1
|
Arseniev A, Panfilov M, Pobegalov G, Potyseva A, Pavlinova P, Yakunina M, Lee J, Borukhov S, Severinov K, Khodorkovskii M. Single-molecule studies reveal the off-pathway early paused state intermediates as a target of streptolydigin inhibition of RNA polymerase and its dramatic enhancement by Gre factors. Nucleic Acids Res 2025; 53:gkae1135. [PMID: 39656915 PMCID: PMC11724273 DOI: 10.1093/nar/gkae1135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
Antibiotic streptolydigin (Stl) inhibits bacterial transcription by blocking the trigger loop folding in the active center of RNA polymerase (RNAP), which is essential for catalysis. We use acoustic force spectroscopy to characterize the dynamics of transcription elongation in ternary elongation complexes (ECs) of RNAP in the presence of Stl at a single-molecule level. We found that Stl induces long-lived stochastic pauses while the instantaneous velocity of transcription between the pauses is unaffected. Stl enhances the short-lived pauses associated with an off-pathway early paused state intermediates of the RNAP nucleotide addition cycle. Unexpectedly, we found that transcript cleavage factors GreA and GreB, which were thought to be Stl competitors, do not alleviate the Stl-induced pausing; instead, they synergistically increase transcription inhibition by Stl. This is the first known instance of a transcriptional factor enhancing antibiotic activity. We propose a structural model of the EC-Gre-Stl complex that explains the observed Stl activities and provides insight into possible cooperative action of secondary channel factors and other antibiotics binding at the Stl pocket. These results offer a new strategy for high-throughput screening for prospective antibacterial agents.
Collapse
Affiliation(s)
- Anatolii Arseniev
- Peter the Great St. Petersburg Polytechnic University, Research Center of Nanobiotechnologies, Polytechnicheskaya, 29 B, Saint Petersburg, 195251,Russia
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq., 2, Moscow, 123182, Russia
| | - Mikhail Panfilov
- Peter the Great St. Petersburg Polytechnic University, Research Center of Nanobiotechnologies, Polytechnicheskaya, 29 B, Saint Petersburg, 195251,Russia
| | - Georgii Pobegalov
- Department of Physics and Astronomy, University College London, Gower street, London, WC1E 6BT, UK
| | - Alina Potyseva
- Peter the Great St. Petersburg Polytechnic University, Research Center of Nanobiotechnologies, Polytechnicheskaya, 29 B, Saint Petersburg, 195251,Russia
| | - Polina Pavlinova
- Peter the Great St. Petersburg Polytechnic University, Research Center of Nanobiotechnologies, Polytechnicheskaya, 29 B, Saint Petersburg, 195251,Russia
| | - Maria Yakunina
- Peter the Great St. Petersburg Polytechnic University, Research Center of Nanobiotechnologies, Polytechnicheskaya, 29 B, Saint Petersburg, 195251,Russia
| | - Jookyung Lee
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084-1489, USA
| | - Sergei Borukhov
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084-1489, USA
| | - Konstantin Severinov
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, Moscow, 119334, Russia
| | - Mikhail Khodorkovskii
- Peter the Great St. Petersburg Polytechnic University, Research Center of Nanobiotechnologies, Polytechnicheskaya, 29 B, Saint Petersburg, 195251,Russia
| |
Collapse
|
2
|
Fuller KB, Requijo RM, Schneider DA, Lucius AL. NTPs compete in the active site of RNA polymerases I and II. Biophys Chem 2024; 314:107302. [PMID: 39180852 PMCID: PMC11401760 DOI: 10.1016/j.bpc.2024.107302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024]
Abstract
Eukaryotes express at least three RNA polymerases (Pols) carry out transcription, while bacteria and archaea use only one. Using transient state kinetics, we have extensively examined and compared the kinetics of both single and multi-nucleotide additions catalyzed by the three Pols. In single nucleotide addition experiments we have observed unexpected extension products beyond one incorporation, which can be attributed to misincorporation, the presence of nearly undetectable amounts of contaminating NTPs, or a mixture of the two. Here we report the development and validation of an analysis strategy to account for the presence of unexpected extension products, when they occur. Using this approach, we uncovered evidence showing that non-cognate nucleotide, thermodynamically, competes with cognate nucleotide for the active site within the elongation complex of Pol I, ΔA12 Pol I, and Pol II. This observation is unexpected because base pairing interactions provide favorable energetics for selectivity and competitive binding indicates that the affinities of cognate and non-cognate nucleotides are within an order of magnitude. Thus, we show that application of our approach will allow for the extraction of additional information that reports on the energetics of nucleotide entry and selectivity.
Collapse
Affiliation(s)
- Kaila B Fuller
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ryan M Requijo
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, AL 35294, USA.
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
3
|
Wee LM, Tong AB, Florez Ariza AJ, Cañari-Chumpitaz C, Grob P, Nogales E, Bustamante CJ. A trailing ribosome speeds up RNA polymerase at the expense of transcript fidelity via force and allostery. Cell 2023; 186:1244-1262.e34. [PMID: 36931247 PMCID: PMC10135430 DOI: 10.1016/j.cell.2023.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 11/14/2022] [Accepted: 02/06/2023] [Indexed: 03/18/2023]
Abstract
In prokaryotes, translation can occur on mRNA that is being transcribed in a process called coupling. How the ribosome affects the RNA polymerase (RNAP) during coupling is not well understood. Here, we reconstituted the E. coli coupling system and demonstrated that the ribosome can prevent pausing and termination of RNAP and double the overall transcription rate at the expense of fidelity. Moreover, we monitored single RNAPs coupled to ribosomes and show that coupling increases the pause-free velocity of the polymerase and that a mechanical assisting force is sufficient to explain the majority of the effects of coupling. Also, by cryo-EM, we observed that RNAPs with a terminal mismatch adopt a backtracked conformation, while a coupled ribosome allosterically induces these polymerases toward a catalytically active anti-swiveled state. Finally, we demonstrate that prolonged RNAP pausing is detrimental to cell viability, which could be prevented by polymerase reactivation through a coupled ribosome.
