the reaction of reduced Rhodobacter sphaeroides cytochrome c oxidase with dioxygen. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:843-7. [DOI: 10.1016/j.bbabio.2013.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/18/2013] [Accepted: 04/23/2013] [Indexed: 10/26/2022]
|
18
|
Kirchberg K, Michel H, Alexiev U. Exploring the entrance of proton pathways in cytochrome c oxidase from Paracoccus denitrificans: Surface charge, buffer capacity and redox-dependent polarity changes at the internal surface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:276-84. [DOI: 10.1016/j.bbabio.2012.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/18/2012] [Accepted: 10/25/2012] [Indexed: 11/25/2022]
|
19
|
Johansson AL, Carlsson J, Högbom M, Hosler JP, Gennis RB, Brzezinski P. Proton uptake and pKa changes in the uncoupled Asn139Cys variant of cytochrome c oxidase. Biochemistry 2013; 52:827-36. [PMID: 23305515 DOI: 10.1021/bi301597a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cytochrome c oxidase (CytcO) is a membrane-bound enzyme that links electron transfer from cytochrome c to O(2) to proton pumping across the membrane. Protons are transferred through specific pathways that connect the protein surface with the catalytic site as well as the proton input with the proton output sides. Results from earlier studies have shown that one site within the so-called D proton pathway, Asn139, located ~10 Å from the protein surface, is particularly sensitive to mutations that uncouple the O(2) reduction reaction from the proton pumping activity. For example, none of the Asn139Asp (charged) or Asn139Thr (neutral) mutant CytcOs pump protons, although the proton-uptake rates are unaffected. Here, we have investigated the Asn139Cys and Asn139Cys/Asp132Asn mutant CytcOs. In contrast to other structural variants investigated to date, the Cys side chain may be either neutral or negatively charged in the experimentally accessible pH range. The data show that the Asn139Cys and Asn139Asp mutations result in the same changes of the kinetic and thermodynamic parameters associated with the proton transfer. The similarity is not due to introduction of charge at position 139, but rather introduction of a protonatable group that modulates the proton connectivity around this position. These results illuminate the mechanism by which CytcO couples electron transfer to proton pumping.
Collapse
Affiliation(s)
- Ann-Louise Johansson
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
20
|
Victoria D, Burton R, Crofts AR. Role of the -PEWY-glutamate in catalysis at the Q(o)-site of the Cyt bc(1) complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:365-86. [PMID: 23123515 DOI: 10.1016/j.bbabio.2012.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 01/09/2023]
Abstract
We re-examine the pH dependence of partial processes of ubihydroquinone (QH(2)) turnover in Glu-295 mutants in Rhodobacter sphaeroides to clarify the mechanistic role. In more crippled mutants, the bell-shaped pH profile of wildtype was replaced by dependence on a single pK at ~8.5 favoring electron transfer. Loss of the pK at 6.5 reflects a change in the rate-limiting step from the first to the second electron transfer. Over the range of pH 6-8, no major pH dependence of formation of the initial reaction complex was seen, and the rates of bypass reactions were similar to the wildtype. Occupancy of the Q(o)-site by semiquinone (SQ) was similar in the wildtype and the Glu→Trp mutant. Since heme b(L) is initially oxidized in the latter, the bifurcated reaction can still occur, allowing estimation of an empirical rate constant <10(3)s(-1) for reduction of heme b(L) by SQ from the domain distal from heme b(L), a value 1000-fold smaller than that expected from distance. If the pK ~8.5 in mutant strains is due to deprotonation of the neutral semiquinone, with Q(•-) as electron donor to heme b(L), then in wildtype this low value would preclude mechanisms for normal flux in which semiquinone is constrained to this domain. A kinetic model in which Glu-295 catalyzes H(+) transfer from QH•, and delivery of the H(+) to exit channel(s) by rotational displacement, and facilitates rapid electron transfer from SQ to heme b(L) by allowing Q(•-) to move closer to the heme, accounts well for the observations.
Collapse
Affiliation(s)
- Doreen Victoria
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
21
|
Allosteric interactions and proton conducting pathways in proton pumping aa3 oxidases: Heme a as a key coupling element. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:558-66. [DOI: 10.1016/j.bbabio.2011.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/02/2011] [Accepted: 11/04/2011] [Indexed: 11/23/2022]
|
22
|
Öjemyr LN, von Ballmoos C, Faxén K, Svahn E, Brzezinski P. The membrane modulates internal proton transfer in cytochrome c oxidase. Biochemistry 2012; 51:1092-100. [PMID: 22257086 DOI: 10.1021/bi201795c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The functionality of membrane proteins is often modulated by the surrounding membrane. Here, we investigated the effect of membrane reconstitution of purified cytochrome c oxidase (CytcO) on the kinetics and thermodynamics of internal electron and proton-transfer reactions during O(2) reduction. Reconstitution of the detergent-solubilized enzyme in small unilamellar soybean phosphatidylcholine vesicles resulted in a lowering of the pK(a) in the pH dependence profile of the proton-uptake rate. This pK(a) change resulted in decreased proton-uptake rates in the pH range of ~6.5-9.5, which is explained in terms of lowering of the pK(a) of an internal proton donor within CytcO. At pH 7.5, the rate decreased to the same extent when vesicles were prepared from the pure zwitterionic lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or the anionic lipid 1,2-dioleoyl-sn-glycero-3-phospho(1-rac-glycerol) (DOPG). In addition, a small change in the internal Cu(A)-heme a electron equilibrium constant was observed. This effect was lipid-dependent and explained in terms of a lower electrostatic potential within the membrane-spanning part of the protein with the anionic DOPG lipids than with the zwitterionic DOPC lipids. In conclusion, the data show that the membrane significantly modulates internal charge-transfer reactions and thereby the function of the membrane-bound enzyme.