Collapse
Affiliation(s)
- Liang Meng Wee
- QB3-Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA
| | - Alexander B Tong
- QB3-Berkeley, Berkeley, CA, USA; Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Alfredo Jose Florez Ariza
- QB3-Berkeley, Berkeley, CA, USA; Biophysics Graduate Group, University of California Berkeley, Berkeley, CA, USA
| | - Cristhian Cañari-Chumpitaz
- QB3-Berkeley, Berkeley, CA, USA; Department of Chemistry, University of California Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA
| | - Patricia Grob
- QB3-Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Eva Nogales
- QB3-Berkeley, Berkeley, CA, USA; Biophysics Graduate Group, University of California Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Carlos J Bustamante
- QB3-Berkeley, Berkeley, CA, USA; Biophysics Graduate Group, University of California Berkeley, Berkeley, CA, USA; Department of Chemistry, University of California Berkeley, Berkeley, CA, USA; Department of Physics, University of California Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA; Kavli Energy Nanoscience Institute, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
4
|
Kurepina N, Chudaev M, Kreiswirth BN, Nikiforov V, Mustaev A. Mutations compensating for the fitness cost of rifampicin resistance in Escherichia coli exert pleiotropic effect on RNA polymerase catalysis. Nucleic Acids Res 2022; 50:5739-5756. [PMID: 35639764 PMCID: PMC9177976 DOI: 10.1093/nar/gkac406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 04/28/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
The spread of drug-resistant bacteria represents one of the most significant medical problems of our time. Bacterial fitness loss associated with drug resistance can be counteracted by acquisition of secondary mutations, thereby enhancing the virulence of such bacteria. Antibiotic rifampicin (Rif) targets cellular RNA polymerase (RNAP). It is potent broad spectrum drug used for treatment of bacterial infections. We have investigated the compensatory mechanism of the secondary mutations alleviating Rif resistance (Rifr) on biochemical, structural and fitness indices. We find that substitutions in RNAP genes compensating for the growth defect caused by βQ513P and βT563P Rifr mutations significantly enhanced bacterial relative growth rate. By assaying RNAP purified from these strains, we show that compensatory mutations directly stimulated basal transcriptional machinery (2-9-fold) significantly improving promoter clearance step of the transcription pathway as well as elongation rate. Molecular modeling suggests that compensatory mutations affect transcript retention, substrate loading, and nucleotidyl transfer catalysis. Strikingly, one of the identified compensatory substitutions represents mutation conferring rifampicin resistance on its own. This finding reveals an evolutionary process that creates more virulent species by simultaneously improving the fitness and augmenting bacterial drug resistance.
Collapse
Affiliation(s)
- Natalia Kurepina
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Maxim Chudaev
- Public Health Research Institute, and Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| | - Barry N Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Vadim Nikiforov
- Public Health Research Institute, and Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Arkady Mustaev
- Public Health Research Institute, and Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| |
Collapse
|
5
|
Miropolskaya N, Petushkov I, Esyunina D, Kulbachinskiy A. Suppressor mutations in Escherichia coli RNA polymerase alter transcription initiation but do not affect translesion RNA synthesis in vitro. J Biol Chem 2022; 298:102099. [PMID: 35667439 PMCID: PMC9254596 DOI: 10.1016/j.jbc.2022.102099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022] Open
Abstract
Bacterial RNA polymerase (RNAP) coordinates transcription with DNA repair and replication. Many RNAP mutations have pleiotropic phenotypes with profound effects on transcription-coupled processes. One class of RNAP mutations (rpo*) has been shown to suppress mutations in regulatory factors responsible for changes in gene expression during stationary phase or starvation, as well as in factors involved in the restoration of replication forks after DNA damage. These mutations were suggested to affect the ability of RNAP to transcribe damaged DNA and to decrease the stability of transcription complexes, thus facilitating their dislodging during DNA replication and repair, although this was not explicitly demonstrated. Here, we obtained nine mutations of this class located around the DNA/RNA binding cleft of E. coli RNAP and analyzed their transcription properties in vitro. We found that these mutations decreased promoter complex stability to varying degrees and all decreased the activity of rRNA promoters. However, they did not have strong effects on elongation complex stability. Some mutations were shown to stimulate transcriptional pauses or decrease intrinsic RNA cleavage by RNAP, but none altered the ability of RNAP to transcribe DNA templates containing damaged nucleotides. Thus, we conclude that the suppressor phenotypes of the mutations are unlikely to result from direct effects on DNA lesion recognition by RNAP but may be primarily explained by changes in transcription initiation. Further analysis of the effects of these mutations on the genomic distribution of RNAP and its interactions with regulatory factors will be essential for understanding their diverse phenotypes in vivo.
Collapse
Affiliation(s)
- Nataliya Miropolskaya
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia
| | - Ivan Petushkov
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia
| | - Daria Esyunina
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia.
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia.
| |
Collapse
|
6
|
Agapov A, Olina A, Kulbachinskiy A. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3018-3041. [PMID: 35323981 PMCID: PMC8989532 DOI: 10.1093/nar/gkac174] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/14/2022] Open
Abstract
Cellular DNA is continuously transcribed into RNA by multisubunit RNA polymerases (RNAPs). The continuity of transcription can be disrupted by DNA lesions that arise from the activities of cellular enzymes, reactions with endogenous and exogenous chemicals or irradiation. Here, we review available data on translesion RNA synthesis by multisubunit RNAPs from various domains of life, define common principles and variations in DNA damage sensing by RNAP, and consider existing controversies in the field of translesion transcription. Depending on the type of DNA lesion, it may be correctly bypassed by RNAP, or lead to transcriptional mutagenesis, or result in transcription stalling. Various lesions can affect the loading of the templating base into the active site of RNAP, or interfere with nucleotide binding and incorporation into RNA, or impair RNAP translocation. Stalled RNAP acts as a sensor of DNA damage during transcription-coupled repair. The outcome of DNA lesion recognition by RNAP depends on the interplay between multiple transcription and repair factors, which can stimulate RNAP bypass or increase RNAP stalling, and plays the central role in maintaining the DNA integrity. Unveiling the mechanisms of translesion transcription in various systems is thus instrumental for understanding molecular pathways underlying gene regulation and genome stability.
Collapse
Affiliation(s)
- Aleksei Agapov
- Correspondence may also be addressed to Aleksei Agapov. Tel: +7 499 196 0015; Fax: +7 499 196 0015;
| | - Anna Olina
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute” Moscow 123182, Russia
| | - Andrey Kulbachinskiy
- To whom correspondence should be addressed. Tel: +7 499 196 0015; Fax: +7 499 196 0015;
| |
Collapse
|
7
|
Morgenthaler AB, Fritts RK, Copley SD. Amplicon remodeling and genomic mutations drive population dynamics after segmental amplification. Mol Biol Evol 2021; 39:6377342. [PMID: 34581806 PMCID: PMC8763031 DOI: 10.1093/molbev/msab289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
New enzymes often evolve by duplication and divergence of genes encoding enzymes with promiscuous activities that have become important in the face of environmental opportunities or challenges. Amplifications that increase the copy number of the gene under selection commonly amplify many surrounding genes. Extra copies of these coamplified genes must be removed, either during or after evolution of a new enzyme. Here we report that amplicon remodeling can begin even before mutations occur in the gene under selection. Amplicon remodeling and mutations elsewhere in the genome that indirectly increase fitness result in complex population dynamics, leading to emergence of clones that have improved fitness by different mechanisms. In this work, one of the two most successful clones had undergone two episodes of amplicon remodeling, leaving only four coamplified genes surrounding the gene under selection. Amplicon remodeling in the other clone resulted in removal of 111 genes from the genome, an acceptable solution under these selection conditions, but one that would certainly impair fitness under other environmental conditions.