Collapse
Affiliation(s)
- Linda Näsvik Öjemyr
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
23
|
Kim YC, Hummer G. Proton-pumping mechanism of cytochrome c oxidase: a kinetic master-equation approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:526-36. [PMID: 21946020 DOI: 10.1016/j.bbabio.2011.09.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/31/2011] [Accepted: 09/06/2011] [Indexed: 11/29/2022]
Abstract
Cytochrome c oxidase is an efficient energy transducer that reduces oxygen to water and converts the released chemical energy into an electrochemical membrane potential. As a true proton pump, cytochrome c oxidase translocates protons across the membrane against this potential. Based on a wealth of experiments and calculations, an increasingly detailed picture of the reaction intermediates in the redox cycle has emerged. However, the fundamental mechanism of proton pumping coupled to redox chemistry remains largely unresolved. Here we examine and extend a kinetic master-equation approach to gain insight into redox-coupled proton pumping in cytochrome c oxidase. Basic principles of the cytochrome c oxidase proton pump emerge from an analysis of the simplest kinetic models that retain essential elements of the experimentally determined structure, energetics, and kinetics, and that satisfy fundamental physical principles. The master-equation models allow us to address the question of how pumping can be achieved in a system in which all reaction steps are reversible. Whereas proton pumping does not require the direct modulation of microscopic reaction barriers, such kinetic gating greatly increases the pumping efficiency. Further efficiency gains can be achieved by partially decoupling the proton uptake pathway from the active-site region. Such a mechanism is consistent with the proposed Glu valve, in which the side chain of a key glutamic acid shuttles between the D channel and the active-site region. We also show that the models predict only small proton leaks even in the absence of turnover. The design principles identified here for cytochrome c oxidase provide a blueprint for novel biology-inspired fuel cells, and the master-equation formulation should prove useful also for other molecular machines. .
Collapse
Affiliation(s)
- Young C Kim
- Center for Computational Materials Science, Naval Research Laboratory, Washington, DC 20375, USA.
| | | |
Collapse
|
24
|
Abstract
Cytochrome c oxidase (CcO), as the terminal oxidase of cellular respiration, coupled with a proton-pumping process, reduces molecular oxygen (O(2)) to water. This intriguing and highly organized chemical process represents one of the most critical aspects of cellular respiration. It employs transition metals (Fe and Cu) at the O(2) reduction site and has been considered one of the most challenging research subjects in life science. Extensive X-ray structural and mutational analyses have provided two different proposals with regard to the mechanism of proton pumping. One mechanism is based on bovine CcO and includes an independent pathway for the pumped protons. The second mechanistic proposal includes a common pathway for the pumped and chemical protons and is based upon bacterial CcO. Here, recent progress in experimental evaluations of these proposals is reviewed and strategies for improving our understanding of the mechanism of this physiologically important process are discussed.
Collapse
|
25
|
Johansson AL, Chakrabarty S, Siöberg CB, Högbom M, Warshel A, Brzezinski P. Proton-transport mechanisms in cytochrome c oxidase revealed by studies of kinetic isotope effects. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1807:1083-94. [PMID: 21463601 PMCID: PMC3139697 DOI: 10.1016/j.bbabio.2011.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/25/2011] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
Abstract
Cytochrome c oxidase (CytcO) is a membrane-bound enzyme, which catalyzes the reduction of di-oxygen to water and uses a major part of the free energy released in this reaction to pump protons across the membrane. In the Rhodobacter sphaeroides aa₃ CytcO all protons that are pumped across the membrane, as well as one half of the protons that are used for O₂ reduction, are transferred through one specific intraprotein proton pathway, which holds a highly conserved Glu286 residue. Key questions that need to be addressed in order to understand the function of CytcO at a molecular level are related to the timing of proton transfers from Glu286 to a "pump site" and the catalytic site, respectively. Here, we have investigated the temperature dependencies of the H/D kinetic-isotope effects of intramolecular proton-transfer reactions in the wild-type CytcO as well as in two structural CytcO variants, one in which proton uptake from solution is delayed and one in which proton pumping is uncoupled from O₂ reduction. These processes were studied for two specific reaction steps linked to transmembrane proton pumping, one that involves only proton transfer (peroxy-ferryl, P→F, transition) and one in which the same sequence of proton transfers is also linked to electron transfer to the catalytic site (ferryl-oxidized, F→O, transition). An analysis of these reactions in the framework of theory indicates that that the simpler, P→F reaction is rate-limited by proton transfer from Glu286 to the catalytic site. When the same proton-transfer events are also linked to electron transfer to the catalytic site (F→O), the proton-transfer reactions might well be gated by a protein structural change, which presumably ensures that the proton-pumping stoichiometry is maintained also in the presence of a transmembrane electrochemical gradient. Furthermore, the present study indicates that a careful analysis of the temperature dependence of the isotope effect should help us in gaining mechanistic insights about CytcO.
Collapse
Affiliation(s)
- Ann-Louise Johansson
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Suman Chakrabarty
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, CA 90089-1062, USA
| | - Catrine Berthold Siöberg
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, CA 90089-1062, USA
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
26
|
Henry RM, Caplan D, Fadda E, Pomès R. Molecular basis of proton uptake in single and double mutants of cytochrome c oxidase. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:234102. [PMID: 21613706 DOI: 10.1088/0953-8984/23/23/234102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Cytochrome c oxidase, the terminal enzyme of the respiratory chain, utilizes the reduction of dioxygen into water to pump protons across the mitochondrial inner membrane. The principal pathway of proton uptake into the enzyme, the D channel, is a 2.5 nm long channel-like cavity named after a conserved, negatively charged aspartic acid (D) residue thought to help recruiting protons to its entrance (D132 in the first subunit of the S. sphaeroides enzyme). The single-point mutation of D132 to asparagine (N), a neutral residue, abolishes enzyme activity. Conversely, replacing conserved N139, one-third into the D channel, by D, induces a decoupled phenotype, whereby oxygen reduction proceeds but not proton pumping. Intriguingly, the double mutant D132N/N139D, which conserves the charge of the D channel, restores the wild-type phenotype. We use molecular dynamics simulations and electrostatic calculations to examine the structural and physical basis for the coupling of proton pumping and oxygen chemistry in single and double N139D mutants. The potential of mean force for the conformational isomerization of N139 and N139D side chains reveals the presence of three rotamers, one of which faces the channel entrance. This out-facing conformer is metastable in the wild-type and in the N139D single mutant, but predominant in the double mutant thanks to the loss of electrostatic repulsion with the carboxylate group of D132. The effects of mutations and conformational isomerization on the pKa of E286, an essential proton-shuttling residue located at the top of the D channel, are shown to be consistent with the electrostatic control of proton pumping proposed recently (Fadda et al 2008 Biochim. Biophys. Acta 1777 277-84). Taken together, these results suggest that preserving the spatial distribution of charges at the entrance of the D channel is necessary to guarantee both the uptake and the relay of protons to the active site of the enzyme. These findings highlight the interplay of long-range electrostatic forces and local structural fluctuations in the control of proton movement and provide a physical explanation for the restoration of proton pumping activity in the double mutant.