Collapse
Affiliation(s)
- Andrew B Morgenthaler
- Department of Molecular, Cellular and Developmental Biology and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, 80309
| | - Ryan K Fritts
- Department of Molecular, Cellular and Developmental Biology and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, 80309
| | - Shelley D Copley
- Department of Molecular, Cellular and Developmental Biology and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, 80309
| |
Collapse
|
8
|
Mosaei H, Zenkin N. Two distinct pathways of RNA polymerase backtracking determine the requirement for the Trigger Loop during RNA hydrolysis. Nucleic Acids Res 2021; 49:8777-8784. [PMID: 34365509 PMCID: PMC8421135 DOI: 10.1093/nar/gkab675] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 12/30/2022] Open
Abstract
Transcribing RNA polymerase (RNAP) can fall into backtracking, phenomenon when the 3' end of the transcript disengages from the template DNA. Backtracking is caused by sequences of the nucleic acids or by misincorporation of erroneous nucleotides. To resume productive elongation backtracked complexes have to be resolved through hydrolysis of RNA. There is currently no consensus on the mechanism of catalysis of this reaction by Escherichia coli RNAP. Here we used Salinamide A, that we found inhibits RNAP catalytic domain Trigger Loop (TL), to show that the TL is required for RNA cleavage during proofreading of misincorporation events but plays little role during cleavage in sequence-dependent backtracked complexes. Results reveal that backtracking caused by misincorporation is distinct from sequence-dependent backtracking, resulting in different conformations of the 3' end of RNA within the active center. We show that the TL is required to transfer the 3' end of misincorporated transcript from cleavage-inefficient 'misincorporation site' into the cleavage-efficient 'backtracked site', where hydrolysis takes place via transcript-assisted catalysis and is largely independent of the TL. These findings resolve the controversy surrounding mechanism of RNA hydrolysis by E. coli RNA polymerase and indicate that the TL role in RNA cleavage has diverged among bacteria.
Collapse
Affiliation(s)
- Hamed Mosaei
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle Upon Tyne, NE2 4AX, UK
| | - Nikolay Zenkin
- To whom correspondence should be addressed. Tel: +44 0 1912083227; Fax: +44 0 1912083205;
| |
Collapse
|
9
|
Wang B, Artsimovitch I. NusG, an Ancient Yet Rapidly Evolving Transcription Factor. Front Microbiol 2021; 11:619618. [PMID: 33488562 PMCID: PMC7819879 DOI: 10.3389/fmicb.2020.619618] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
Timely and accurate RNA synthesis depends on accessory proteins that instruct RNA polymerase (RNAP) where and when to start and stop transcription. Among thousands of transcription factors, NusG/Spt5 stand out as the only universally conserved family of regulators. These proteins interact with RNAP to promote uninterrupted RNA synthesis and with diverse cellular partners to couple transcription to RNA processing, modification or translation, or to trigger premature termination of aberrant transcription. NusG homologs are present in all cells that utilize bacterial-type RNAP, from endosymbionts to plants, underscoring their ancient and essential function. Yet, in stark contrast to other core RNAP components, NusG family is actively evolving: horizontal gene transfer and sub-functionalization drive emergence of NusG paralogs, such as bacterial LoaP, RfaH, and UpxY. These specialized regulators activate a few (or just one) operons required for expression of antibiotics, capsules, secretion systems, toxins, and other niche-specific macromolecules. Despite their common origin and binding site on the RNAP, NusG homologs differ in their target selection, interacting partners and effects on RNA synthesis. Even among housekeeping NusGs from diverse bacteria, some factors promote pause-free transcription while others slow the RNAP down. Here, we discuss structure, function, and evolution of NusG proteins, focusing on unique mechanisms that determine their effects on gene expression and enable bacterial adaptation to diverse ecological niches.
Collapse
Affiliation(s)
- Bing Wang
- Department of Microbiology and the Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Irina Artsimovitch
- Department of Microbiology and the Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
10
|
Mycobacterial HelD is a nucleic acids-clearing factor for RNA polymerase. Nat Commun 2020; 11:6419. [PMID: 33339823 PMCID: PMC7749160 DOI: 10.1038/s41467-020-20158-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/17/2020] [Indexed: 01/07/2023] Open
Abstract
RNA synthesis is central to life, and RNA polymerase (RNAP) depends on accessory factors for recovery from stalled states and adaptation to environmental changes. Here, we investigated the mechanism by which a helicase-like factor HelD recycles RNAP. We report a cryo-EM structure of a complex between the Mycobacterium smegmatis RNAP and HelD. The crescent-shaped HelD simultaneously penetrates deep into two RNAP channels that are responsible for nucleic acids binding and substrate delivery to the active site, thereby locking RNAP in an inactive state. We show that HelD prevents non-specific interactions between RNAP and DNA and dissociates stalled transcription elongation complexes. The liberated RNAP can either stay dormant, sequestered by HelD, or upon HelD release, restart transcription. Our results provide insights into the architecture and regulation of the highly medically-relevant mycobacterial transcription machinery and define HelD as a clearing factor that releases RNAP from nonfunctional complexes with nucleic acids.
Collapse
|
11
|
Mutational analysis of Escherichia coli GreA protein reveals new functional activity independent of antipause and lethal when overexpressed. Sci Rep 2020; 10:16074. [PMID: 32999370 PMCID: PMC7527559 DOI: 10.1038/s41598-020-73069-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022] Open
Abstract
There is a growing appreciation for the diverse regulatory consequences of the family of proteins that bind to the secondary channel of E. coli RNA polymerase (RNAP), such as GreA, GreB or DksA. Similar binding sites could suggest a competition between them. GreA is characterised to rescue stalled RNAP complexes due to its antipause activity, but also it is involved in transcription fidelity and proofreading. Here, overexpression of GreA is noted to be lethal independent of its antipause activity. A library of random GreA variants has been used to isolate lethality suppressors to assess important residues for GreA functionality and its interaction with the RNA polymerase. Some mutant defects are inferred to be associated with altered binding competition with DksA, while other variants seem to have antipause activity defects that cannot reverse a GreA-sensitive pause site in a fliC::lacZ reporter system. Surprisingly, apparent binding and cleavage defects are found scattered throughout both the coiled-coil and globular domains. Thus, the coiled-coil of GreA is not just a measuring stick ensuring placement of acidic residues precisely at the catalytic centre but also seems to have binding functions. These lethality suppressor mutants may provide valuable tools for future structural and functional studies.
Collapse
|
12
|
Gottesman ME, Chudaev M, Mustaev A. Key features of magnesium that underpin its role as the major ion for electrophilic biocatalysis. FEBS J 2020; 287:5439-5463. [DOI: 10.1111/febs.15318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 02/06/2020] [Accepted: 03/30/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Max E. Gottesman
- Department of Microbiology & Immunology Columbia University Medical Center New York NY USA
| | - Maxim Chudaev
- Public Health Research Institute & Department of Microbiology and Molecular Genetics New Jersey Medical School Rutgers Biomedical and Health Sciences Newark NJ USA
| | - Arkady Mustaev
- Public Health Research Institute & Department of Microbiology and Molecular Genetics New Jersey Medical School Rutgers Biomedical and Health Sciences Newark NJ USA
| |
Collapse
|
13
|
Miropolskaya N, Kulbachinskiy A, Esyunina D. Factor-specific effects of mutations in the active site of RNA polymerase on RNA cleavage. Biochem Biophys Res Commun 2020; 523:165-170. [PMID: 31837805 DOI: 10.1016/j.bbrc.2019.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/07/2019] [Indexed: 10/25/2022]
Abstract
Bacterial RNA polymerase (RNAP) relies on the same active site for RNA synthesis and co-transcriptional RNA proofreading. The intrinsic RNA proofreading activity of RNAP can be greatly stimulated by Gre factors, which bind within the secondary channel and directly participate in the RNA cleavage reaction in the active site of RNAP. Here, we characterize mutations in Escherichia coli RNAP that differentially affect intrinsic and Gre-stimulated RNA cleavage. Substitution of a highly conserved arginine residue that contacts nascent RNA upstream of the active site strongly impairs intrinsic and GreA-dependent cleavage, without reducing GreA affinity or catalytic Mg2+ binding. In contrast, substitutions of several nonconserved residues at the Gre-interacting interface in the secondary channel primarily affect GreB-dependent cleavage, by decreasing both the catalytic rate and GreB affinity. The results suggest that RNAP residues not directly involved in contacts with the reacting RNA groups or catalytic ions play essential roles in RNA cleavage and can modulate its regulation by transcription factors.
Collapse
Affiliation(s)
- Nataliya Miropolskaya
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | - Daria Esyunina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| |
Collapse
|
14
|
Agapov A, Kulbachinskiy A. Four paralogous Gfh factors in the extremophilic bacterium Deinococcus peraridilitoris have distinct effects on various steps of transcription. Biochimie 2019; 170:21-25. [PMID: 31843578 DOI: 10.1016/j.biochi.2019.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/11/2019] [Indexed: 11/30/2022]
Abstract
Gre factors are ubiquitous transcription regulators that stimulate co-transcriptional RNA cleavage by bacterial RNA polymerase (RNAP). Here, we show that the stress-resistant bacterium Deinococcus peraridilitoris encodes four Gre factor homologs, Gfh proteins, that have distinct effects on transcription by RNAP. Two of the factors, Gfh1α and Gfh2β inhibit transcription initiation, and one of them, Gfh1α can also regulate transcription elongation. We show that this factor strongly stimulates transcriptional pausing and intrinsic termination in the presence of manganese ions but has no effect on RNA cleavage. Thus, some Gfh factors encoded by Deinococci serve as lineage-specific transcription inhibitors that may play a role in stress resistance, while the functions of others remain to be discovered.
Collapse
Affiliation(s)
- Aleksei Agapov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| |
Collapse
|
15
|
Gottesman ME, Mustaev A. Change in inorganic phosphate physical state can regulate transcription. Transcription 2019; 10:187-194. [PMID: 31668122 DOI: 10.1080/21541264.2019.1682454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Inorganic phosphate (Pi), a ubiquitous metabolite, is involved in all major biochemical pathways. We demonstrate that, in vitro, MgHPO4 (the intracellular Pi form) at physiological concentrations can exist in a metastable supersaturated dissolved state or as a precipitate. We have shown that in solution, MgHPO4 strongly stimulates exonuclease nascent transcript cleavage by RNA polymerase. We report here that MgHPO4 precipitate selectively and efficiently inhibits transcription initiation in vitro. In view of the MgHPO4 solubility and in vitro sensitivity of RNA synthesis to MgHPO4 precipitate, at physiological concentrations, MgHPO4 should cause a 50-98% inhibition of cellular RNA synthesis, thus exerting a strong regulatory action. The effects of Pi on transcription in vivo will, therefore, reflect the physical state of intracellular Pi.
Collapse
Affiliation(s)
- Max E Gottesman
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| | - Arkady Mustaev
- Public Health Research Institute & Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| |
Collapse
|
16
|
Abdelkareem M, Saint-André C, Takacs M, Papai G, Crucifix C, Guo X, Ortiz J, Weixlbaumer A. Structural Basis of Transcription: RNA Polymerase Backtracking and Its Reactivation. Mol Cell 2019; 75:298-309.e4. [PMID: 31103420 PMCID: PMC7611809 DOI: 10.1016/j.molcel.2019.04.029] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/14/2019] [Accepted: 04/21/2019] [Indexed: 12/14/2022]
Abstract
Regulatory sequences or erroneous incorporations during DNA transcription cause RNA polymerase backtracking and inactivation in all kingdoms of life. Reactivation requires RNA transcript cleavage. Essential transcription factors (GreA and GreB, or TFIIS) accelerate this reaction. We report four cryo-EM reconstructions of Escherichia coli RNA polymerase representing the entire reaction pathway: (1) a backtracked complex; a backtracked complex with GreB (2) before and (3) after RNA cleavage; and (4) a reactivated, substrate-bound complex with GreB before RNA extension. Compared with eukaryotes, the backtracked RNA adopts a different conformation. RNA polymerase conformational changes cause distinct GreB states: a fully engaged GreB before cleavage; a disengaged GreB after cleavage; and a dislodged, loosely bound GreB removed from the active site to allow RNA extension. These reconstructions provide insight into the catalytic mechanism and dynamics of RNA cleavage and extension and suggest how GreB targets backtracked complexes without interfering with canonical transcription.
Collapse
Affiliation(s)
- Mo'men Abdelkareem
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Strasbourg, France; Université de Strasbourg, Strasbourg, France; CNRS UMR7104, Strasbourg, France; INSERM U1258, 67404 Illkirch Cedex, France
| | - Charlotte Saint-André
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Strasbourg, France; Université de Strasbourg, Strasbourg, France; CNRS UMR7104, Strasbourg, France; INSERM U1258, 67404 Illkirch Cedex, France
| | - Maria Takacs
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Strasbourg, France; Université de Strasbourg, Strasbourg, France; CNRS UMR7104, Strasbourg, France; INSERM U1258, 67404 Illkirch Cedex, France
| | - Gabor Papai
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Strasbourg, France; Université de Strasbourg, Strasbourg, France; CNRS UMR7104, Strasbourg, France; INSERM U1258, 67404 Illkirch Cedex, France
| | - Corinne Crucifix
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Strasbourg, France; Université de Strasbourg, Strasbourg, France; CNRS UMR7104, Strasbourg, France; INSERM U1258, 67404 Illkirch Cedex, France
| | - Xieyang Guo
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Strasbourg, France; Université de Strasbourg, Strasbourg, France; CNRS UMR7104, Strasbourg, France; INSERM U1258, 67404 Illkirch Cedex, France
| | - Julio Ortiz
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Strasbourg, France; Université de Strasbourg, Strasbourg, France; CNRS UMR7104, Strasbourg, France; INSERM U1258, 67404 Illkirch Cedex, France
| | - Albert Weixlbaumer
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Strasbourg, France; Université de Strasbourg, Strasbourg, France; CNRS UMR7104, Strasbourg, France; INSERM U1258, 67404 Illkirch Cedex, France.
| |
Collapse
|
17
|
Gottesman ME, Mustaev A. Ribonucleoside-5'-diphosphates (NDPs) support RNA polymerase transcription, suggesting NDPs may have been substrates for primordial nucleic acid biosynthesis. J Biol Chem 2019; 294:11785-11792. [PMID: 31189650 DOI: 10.1074/jbc.ra119.009074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/21/2019] [Indexed: 01/28/2023] Open
Abstract
A better understanding of the structural basis for the preferences of RNA and DNA polymerases for nucleoside-5'-triphosphates (NTPs) could help define the catalytic mechanisms for nucleotidyl transfer during RNA and DNA synthesis and the origin of primordial nucleic acid biosynthesis. We show here that ribonucleoside-5'-diphosphates (NDPs) can be utilized as substrates by RNA polymerase (RNAP). We found that NDP incorporation is template-specific and that noncognate NDPs are not incorporated. Compared with the natural RNAP substrates, NTPs, the Km of RNAP for NDPs was increased ∼4-fold, whereas the V max was decreased ∼200-fold. These properties could be accounted for by molecular modeling of NTP/RNAP co-crystal structures. This finding suggested that the terminal phosphate residue in NTP (not present in NDP) is important for positioning the nucleotide for nucleolytic attack in the nucleotidyl transfer reaction. Strikingly, a mutational substitution of the active-center βR1106 side chain involved in NTP positioning also strongly inhibited NDP-directed synthesis, even though this residue does not contact NDP. Substitutions in the structurally analogous side chain in RB69 DNA polymerase (Arg-482) and HIV reverse transcriptase (Lys-65) were previously observed to inhibit dNDP incorporation. The unexpected involvement of these residues suggests that they affect a step in catalysis common for nucleic acid polymerases. The substrate activity of NDPs with RNAP along with those reported for DNA polymerases reinforces the hypothesis that NDPs may have been used for nucleic acid biosynthesis by primordial enzymes, whose evolution then led to the use of the more complex triphosphate derivatives.