Collapse
Affiliation(s)
- Rowan M Henry
- Molecular Structure and Function, Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | | | | | | |
Collapse
|
27
|
Wikström M, Verkhovsky MI. The D-channel of cytochrome oxidase: an alternative view. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1273-8. [PMID: 21620795 DOI: 10.1016/j.bbabio.2011.05.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/10/2011] [Accepted: 05/11/2011] [Indexed: 10/18/2022]
Abstract
The D-pathway in A-type cytochrome c oxidases conducts protons from a conserved aspartate on the negatively charged N-side of the membrane to a conserved glutamic acid at about the middle of the membrane dielectric. Extensive work in the past has indicated that all four protons pumped across the membrane on reduction of O(2) to water are transferred via the D-pathway, and that it is also responsible for transfer of two out of the four "chemical protons" from the N-side to the binuclear oxygen reduction site to form product water. The function of the D-pathway has been discussed in terms of an apparent pK(a) of the glutamic acid. After reacting fully reduced enzyme with O(2), the rate of formation of the F state of the binuclear heme-copper active site was found to be independent of pH up to pH~9, but to drop off at higher pH with an apparent pK(a) of 9.4, which was attributed to the glutamic acid. Here, we present an alternative view, according to which the pH-dependence is controlled by proton transfer into the aspartate residue at the N-side orifice of the D-pathway. We summarise experimental evidence that favours a proton pump mechanism in which the proton to be pumped is transferred from the glutamic acid to a proton-loading site prior to proton transfer for completion of oxygen reduction chemistry. The mechanism is discussed by which the proton-pumping activity is decoupled from electron transfer by structural alterations of the D-pathway. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.
Collapse
|
28
|
Varanasi L, Hosler J. Alternative initial proton acceptors for the D pathway of Rhodobacter sphaeroides cytochrome c oxidase. Biochemistry 2011; 50:2820-8. [PMID: 21344856 PMCID: PMC3082432 DOI: 10.1021/bi102002v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To characterize protein structures that control proton uptake, we assayed forms of cytochrome c oxidase (CcO) containing a carboxyl or a thiol group in line with the initial, internal waters of the D pathway for proton transfer in the presence and absence of subunit III. Subunit III provides approximately half of the protein surrounding the entry region of the D pathway. The N139D/D132N mutant contains a carboxyl group 6 Å within the D pathway and lacks the normal, surface-exposed proton acceptor, Asp-132. With subunit III, the steady-state activity of this mutant is slow, but once subunit III is removed, its activity is the same as that of wild-type CcO lacking subunit III (∼1800 H+/s). Thus, a carboxyl group∼25% within the pathway enhances proton uptake even though the carboxyl has no direct contact with bulk solvent. Protons from solvent apparently move to internal Asp-139 through a short file of waters, normally blocked by subunit III. Cys-139 also supports rapid steady-state proton uptake, demonstrating that an anion other than a carboxyl can attract and transfer protons into the D pathway. When both Asp-132 and Asp/Cys-139 are present, the removal of subunit III increases CcO activity to rates greater than that of normal CcO because of simultaneous proton uptake by two initial acceptors. The results show how the environment of the initial proton acceptor for the D pathway in these CcO forms dictates the pH range of CcO activity, with implications for the function of Asp-132, the normal proton acceptor.
Collapse
Affiliation(s)
- Lakshman Varanasi
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216
| | - Jonathan Hosler
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216
| |
Collapse
|
29
|
Chakrabarty S, Namslauer I, Brzezinski P, Warshel A. Exploration of the cytochrome c oxidase pathway puzzle and examination of the origin of elusive mutational effects. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1807:413-26. [PMID: 21232525 PMCID: PMC3055932 DOI: 10.1016/j.bbabio.2011.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/22/2010] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
Abstract
Gaining detailed understanding of the energetics of the proton-pumping process in cytochrome c oxidase (CcO) is a problem of great current interest. Despite promising mechanistic proposals, so far, a physically consistent model that would reproduce all the relevant barriers needed to create a working pump has not been presented. In addition, there are major problems in elucidating the origin of key mutational effects and in understanding the nature of the apparent pK(a) values associated with the pH dependencies of specific proton transfer (PT) reactions in CcO. This work takes a key step in resolving the above problems, by considering mutations, such as the Asn139Asp replacement, that blocks proton pumping without affecting PT to the catalytic site. We first introduce a formulation that makes it possible to relate the apparent pK(a) of Glu286 to different conformational states of this residue. We then use the new formulation along with the calculated pK(a) values of Glu286 at these different conformations to reproduce the experimentally observed apparent pK(a) of the residue. Next, we take the X-ray structures of the native and Asn139Asp mutant of the Paracoccus denitrificans CcO (N131D in this system) and reproduce for the first time the change in the primary PT pathways (and other key features) based on simulations that start with the observed structural changes. We also consider the competition between proton transport to the catalytic site and the pump site, as a function of the bulk pH, as well as the H/D isotope effect, and use this information to explore the relative height of the two barriers. The paper emphasizes the crucial role of energy-based considerations that include the PT process, and the delicate control of PT in CcO.