Collapse
Affiliation(s)
- Max E Gottesman
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York 10032
| | - Arkady Mustaev
- Public Health Research Institute and Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07103
| |
Collapse
|
18
|
Belogurov GA, Artsimovitch I. The Mechanisms of Substrate Selection, Catalysis, and Translocation by the Elongating RNA Polymerase. J Mol Biol 2019; 431:3975-4006. [PMID: 31153902 DOI: 10.1016/j.jmb.2019.05.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 11/15/2022]
Abstract
Multi-subunit DNA-dependent RNA polymerases synthesize all classes of cellular RNAs, ranging from short regulatory transcripts to gigantic messenger RNAs. RNA polymerase has to make each RNA product in just one try, even if it takes millions of successive nucleotide addition steps. During each step, RNA polymerase selects a correct substrate, adds it to a growing chain, and moves one nucleotide forward before repeating the cycle. However, RNA synthesis is anything but monotonous: RNA polymerase frequently pauses upon encountering mechanical, chemical and torsional barriers, sometimes stepping back and cleaving off nucleotides from the growing RNA chain. A picture in which these intermittent dynamics enable processive, accurate, and controllable RNA synthesis is emerging from complementary structural, biochemical, computational, and single-molecule studies. Here, we summarize our current understanding of the mechanism and regulation of the on-pathway transcription elongation. We review the details of substrate selection, catalysis, proofreading, and translocation, focusing on rate-limiting steps, structural elements that modulate them, and accessory proteins that appear to control RNA polymerase translocation.
Collapse
Affiliation(s)
| | - Irina Artsimovitch
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
19
|
Transcription in cyanobacteria: a distinctive machinery and putative mechanisms. Biochem Soc Trans 2019; 47:679-689. [DOI: 10.1042/bst20180508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/11/2019] [Accepted: 02/04/2019] [Indexed: 02/03/2023]
Abstract
Abstract
Transcription in cyanobacteria involves several fascinating features. Cyanobacteria comprise one of the very few groups in which no proofreading factors (Gre homologues) have been identified. Gre factors increase the efficiency of RNA cleavage, therefore helping to maintain the fidelity of the RNA transcript and assist in the resolution of stalled RNAPs to prevent genome damage. The vast majority of bacterial species encode at least one of these highly conserved factors and so their absence in cyanobacteria is intriguing. Additionally, the largest subunit of bacterial RNAP has undergone a split in cyanobacteria to form two subunits and the SI3 insertion within the integral trigger loop element is roughly 3.5 times larger than in Escherichia coli. The Rho termination factor also appears to be absent, leaving cyanobacteria to rely solely on an intrinsic termination mechanism. Furthermore, cyanobacteria must be able to respond to environment signals such as light intensity and tightly synchronise gene expression and other cell activities to a circadian rhythm.
Collapse
|
20
|
Esyunina D, Kulbachinskiy A. Interactions in the active site of Deinococcus radiodurans RNA polymerase during RNA proofreading. Biochem Biophys Res Commun 2018; 509:161-166. [PMID: 30579600 DOI: 10.1016/j.bbrc.2018.12.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/13/2018] [Indexed: 11/25/2022]
Abstract
Co-transcriptional RNA proofreading by RNA polymerase (RNAP) is essential for accurate mRNA synthesis and reactivation of stalled transcription complexes, which can otherwise compromise genome integrity. RNAP from the stress-resistant bacterium Deinococcus radiodurans exhibits high levels of RNA cleavage in comparison with RNAP from Escherichia coli, which allows it to remove misincorporated nucleotides with high efficiency. Here, we show that the rate of RNA cleavage by D. radiodurans RNAP depends on the structure of the (mis)matched RNA 3'-nucleotide and its contacts with the active site. These interactions likely position the reactive phosphodiester bond in the cleavage-competent conformation, thus facilitating its hydrolysis catalyzed by metal ions in the active center. The universal RNA cleavage factor GreA largely alleviates defects in RNA cleavage caused by modifications in the RNA 3'-nucleotide or in its binding pocket in RNAP, suggesting that GreA functionally substitutes for these contacts. The results demonstrate that various RNAPs rely on a conserved mechanism for RNA proofreading, which can be modulated by changes in accessory parts of the active center.
Collapse
Affiliation(s)
- Daria Esyunina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia.
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia.
| |
Collapse
|
21
|
Widespread Backtracking by RNA Pol II Is a Major Effector of Gene Activation, 5' Pause Release, Termination, and Transcription Elongation Rate. Mol Cell 2018; 73:107-118.e4. [PMID: 30503775 DOI: 10.1016/j.molcel.2018.10.031] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/10/2018] [Accepted: 10/17/2018] [Indexed: 10/27/2022]
Abstract
In addition to phosphodiester bond formation, RNA polymerase II has an RNA endonuclease activity, stimulated by TFIIS, which rescues complexes that have arrested and backtracked. How TFIIS affects transcription under normal conditions is poorly understood. We identified backtracking sites in human cells using a dominant-negative TFIIS (TFIISDN) that inhibits RNA cleavage and stabilizes backtracked complexes. Backtracking is most frequent within 2 kb of start sites, consistent with slow elongation early in transcription, and in 3' flanking regions where termination is enhanced by TFIISDN, suggesting that backtracked pol II is a favorable substrate for termination. Rescue from backtracking by RNA cleavage also promotes escape from 5' pause sites, prevents premature termination of long transcripts, and enhances activation of stress-inducible genes. TFIISDN slowed elongation rates genome-wide by half, suggesting that rescue of backtracked pol II by TFIIS is a major stimulus of elongation under normal conditions.
Collapse
|
22
|
Boudreau BA, Hron DR, Qin L, van der Valk RA, Kotlajich MV, Dame RT, Landick R. StpA and Hha stimulate pausing by RNA polymerase by promoting DNA-DNA bridging of H-NS filaments. Nucleic Acids Res 2018; 46:5525-5546. [PMID: 29718386 PMCID: PMC6009659 DOI: 10.1093/nar/gky265] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/12/2018] [Accepted: 04/03/2018] [Indexed: 11/22/2022] Open
Abstract
In enterobacteria, AT-rich horizontally acquired genes, including virulence genes, are silenced through the actions of at least three nucleoid-associated proteins (NAPs): H-NS, StpA and Hha. These proteins form gene-silencing nucleoprotein filaments through direct DNA binding by H-NS and StpA homodimers or heterodimers. Both linear and bridged filaments, in which NAPs bind one or two DNA segments, respectively, have been observed. Hha can interact with H-NS or StpA filaments, but itself lacks a DNA-binding domain. Filaments composed of H-NS alone can inhibit transcription initiation and, in the bridged conformation, slow elongating RNA polymerase (RNAP) by promoting backtracking at pause sites. How the other NAPs modulate these effects of H-NS is unknown, despite evidence that they help regulate subsets of silenced genes in vivo (e.g. in pathogenicity islands). Here we report that Hha and StpA greatly enhance H-NS-stimulated pausing by RNAP at 20°C. StpA:H-NS or StpA-only filaments also stimulate pausing at 37°C, a temperature at which Hha:H-NS or H-NS-only filaments have much less effect. In addition, we report that both Hha and StpA greatly stimulate DNA-DNA bridging by H-NS filaments. Together, these observations indicate that Hha and StpA can affect H-NS-mediated gene regulation by stimulating bridging of H-NS/DNA filaments.
Collapse
Affiliation(s)
- Beth A Boudreau
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Daniel R Hron
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Liang Qin
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| | - Ramon A van der Valk
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| | - Matthew V Kotlajich
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
23
|
Inorganic phosphate, arsenate, and vanadate enhance exonuclease transcript cleavage by RNA polymerase by 2000-fold. Proc Natl Acad Sci U S A 2018; 115:2746-2751. [PMID: 29483274 PMCID: PMC5856549 DOI: 10.1073/pnas.1720370115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Inorganic Pi is involved in all major biochemical pathways. Here we describe a previously unreported activity of Pi We show that Pi and its structural mimics, vanadate and arsenate, enhance nascent transcript cleavage by RNA polymerase (RNAP). They engage an Mg2+ ion in catalysis and activate an attacking water molecule. Pi, vanadate, and arsenate stimulate the intrinsic exonuclease activity of the enzyme nearly 2,000-fold at saturating concentrations of the reactant anions and Mg2+ This enhancement is comparable to that of specialized transcript cleavage protein factors Gre and TFIIS (3,000- to 4,000-fold). Unlike these protein factors, Pi and its analogs do not stimulate endonuclease transcript cleavage. Conversely, the protein factors only marginally enhance exonucleolytic cleavage. Pi thus complements cellular protein factors in assisting hydrolytic RNA cleavage by extending the repertoire of RNAP transcript degradation modes.
Collapse
|
24
|
Fouqueau T, Blombach F, Hartman R, Cheung ACM, Young MJ, Werner F. The transcript cleavage factor paralogue TFS4 is a potent RNA polymerase inhibitor. Nat Commun 2017; 8:1914. [PMID: 29203770 PMCID: PMC5715097 DOI: 10.1038/s41467-017-02081-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 11/05/2017] [Indexed: 12/03/2022] Open
Abstract
TFIIS-like transcript cleavage factors enhance the processivity and fidelity of archaeal and eukaryotic RNA polymerases. Sulfolobus solfataricus TFS1 functions as a bona fide cleavage factor, while the paralogous TFS4 evolved into a potent RNA polymerase inhibitor. TFS4 destabilises the TBP–TFB–RNAP pre-initiation complex and inhibits transcription initiation and elongation. All inhibitory activities are dependent on three lysine residues at the tip of the C-terminal zinc ribbon of TFS4; the inhibition likely involves an allosteric component and is mitigated by the basal transcription factor TFEα/β. A chimeric variant of yeast TFIIS and TFS4 inhibits RNAPII transcription, suggesting that the molecular basis of inhibition is conserved between archaea and eukaryotes. TFS4 expression in S. solfataricus is induced in response to infection with the Sulfolobus turreted icosahedral virus. Our results reveal a compelling functional diversification of cleavage factors in archaea, and provide novel insights into transcription inhibition in the context of the host–virus relationship. Transcript cleavage factors such as eukaryotic TFIIS assist the resumption of transcription following RNA pol II backtracking. Here the authors find that one of the Sulfolobus solfataricus TFIIS homolog—TFS4—has evolved into a potent RNA polymerase inhibitor potentially involved in antiviral defense.
Collapse
Affiliation(s)
- Thomas Fouqueau
- Institute of Structural & Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Fabian Blombach
- Institute of Structural & Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Ross Hartman
- Department of Microbiology, Montana State University, 173520, Bozeman, MT, MT 59717, USA
| | - Alan C M Cheung
- Institute of Structural & Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Mark J Young
- Department of Microbiology, Montana State University, 173520, Bozeman, MT, MT 59717, USA.,Department of Plant Sciences, Montana State University, 173150, Bozeman, MT, MT 59717, USA
| | - Finn Werner
- Institute of Structural & Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
25
|
Appling FD, Schneider DA, Lucius AL. Multisubunit RNA Polymerase Cleavage Factors Modulate the Kinetics and Energetics of Nucleotide Incorporation: An RNA Polymerase I Case Study. Biochemistry 2017; 56:5654-5662. [PMID: 28846843 DOI: 10.1021/acs.biochem.7b00370] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
All cellular RNA polymerases are influenced by protein factors that stimulate RNA polymerase-catalyzed cleavage of the nascent RNA. Despite divergence in amino acid sequence, these so-called "cleavage factors" appear to share a common mechanism of action. Cleavage factors associate with the polymerase through a conserved structural element of the polymerase known as the secondary channel or pore. This mode of association enables the cleavage factor to reach through the secondary channel into the polymerase active site to reorient the active site divalent metal ions. This reorientation converts the polymerase active site into a nuclease active site. Interestingly, eukaryotic RNA polymerases I and III (Pols I and III, respectively) have incorporated their cleavage factors as bona fide subunits known as A12.2 and C11, respectively. Although it is clear that A12.2 and C11 dramatically stimulate the polymerase's cleavage activity, it is not known if or how these subunits affect the polymerization mechanism. In this work we have used transient-state kinetic techniques to characterize a Pol I isoform lacking A12.2. Our data clearly demonstrate that the A12.2 subunit profoundly affects the kinetics and energetics of the elementary steps of Pol I-catalyzed nucleotide incorporation. Given the high degree of conservation between polymerase-cleavage factor interactions, these data indicate that cleavage factor-modulated nucleotide incorporation mechanisms may be common to all cellular RNA polymerases.
Collapse
Affiliation(s)
- Francis D Appling
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States
| |
Collapse
|
26
|
A Cre Transcription Fidelity Reporter Identifies GreA as a Major RNA Proofreading Factor in Escherichia coli. Genetics 2017; 206:179-187. [PMID: 28341651 PMCID: PMC5419468 DOI: 10.1534/genetics.116.198960] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/04/2017] [Indexed: 12/21/2022] Open
Abstract
We made a coupled genetic reporter that detects rare transcription misincorporation errors to measure RNA polymerase transcription fidelity in Escherichia coli. Using this reporter, we demonstrated in vivo that the transcript cleavage factor GreA, but not GreB, is essential for proofreading of a transcription error where a riboA has been misincorporated instead of a riboG. A greA mutant strain had more than a 100-fold increase in transcription errors relative to wild-type or a greB mutant. However, overexpression of GreB in ΔgreA cells reduced the misincorporation errors to wild-type levels, demonstrating that GreB at high concentration could substitute for GreA in RNA proofreading activity in vivo.