Collapse
Affiliation(s)
- Suman Chakrabarty
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, CA 90089-1062, USA
| | - Ida Namslauer
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, CA 90089-1062, USA
| |
Collapse
|
30
|
Oztürk M, Watmough NJ. Mutagenesis of tyrosine residues within helix VII in subunit I of the cytochrome cbb₃ oxidase from Rhodobacter capsulatus. Mol Biol Rep 2010; 38:3319-26. [PMID: 21107730 DOI: 10.1007/s11033-010-0437-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
Abstract
The cbb (3)-type oxidases are members of the heme-copper oxidase superfamily, distant by sequence comparisons, but sharing common functional characteristics. The cbb (3) oxidases are missing an active-site tyrosine residue that is absolutely conserved in all A and B-type heme-copper oxidases. This tyrosine is known to play a critical role in the catalytic mechanisms of A and B-type oxidases. The absence of this tyrosine in the cbb (3) oxidases raises the possibility that the cbb (3) oxidases utilize a different catalytic mechanism from that of the other members of the superfamily, or have this conserved residue in different helices. Recently sequence comparisons indicate that, a tyrosine residues that might be analogous to the active-site tyrosine in other oxidases are present in the cbb (3) oxidases but these tyrosines originates from a different transmembrane helix within the protein. In this research, three conserved tyrosine residues, Y294, Y308 and Y318, in helix VII were substituted for phenylalanine. Y318F mutant in the Rhodobacter capsulatus oxidase resulted in a fully assembled enzyme with nativelike structure and activity, but Y294F mutant is not assembled and have a catalytic activity. On the other hand, Y308F mutant is fully assembled enzyme with nativelike structure, but lacking catalytic activity. This result indicates that Y308 should be crucial in catalytic activity of the cbb (3) oxidase of R. capsulatus. These findings support the assumption that all of the heme-copper oxidases utilize the same catalytic mechanism and provide a residue originates from different places within the primary sequence for different members of the same superfamily.
Collapse
Affiliation(s)
- Mehmet Oztürk
- Department of Biology, Faculty of Literature and Science, Abant İzzet Baysal University, 14280 Bolu, Turkey.
| | | |
Collapse
|
31
|
Lee HJ, Svahn E, Swanson JM, Lepp H, Voth GA, Brzezinski P, Gennis RB. Intricate role of water in proton transport through cytochrome c oxidase. J Am Chem Soc 2010; 132:16225-39. [PMID: 20964330 PMCID: PMC3005615 DOI: 10.1021/ja107244g] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome c oxidase (CytcO), the final electron acceptor in the respiratory chain, catalyzes the reduction of O(2) to H(2)O while simultaneously pumping protons across the inner mitochondrial or bacterial membrane to maintain a transmembrane electrochemical gradient that drives, for example, ATP synthesis. In this work mutations that were predicted to alter proton translocation and enzyme activity in preliminary computational studies are characterized with extensive experimental and computational analysis. The mutations were introduced in the D pathway, one of two proton-uptake pathways, in CytcO from Rhodobacter sphaeroides . Serine residues 200 and 201, which are hydrogen-bonded to crystallographically resolved water molecules halfway up the D pathway, were replaced by more bulky hydrophobic residues (Ser200Ile, Ser200Val/Ser201Val, and Ser200Val/Ser201Tyr) to query the effects of changing the local structure on enzyme activity as well as proton uptake, release, and intermediate transitions. In addition, the effects of these mutations on internal proton transfer were investigated by blocking proton uptake at the pathway entrance (Asp132Asn replacement in addition to the above-mentioned mutations). Even though the overall activities of all mutant CytcO's were lowered, both the Ser200Ile and Ser200Val/Ser201Val variants maintained the ability to pump protons. The lowered activities were shown to be due to slowed oxidation kinetics during the P(R) → F and F → O transitions (P(R) is the "peroxy" intermediate formed at the catalytic site upon reaction of the four-electron-reduced CytcO with O(2), F is the oxoferryl intermediate, and O is the fully oxidized CytcO). Furthermore, the P(R) → F transition is shown to be essentially pH independent up to pH 12 (i.e., the apparent pK(a) of Glu286 is increased from 9.4 by at least 3 pK(a) units) in the Ser200Val/Ser201Val mutant. Explicit simulations of proton transport in the mutated enzymes revealed that the solvation dynamics can cause intriguing energetic consequences and hence provide mechanistic insights that would never be detected in static structures or simulations of the system with fixed protonation states (i.e., lacking explicit proton transport). The results are discussed in terms of the proton-pumping mechanism of CytcO.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Emelie Svahn
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jessica M.J. Swanson
- Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637
| | | | - Gregory A. Voth
- Department of Chemistry, James Franck Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637
- Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Robert B. Gennis
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
32
|
Kaila VRI, Verkhovsky MI, Wikström M. Proton-coupled electron transfer in cytochrome oxidase. Chem Rev 2010; 110:7062-81. [PMID: 21053971 DOI: 10.1021/cr1002003] [Citation(s) in RCA: 413] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ville R I Kaila
- Helsinki Bioenergetics Group, Structural Biology and Biophysics Program, Institute of Biotechnology, University of Helsinki, P.O. Box 65, FI-00014 Helsinki, Finland
| | | | | |
Collapse
|
33
|
Zhu J, Han H, Pawate A, Gennis RB. Decoupling mutations in the D-channel of the aa(3)-type cytochrome c oxidase from Rhodobacter sphaeroides suggest that a continuous hydrogen-bonded chain of waters is essential for proton pumping. Biochemistry 2010; 49:4476-82. [PMID: 20441187 PMCID: PMC2876219 DOI: 10.1021/bi100344x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aa(3)-type cytochrome c oxidase from Rhodobacter sphaeroides utilizes two proton-input channels to provide all the protons for chemistry (water formation) and proton pumping. The D-channel is responsible for the uptake of all pumped protons, four protons per O(2). Several substitutions of either N139 or N207, near the entrance of the D-channel, were previously reported to decouple the proton pump from oxidase activity. In this work, the characteristics of additional mutations in this region of the protein (N139, N207, N121, and S142) are determined to elucidate the mechanism of decoupling. With the exception of the substitution of a large, hydrophobic residue (N139L), all the mutations of N139 resulted in an enzyme with high oxidase activity but with a severely diminished proton pumping stoichiometry. Whereas N207D was previously shown to be decoupled, N207A and N207T exhibit nearly wild-type behavior. The new data display a pattern. Small, nonionizable substitutions of N139 or N121 result in decoupling of the proton pump but maintain high turnover rates. These residues are directly hydrogen bonded to two water molecules (Water6574 and Water6584) that are part of the single-file chain of water molecules within the D-channel leading to E286 at the top of the channel. The data suggest that the integrity of this water chain within the D-channel is critical for rapid proton transfer. The mechanism of decoupling is most likely due to the slowing of the rate of proton delivery below a threshold that is required for protonation of the putative proton loading site. Protons delivered outside this time window are delivered to the active site where they are consumed in the formation of water. The rate of proton delivery required to protonate the pump site must be significantly faster than the rate of delivery of protons to the catalytic site. For this reason, mutations can result in decoupling of the proton pump without slowing the catalytic turnover by the enzyme.