Collapse
|
27
|
Kang JY, Olinares PDB, Chen J, Campbell EA, Mustaev A, Chait BT, Gottesman ME, Darst SA. Structural basis of transcription arrest by coliphage HK022 Nun in an Escherichia coli RNA polymerase elongation complex. eLife 2017; 6. [PMID: 28318486 PMCID: PMC5386594 DOI: 10.7554/elife.25478] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/19/2017] [Indexed: 01/24/2023] Open
Abstract
Coliphage HK022 Nun blocks superinfection by coliphage λ by stalling RNA polymerase (RNAP) translocation specifically on λ DNA. To provide a structural framework to understand how Nun blocks RNAP translocation, we determined structures of Escherichia coli RNAP ternary elongation complexes (TECs) with and without Nun by single-particle cryo-electron microscopy. Nun fits tightly into the TEC by taking advantage of gaps between the RNAP and the nucleic acids. The C-terminal segment of Nun interacts with the RNAP β and β’ subunits inside the RNAP active site cleft as well as with nearly every element of the nucleic acid scaffold, essentially crosslinking the RNAP and the nucleic acids to prevent translocation, a mechanism supported by the effects of Nun amino acid substitutions. The nature of Nun interactions inside the RNAP active site cleft suggests that RNAP clamp opening is required for Nun to establish its interactions, explaining why Nun acts on paused TECs. DOI:http://dx.doi.org/10.7554/eLife.25478.001
Collapse
Affiliation(s)
- Jin Young Kang
- Laboratory of Molecular Biophysics, The Rockefeller University, New York City, United States
| | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York City, United States
| | - James Chen
- Laboratory of Molecular Biophysics, The Rockefeller University, New York City, United States
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York City, United States
| | - Arkady Mustaev
- Public Health Research Institute, Newark, United States.,Department of Microbiology and Molecular Genetics, Rutgers Biomedical and Health Sciences, Newark, United States.,Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, United States
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York City, United States
| | - Max E Gottesman
- Department of Microbiology and Immunology, Columbia University Medical Center, New York City, United States
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York City, United States
| |
Collapse
|
28
|
Miropolskaya N, Esyunina D, Kulbachinskiy A. Conserved functions of the trigger loop and Gre factors in RNA cleavage by bacterial RNA polymerases. J Biol Chem 2017; 292:6744-6752. [PMID: 28242762 DOI: 10.1074/jbc.m116.766592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 02/16/2017] [Indexed: 11/06/2022] Open
Abstract
RNA cleavage by RNA polymerase (RNAP) is the central step in co-transcriptional RNA proofreading. Bacterial RNAPs were proposed to rely on the same mobile element of the active site, the trigger loop (TL), for both nucleotide addition and RNA cleavage. RNA cleavage can also be stimulated by universal Gre factors, which should replace the TL to get access to the RNAP active site. The contributions of the TL and Gre factors to RNA cleavage reportedly vary between RNAPs from different bacterial species and, probably, different types of transcription complexes. Here, by comparing RNAPs from Escherichia coli, Deinococcus radiodurans, and Thermus aquaticus, we show that the functions of the TL and Gre factors in RNA cleavage are conserved in various species, with important variations that may be related to extremophilic adaptation. Deletions of the TL strongly impair intrinsic RNA cleavage by all three RNAPs and eliminate the interspecies differences in the reaction rates. GreA factors activate RNA cleavage by wild-type RNAPs to similar levels. The rates of GreA-dependent cleavage are lower for ΔTL RNAP variants, suggesting that the TL contributes to the Gre function. Finally, neither the TL nor GreA can efficiently activate RNA cleavage in certain types of backtracked transcription complexes, suggesting that these complexes adopt a catalytically inactive conformation probably important for transcription regulation.
Collapse
Affiliation(s)
- Nataliya Miropolskaya
- From the Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square 2, Moscow 123182, Russia
| | - Daria Esyunina
- From the Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square 2, Moscow 123182, Russia
| | - Andrey Kulbachinskiy
- From the Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square 2, Moscow 123182, Russia
| |
Collapse
|
29
|
Dynamics of GreB-RNA polymerase interaction allow a proofreading accessory protein to patrol for transcription complexes needing rescue. Proc Natl Acad Sci U S A 2017; 114:E1081-E1090. [PMID: 28137878 DOI: 10.1073/pnas.1616525114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The secondary channel (SC) of multisubunit RNA polymerases (RNAPs) allows access to the active site and is a nexus for the regulation of transcription. Multiple regulatory proteins bind in the SC and reprogram the catalytic activity of RNAP, but the dynamics of these factors' interactions with RNAP and how they function without cross-interference are unclear. In Escherichia coli, GreB is an SC protein that promotes proofreading by transcript cleavage in elongation complexes backtracked by nucleotide misincorporation. Using multiwavelength single-molecule fluorescence microscopy, we observed the dynamics of GreB interactions with elongation complexes. GreB binds to actively elongating complexes at nearly diffusion-limited rates but remains bound for only 0.3-0.5 s, longer than the duration of the nucleotide addition cycle but far shorter than the time needed to synthesize a complete mRNA. Bound GreB inhibits transcript elongation only partially. To test whether GreB preferentially binds backtracked complexes, we reconstituted complexes stabilized in backtracked and nonbacktracked configurations. By verifying the functional state of each molecular complex studied, we could exclude models in which GreB is selectively recruited to backtracked complexes or is ejected from RNAP by catalytic turnover. Instead, GreB binds rapidly and randomly to elongation complexes, patrolling for those requiring nucleolytic rescue, and its short residence time minimizes RNAP inhibition. The results suggest a general mechanism by which SC factors may cooperate to regulate RNAP while minimizing mutual interference.
Collapse
|
30
|
Regulation of transcription initiation by Gfh factors from Deinococcus radiodurans. Biochem J 2016; 473:4493-4505. [PMID: 27754888 DOI: 10.1042/bcj20160659] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/15/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023]
Abstract
Transcription factors of the Gre family bind within the secondary channel of bacterial RNA polymerase (RNAP) directly modulating its catalytic activities. Universally conserved Gre factors activate RNA cleavage by RNAP, by chelating catalytic metal ions in the RNAP active site, and facilitate both promoter escape and transcription elongation. Gfh factors are Deinococcus/Thermus-specific homologues of Gre factors whose transcription functions remain poorly understood. Recently, we found that Gfh1 and Gfh2 proteins from Deinococcus radiodurans dramatically stimulate RNAP pausing during transcription elongation in the presence of Mn2+, but not Mg2+, ions. In contrast, we show that Gfh1 and Gfh2 moderately inhibit transcription initiation in the presence of either Mg2+ or Mn2+ ions. By using a molecular beacon assay, we demonstrate that Gfh1 and Gfh2 do not significantly change promoter complex stability or the rate of promoter escape by D. radiodurans RNAP. At the same time, Gfh factors significantly increase the apparent KM value for the 5'-initiating nucleotide, without having major effects on the affinity of metal ions for the RNAP active site. Similar inhibitory effects of Gfh factors are observed for transcription initiation on promoters recognized by the principal and an alternative σ factor. In summary, our data suggest that D. radiodurans Gfh factors impair the binding of initiating substrates independently of the metal ions bound in the RNAP active site, but have only mild overall effects on transcription initiation. Thus the mechanisms of modulation of RNAP activity by these factors are different for various steps of transcription.