Collapse
Affiliation(s)
- Jiapeng Zhu
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - Huazhi Han
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - Ashtamurthy Pawate
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - Robert B. Gennis
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL 61801 USA
| |
Collapse
|
34
|
Brzezinski P, Johansson AL. Variable proton-pumping stoichiometry in structural variants of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:710-23. [DOI: 10.1016/j.bbabio.2010.02.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 02/15/2010] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
|
35
|
Siletsky SA, Zhu J, Gennis RB, Konstantinov AA. Partial steps of charge translocation in the nonpumping N139L mutant of Rhodobacter sphaeroides cytochrome c oxidase with a blocked D-channel. Biochemistry 2010; 49:3060-73. [PMID: 20192226 PMCID: PMC2862684 DOI: 10.1021/bi901719e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The N139L substitution in the D-channel of cytochrome oxidase from Rhodobacter sphaeroides results in an approximately 15-fold decrease in the turnover number and a loss of proton pumping. Time-resolved absorption and electrometric assays of the F --> O transition in the N139L mutant oxidase result in three major findings. (1) Oxidation of the reduced enzyme by O(2) shows approximately 200-fold inhibition of the F --> O step (k approximately 2 s(-1) at pH 8) which is not compatible with enzyme turnover ( approximately 30 s(-1)). Presumably, an abnormal intermediate F(deprotonated) is formed under these conditions, one proton-deficient relative to a normal F state. In contrast, the F --> O transition in N139L oxidase induced by single-electron photoreduction of intermediate F, generated by reaction of the oxidized enzyme with H(2)O(2), decelerates to an extent compatible with enzyme turnover. (2) In the N139L mutant, the protonic phase of Deltapsi generation coupled to the flash-induced F --> O transition greatly decreases in rate and magnitude and can be assigned to the movement of a proton from E286 to the binuclear site, required for reduction of heme a(3) from the Fe(4+) horizontal lineO(2-) state to the Fe(3+)-OH(-) state. Electrogenic reprotonation of E286 from the inner aqueous phase is missing from the F --> O step in the mutant. (3) In the N139L mutant, the KCN-insensitive rapid electrogenic phase may be composed of two components with lifetimes of approximately 10 and approximately 40 mus and a magnitude ratio of approximately 3:2. The 10 mus phase matches vectorial electron transfer from Cu(A) to heme a, whereas the 40 mus component is assigned to intraprotein proton displacement across approximately 20% of the membrane dielectric thickness. This proton displacement might be triggered by rotation of the charged K362 side chain coupled to heme a reduction. The two components of the rapid electrogenic phase have been resolved subsequently with other D-channel mutants as well as with cyanide-inhibited wild-type oxidase. The finding helps to reconcile the unusually high relative contribution of the microsecond electrogenic phase in the bacterial enzyme ( approximately 30%) with the net electrogenicity of the F --> O transition coupled to transmembrane transfer of two charges per electron.
Collapse
Affiliation(s)
- Sergey A. Siletsky
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia
| | - Jiapeng Zhu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Robert B. Gennis
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Alexander A. Konstantinov
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia
| |
Collapse
|
36
|
Yoshioka Y, Mitani M. B3LYP study on reduction mechanisms from O2 to H2O at the catalytic sites of fully reduced and mixed-valence bovine cytochrome c oxidases. Bioinorg Chem Appl 2010; 2010:182804. [PMID: 20396396 PMCID: PMC2852611 DOI: 10.1155/2010/182804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 11/27/2009] [Accepted: 01/05/2010] [Indexed: 11/26/2022] Open
Abstract
Reduction mechanisms of oxygen molecule to water molecules in the fully reduced (FR) and mixed-valence (MV) bovine cytochrome c oxidases (CcO) have been systematically examined based on the B3LYP calculations. The catalytic cycle using four electrons and four protons has been also shown consistently. The MV CcO catalyses reduction to produce one water molecule, while the FR CcO catalyses to produce two water molecules. One water molecule is added into vacant space between His240 and His290 in the catalytic site. This water molecule constructs the network of hydrogen bonds of Tyr244, farnesyl ethyl, and Thr316 that is a terminal residue of the K-pathway. It plays crucial roles for the proton transfer to the dioxygen to produce the water molecules in both MV and FR CcOs. Tyr244 functions as a relay of the proton transfer from the K-pathway to the added water molecule, not as donors of a proton and an electron to the dioxygen. The reduction mechanisms of MV and FR CcOs are strictly distinguished. In the FR CcO, the Cu atom at the Cu(B) site maintains the reduced state Cu(I) during the process of formation of first water molecule and plays an electron storage. At the final stage of formation of first water molecule, the Cu(I) atom releases an electron to Fe-O. During the process of formation of second water molecule, the Cu atom maintains the oxidized state Cu(II). In contrast with experimental proposals, the K-pathway functions for formation of first water molecule, while the D-pathway functions for second water molecule. The intermediates, P(M), P(R), F, and O, obtained in this work are compared with those proposed experimentally.
Collapse
Affiliation(s)
- Yasunori Yoshioka
- Chemistry Department for Materials, Graduate School of Engineering, Mie University, Kurima-machiya 1577, Tsu, Mie 514-8507, Japan.
| | | |
Collapse
|
37
|
Namslauer I, Lee HJ, Gennis RB, Brzezinski P. A pathogenic mutation in cytochrome c oxidase results in impaired proton pumping while retaining O(2)-reduction activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:550-6. [PMID: 20117076 DOI: 10.1016/j.bbabio.2010.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 01/21/2010] [Accepted: 01/25/2010] [Indexed: 10/19/2022]
Abstract
In this work we have investigated the effect of a pathogenic mitochondrial DNA mutation found in human colon cells, at a functional-molecular level. The mutation results in the amino-acid substitution Tyr19His in subunit I of the human CytcO and it is associated with respiratory deficiency. It was introduced into Rhodobacter sphaeroides, which carries a cytochrome c oxidase (cytochrome aa(3)) that serves as a model of the mitochondrial counterpart. The residue is situated in the middle of a pathway that is used to transfer substrate protons as well as protons that are pumped across the membrane. The Tyr33His (equivalent residue in the bacterial CytcO) structural variant of the enzyme was purified and its function was investigated. The results show that in the structurally altered CytcO the activity decreased due to slowed proton transfer; proton transfer from an internal proton donor, the highly-conserved Glu286, to the catalytic site was slowed by a factor of approximately 5, while reprotonation of the Glu from solution was slowed by a factor of approximately 40. In addition, in the structural variant proton pumping was completely impaired. These results are explained in terms of introduction of a barrier for proton transfer through the D pathway and changes in the coordination of water molecules surrounding the Glu286 residue. The study offers an explanation, at the molecular level, to the link between a specific amino-acid substitution and a pathogenic phenotype identified in human colon cells.
Collapse
Affiliation(s)
- Ida Namslauer
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | | | | | | |
Collapse
|
38
|
Ojemyr L, Sandén T, Widengren J, Brzezinski P. Lateral proton transfer between the membrane and a membrane protein. Biochemistry 2009; 48:2173-9. [PMID: 19166299 DOI: 10.1021/bi8022152] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proton transport across biological membranes is a key step of the energy conservation machinery in living organisms, and it has been proposed that the membrane itself plays an important role in this process. In the present study we have investigated the effect of incorporation of a proton transporter, cytochrome c oxidase, into a membrane on the protonation kinetics of a fluorescent pH-sensitive probe attached at the surface of the protein. The results show that proton transfer to the probe was slightly accelerated upon attachment at the protein surface (approximately 7 x 1010 s(-1) M(-1), compared to the expected value of (1-2) x 10(10) s(-1) M(-1)), which is presumably due to the presence of acidic/His groups in the vicinity. Upon incorporation of the protein into small unilamellar phospholipid vesicles the rate increased by more than a factor of 400 to approximately 3 x 10(13) s(-1) M(-1), which indicates that the protein-attached probe is in rapid protonic contact with the membrane surface. The results indicate that the membrane acts to accelerate proton uptake by the membrane-bound proton transporter.
Collapse
Affiliation(s)
- Linda Ojemyr
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | | | | | | |
Collapse
|
39
|
Lee HJ, Öjemyr L, Vakkasoglu A, Brzezinski P, Gennis RB. Properties of Arg481 mutants of the aa3-type cytochrome c oxidase from Rhodobacter sphaeroides suggest that neither R481 nor the nearby D-propionate of heme a3 is likely to be the proton loading site of the proton pump. Biochemistry 2009; 48:7123-31. [PMID: 19575527 PMCID: PMC2735617 DOI: 10.1021/bi901015d] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome c oxidase utilizes the energy from electron transfer and reduction of oxygen to water and pumps protons across the membrane, generating a proton motive force. A large body of biochemical work has shown that all the pumped protons enter the enzyme through the D-channel, which is apparent in X-ray structures as a chain of water molecules connecting D132 at the cytoplasmic surface of the enzyme to E286, near the enzyme active site. The exit pathway utilized by pumped protons beyond this point and leading to the bacterial periplasm is not known. Also not known is the proton loading site (or sites) which undergoes changes in pKa in response to the chemistry at the enzyme active site and drives the proton pump mechanism. In this paper, we examine the role of R481, a highly conserved arginine that forms an ion pair with the D-propionate of heme a3. The R481H, R481N, R481Q, and R481L mutants were examined. The R481H mutant oxidase is approximately 18% active and pumps protons with approximately 40% of the stoichiometry of the wild type. The R481N, R481Q, and R481L mutants each retain only approximately 5% of the steady-state activity, and this is shown to be due to inhibition of steps in the reaction of O(2) with the reduced enzyme. Neither the R481N mutant nor the R481Q mutant oxidases pump protons, but remarkably, the R481L mutant does pump protons with the same efficiency as the R481H mutant. Since the proton pump is clearly operating in the R481L mutant, these results rule out an essential role in the proton pump mechanism for R481 or its hydrogen bond partner, the D-propionate of heme a3.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - Linda Öjemyr
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ahmet Vakkasoglu
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
- Center for Computational Biology and Biophysics, University of Illinois, Urbana, IL 61801, USA
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Robert B. Gennis
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
- Center for Computational Biology and Biophysics, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
40
|
Abstract
Cytochrome c oxidase (CcO), the terminal enzyme of the respiratory chain, reduces oxygen to water and uses the released energy to pump protons across a membrane. Here, we use kinetic master equations to explore the energetic and kinetic control of proton pumping in CcO. We construct models consistent with thermodynamic principles, the structure of CcO, experimentally known proton affinities, and equilibrium constants of intermediate reactions. The resulting models are found to capture key properties of CcO, including the midpoint redox potentials of the metal centers and the electron transfer rates. We find that coarse-grained models with two proton sites and one electron site can pump one proton per electron against membrane potentials exceeding 100 mV. The high pumping efficiency of these models requires strong electrostatic couplings between the proton loading (pump) site and the electron site (heme a), and kinetic gating of the internal proton transfer. Gating is achieved by enhancing the rate of proton transfer from the conserved Glu-242 to the pump site on reduction of heme a, consistent with the predictions of the water-gated model of proton pumping. The model also accounts for the phenotype of D-channel mutations associated with loss of pumping but retained turnover. The fundamental mechanism identified here for the efficient conversion of chemical energy into an electrochemical potential should prove relevant also for other molecular machines and novel fuel-cell designs.
Collapse
|
41
|
Internal charge transfer in cytochrome c oxidase at a limited proton supply: Proton pumping ceases at high pH. Biochim Biophys Acta Gen Subj 2009; 1790:552-7. [DOI: 10.1016/j.bbagen.2009.03.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 03/18/2009] [Accepted: 03/24/2009] [Indexed: 11/19/2022]
|
42
|
Richter OMH, Ludwig B. Electron transfer and energy transduction in the terminal part of the respiratory chain - lessons from bacterial model systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:626-34. [PMID: 19268423 DOI: 10.1016/j.bbabio.2009.02.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Revised: 02/13/2009] [Accepted: 02/16/2009] [Indexed: 11/18/2022]
Abstract
This review focuses on the terminal part of the respiratory chain where, macroscopically speaking, electron transfer (ET) switches from the two-electron donor, ubiquinol, to the single-electron carrier, cytochrome c, to finally reduce the four-electron acceptor dioxygen. With 3-D structures of prominent representatives of such multi-subunit membrane complexes known for some time, this section of the ET chain still leaves a number of key questions unanswered. The two relevant enzymes, ubiquinol:cytochrome c oxidoreductase and cytochrome c oxidase, appear as rather diverse modules, differing largely in their design for substrate interaction, internal ET, and moreover, in their mechanisms of energy transduction. While the canonical mitochondrial complexes have been investigated for almost five decades, the corresponding bacterial enzymes have been established only recently as attractive model systems to address basic reactions in ET and energy transduction. Lacking the intricate coding background and mitochondrial assembly pathways, bacterial respiratory enzymes typically offer a much simpler subunit composition, while maintaining all fundamental functions established for their complex "relatives". Moreover, related issues ranging from primary steps in cofactor insertion to supramolecular architecture of ET complexes, can also be favourably addressed in prokaryotic systems to hone our views on prototypic structures and mechanisms common to all family members.
Collapse
Affiliation(s)
- Oliver-Matthias H Richter
- Institute of Biochemistry, Molecular Genetics, Biozentrum Goethe University, Max-von-Laue-Str. 9, D 60438 Frankfurt, Germany
| | | |
Collapse
|
43
|
Functional hydration and conformational gating of proton uptake in cytochrome c oxidase. J Mol Biol 2009; 387:1165-85. [PMID: 19248790 DOI: 10.1016/j.jmb.2009.02.042] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 02/10/2009] [Accepted: 02/14/2009] [Indexed: 11/24/2022]
Abstract
Cytochrome c oxidase couples the reduction of dioxygen to proton pumping against an electrochemical gradient. The D-channel, a 25-A-long cavity, provides the principal pathway for the uptake of chemical and pumped protons. A water chain is thought to mediate the relay of protons via a Grotthuss mechanism through the D-channel, but it is interrupted at N139 in all available crystallographic structures. We use free-energy simulations to examine the proton uptake pathway in the wild type and in single-point mutants N139V and N139A, in which redox and pumping activities are compromised. We present a general approach for the calculation of water occupancy in protein cavities and demonstrate that combining efficient sampling algorithms with long simulation times (hundreds of nanoseconds) is required to achieve statistical convergence of equilibrium properties in the protein interior. The relative population of different conformational and hydration states of the D-channel is characterized. Results shed light on the role of N139 in the mechanism of proton uptake and clarify the physical basis for inactive phenotypes. The conformational isomerization of the N139 side chain is shown to act as a gate controlling the formation of a functional water chain or "proton wire." In the closed state of N139, the spatial distribution of water in the D-channel is consistent with available crystallographic models. However, a metastable state of N139 opens up a narrow bottleneck in which 50% occupancy by a water molecule establishes a proton pathway throughout the D-channel. Results for N139V suggest that blockage of proton uptake resulting from persistent interruption of the water pathway is the cause of this mutant's marginal oxidase activity. In contrast, results for N139A indicate that the D-channel is a continuously hydrated cavity, implying that the decoupling of oxidase activity from proton pumping measured in this mutant is not due to interruption of the proton relay chain.
Collapse
|
44
|
Dürr KL, Koepke J, Hellwig P, Müller H, Angerer H, Peng G, Olkhova E, Richter OMH, Ludwig B, Michel H. A D-Pathway Mutation Decouples the Paracoccus denitrificans Cytochrome c Oxidase by Altering the Side-Chain Orientation of a Distant Conserved Glutamate. J Mol Biol 2008; 384:865-77. [DOI: 10.1016/j.jmb.2008.09.074] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/28/2008] [Accepted: 09/17/2008] [Indexed: 11/16/2022]
|
45
|
Abstract
CytcO (cytochrome c oxidase) is a membrane-bound multisubunit protein which catalyses the reduction of O2 to H2O. The reaction is arranged topographically so that the electrons and protons are taken from opposite sides of the membrane and, in addition, it is also linked to proton pumping across the membrane. Thus the CytcO moves an equivalent of two positive charges across the membrane per electron transferred to O2. Proton transfer through CytcO must be controlled by the protein to prevent leaks, which would dissipate the proton electrochemical gradient that is maintained across the membrane. The molecular mechanism by which the protein controls the unidirectionality of proton-transfer (cf. proton diode) reactions and energetically links electron transfer to proton translocation is not known. This short review summarizes selected results from studies aimed at understanding this mechanism, and we discuss a possible mechanistic principle utilized by the oxidase to pump protons.
Collapse
|
46
|
Fee JA, Case DA, Noodleman L. Toward a chemical mechanism of proton pumping by the B-type cytochrome c oxidases: application of density functional theory to cytochrome ba3 of Thermus thermophilus. J Am Chem Soc 2008; 130:15002-21. [PMID: 18928258 PMCID: PMC2653421 DOI: 10.1021/ja803112w] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A mechanism for proton pumping by the B-type cytochrome c oxidases is presented in which one proton is pumped in conjunction with the weakly exergonic, two-electron reduction of Fe-bound O 2 to the Fe-Cu bridging peroxodianion and three protons are pumped in conjunction with the highly exergonic, two-electron reduction of Fe(III)- (-)O-O (-)-Cu(II) to form water and the active oxidized enzyme, Fe(III)- (-)OH,Cu(II). The scheme is based on the active-site structure of cytochrome ba 3 from Thermus thermophilus, which is considered to be both necessary and sufficient for coupled O 2 reduction and proton pumping when appropriate gates are in place (not included in the model). Fourteen detailed structures obtained from density functional theory (DFT) geometry optimization are presented that are reasonably thought to occur during the four-electron reduction of O 2. Each proton-pumping step takes place when a proton resides on the imidazole ring of I-His376 and the large active-site cluster has a net charge of +1 due to an uncompensated, positive charge formally associated with Cu B. Four types of DFT were applied to determine the energy of each intermediate, and standard thermochemical approaches were used to obtain the reaction free energies for each step in the catalytic cycle. This application of DFT generally conforms with previously suggested criteria for a valid model (Siegbahn, P. E. M.; Blomberg, M. A. R. Chem. Rev. 2000, 100, 421-437) and shows how the chemistry of O 2 reduction in the heme a 3 -Cu B dinuclear center can be harnessed to generate an electrochemical proton gradient across the lipid bilayer.
Collapse
Affiliation(s)
- James A Fee
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
47
|
Brzezinski P, Gennis RB. Cytochrome c oxidase: exciting progress and remaining mysteries. J Bioenerg Biomembr 2008; 40:521-31. [PMID: 18975062 PMCID: PMC4012550 DOI: 10.1007/s10863-008-9181-7] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 08/15/2008] [Indexed: 10/21/2022]
Abstract
Cytochrome c oxidase generates a proton motive force by two separate mechanisms. The first mechanism is similar to that postulated by Peter Mitchell, and is based on electrons and protons used to generate water coming from opposite sides of the membrane. The second mechanism was not initially anticipated, but is now firmly established as a proton pump. A brief review of the current state of our understanding of the proton pump of cytochrome oxidase is presented. We have come a long way since the initial observation of the pump by Mårten Wikström in 1977, but a number of essential questions remain to be answered.
Collapse
Affiliation(s)
- Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Robert B. Gennis
- Department of Biochemistry, University of Illinois, 600 South Goodwin Avenue, A320 CLSL, Urbana, IL 61801, USA
| |
Collapse
|
48
|
Ho FM. Uncovering channels in photosystem II by computer modelling: current progress, future prospects, and lessons from analogous systems. PHOTOSYNTHESIS RESEARCH 2008; 98:503-522. [PMID: 18798008 DOI: 10.1007/s11120-008-9358-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 08/18/2008] [Indexed: 05/26/2023]
Abstract
Even prior to the publication of the crystal structures for photosystem II (PSII), it had already been suggested that water, O(2) and H(+) channels exist in PSII to achieve directed transport of these molecules, and to avoid undesirable side reactions. Computational efforts to uncover these channels and investigate their properties are still at early stages, and have so far only been based on the static PSII structure. The rationale behind the proposals for such channels and the computer modelling studies thus far are reviewed here. The need to take the dynamic protein into account is then highlighted with reference to the specific issues and techniques applicable to the simulation of each of the three channels. In particular, lessons are drawn from simulation studies on other protein systems containing similar channels.
Collapse
Affiliation(s)
- Felix M Ho
- Department of Photochemistry and Molecular Science, The Angström Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
49
|
Yeung N, Lu Y. One heme, diverse functions: using biosynthetic myoglobin models to gain insights into heme-copper oxidases and nitric oxide reductases. Chem Biodivers 2008; 5:1437-1454. [PMID: 18729107 PMCID: PMC2770894 DOI: 10.1002/cbdv.200890134] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Natasha Yeung
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| |
Collapse
|
50
|
Glutamic acid 242 is a valve in the proton pump of cytochrome c oxidase. Proc Natl Acad Sci U S A 2008; 105:6255-9. [PMID: 18430799 DOI: 10.1073/pnas.0800770105] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aerobic life is based on a molecular machinery that utilizes oxygen as a terminal electron sink. The membrane-bound cytochrome c oxidase (CcO) catalyzes the reduction of oxygen to water in mitochondria and many bacteria. The energy released in this reaction is conserved by pumping protons across the mitochondrial or bacterial membrane, creating an electrochemical proton gradient that drives production of ATP. A crucial question is how the protons pumped by CcO are prevented from flowing backwards during the process. Here, we show by molecular dynamics simulations that the conserved glutamic acid 242 near the active site of CcO undergoes a protonation state-dependent conformational change, which provides a valve in the pumping mechanism. The valve ensures that at any point in time, the proton pathway across the membrane is effectively discontinuous, thereby preventing thermodynamically favorable proton back-leakage while maintaining an overall high efficiency of proton translocation. Suppression of proton leakage is particularly important in mitochondria under physiological conditions, where production of ATP takes place in the presence of a high electrochemical proton gradient.
Collapse
|