Collapse
|
31
|
Probing the structure of Nun transcription arrest factor bound to RNA polymerase. Proc Natl Acad Sci U S A 2016; 113:8693-8. [PMID: 27436904 DOI: 10.1073/pnas.1601056113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The coliphage HK022 protein Nun transcription elongation arrest factor inhibits RNA polymerase translocation. In vivo, Nun acts specifically to block transcription of the coliphage λ chromosome. Using in vitro assays, we demonstrate that Nun cross-links RNA in an RNA:DNA hybrid within a ternary elongation complex (TEC). Both the 5' and the 3' ends of the RNA cross-link Nun, implying that Nun contacts RNA polymerase both at the upstream edge of the RNA:DNA hybrid and in the vicinity of the catalytic center. This finding suggests that Nun may inhibit translocation by more than one mechanism. Transcription elongation factor GreA efficiently blocked Nun cross-linking to the 3' end of the transcript, whereas the highly homologous GreB factor did not. Surprisingly, both factors strongly suppressed Nun cross-linking to the 5' end of the RNA, suggesting that GreA and GreB can enter the RNA exit channel as well as the secondary channel, where they are known to bind. These findings extend the known action mechanism for these ubiquitous cellular factors.
Collapse
|
32
|
Regulation of transcriptional pausing through the secondary channel of RNA polymerase. Proc Natl Acad Sci U S A 2016; 113:8699-704. [PMID: 27432968 DOI: 10.1073/pnas.1603531113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transcriptional pausing has emerged as an essential mechanism of genetic regulation in both bacteria and eukaryotes, where it serves to coordinate transcription with other cellular processes and to activate or halt gene expression rapidly in response to external stimuli. Deinococcus radiodurans, a highly radioresistant and stress-resistant bacterium, encodes three members of the Gre family of transcription factors: GreA and two Gre factor homologs, Gfh1 and Gfh2. Whereas GreA is a universal bacterial factor that stimulates RNA cleavage by RNA polymerase (RNAP), the functions of lineage-specific Gfh proteins remain unknown. Here, we demonstrate that these proteins, which bind within the RNAP secondary channel, strongly enhance site-specific transcriptional pausing and intrinsic termination. Uniquely, the pause-stimulatory activity of Gfh proteins depends on the nature of divalent ions (Mg(2+) or Mn(2+)) present in the reaction and is also modulated by the nascent RNA structure and the trigger loop in the RNAP active site. Our data reveal remarkable plasticity of the RNAP active site in response to various regulatory stimuli and highlight functional diversity of transcription factors that bind inside the secondary channel of RNAP.
Collapse
|
33
|
Esyunina D, Turtola M, Pupov D, Bass I, Klimašauskas S, Belogurov G, Kulbachinskiy A. Lineage-specific variations in the trigger loop modulate RNA proofreading by bacterial RNA polymerases. Nucleic Acids Res 2016; 44:1298-308. [PMID: 26733581 PMCID: PMC4756841 DOI: 10.1093/nar/gkv1521] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/20/2015] [Indexed: 02/01/2023] Open
Abstract
RNA cleavage by bacterial RNA polymerase (RNAP) has been implicated in transcriptional proofreading and reactivation of arrested transcription elongation complexes but its molecular mechanism is less understood than the mechanism of nucleotide addition, despite both reactions taking place in the same active site. RNAP from the radioresistant bacterium Deinococcus radiodurans is characterized by highly efficient intrinsic RNA cleavage in comparison with Escherichia coli RNAP. We find that the enhanced RNA cleavage activity largely derives from amino acid substitutions in the trigger loop (TL), a mobile element of the active site involved in various RNAP activities. The differences in RNA cleavage between these RNAPs disappear when the TL is deleted, or in the presence of GreA cleavage factors, which replace the TL in the active site. We propose that the TL substitutions modulate the RNA cleavage activity by altering the TL folding and its contacts with substrate RNA and that the resulting differences in transcriptional proofreading may play a role in bacterial stress adaptation.
Collapse
Affiliation(s)
- Daria Esyunina
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov square 2, Moscow 123182, Russia
| | - Matti Turtola
- Department of Biochemistry, University of Turku, Turku 20014, Finland
| | - Danil Pupov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov square 2, Moscow 123182, Russia
| | - Irina Bass
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov square 2, Moscow 123182, Russia
| | | | - Georgiy Belogurov
- Department of Biochemistry, University of Turku, Turku 20014, Finland
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov square 2, Moscow 123182, Russia
| |
Collapse
|
34
|
Desai KK, Beltrame AL, Raines RT. Coevolution of RtcB and Archease created a multiple-turnover RNA ligase. RNA (NEW YORK, N.Y.) 2015; 21:1866-1872. [PMID: 26385509 PMCID: PMC4604427 DOI: 10.1261/rna.052639.115] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/06/2015] [Indexed: 06/05/2023]
Abstract
RtcB is a noncanonical RNA ligase that joins either 2',3'-cyclic phosphate or 3'-phosphate termini to 5'-hydroxyl termini. The genes encoding RtcB and Archease constitute a tRNA splicing operon in many organisms. Archease is a cofactor of RtcB that accelerates RNA ligation and alters the NTP specificity of the ligase from Pyrococcus horikoshii. Yet, not all organisms that encode RtcB also encode Archease. Here we sought to understand the differences between Archease-dependent and Archease-independent RtcBs so as to illuminate the evolution of Archease and its function. We report on the Archease-dependent RtcB from Thermus thermophilus and the Archease-independent RtcB from Thermobifida fusca. We find that RtcB from T. thermophilus can catalyze multiple turnovers only in the presence of Archease. Remarkably, Archease from P. horikoshii can activate T. thermophilus RtcB, despite low sequence identity between the Archeases from these two organisms. In contrast, RtcB from T. fusca is a single-turnover enzyme that is unable to be converted into a multiple-turnover ligase by Archease from either P. horikoshii or T. thermophilus. Thus, our data indicate that Archease likely evolved to support multiple-turnover activity of RtcB and that coevolution of the two proteins is necessary for a functional interaction.
Collapse
Affiliation(s)
- Kevin K Desai
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Amanda L Beltrame
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Ronald T Raines
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
35
|
Esyunina DM, Kulbachinskiy AV. Purification and characterization of recombinant Deinococcus radiodurans RNA Polymerase. BIOCHEMISTRY (MOSCOW) 2015; 80:1271-8. [DOI: 10.1134/s0006297915100077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
CBR antimicrobials inhibit RNA polymerase via at least two bridge-helix cap-mediated effects on nucleotide addition. Proc Natl Acad Sci U S A 2015; 112:E4178-87. [PMID: 26195788 PMCID: PMC4534225 DOI: 10.1073/pnas.1502368112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
RNA polymerase inhibitors like the CBR class that target the enzyme's complex catalytic center are attractive leads for new antimicrobials. Catalysis by RNA polymerase involves multiple rearrangements of bridge helix, trigger loop, and active-center side chains that isomerize the triphosphate of bound NTP and two Mg(2+) ions from a preinsertion state to a reactive configuration. CBR inhibitors target a crevice between the N-terminal portion of the bridge helix and a surrounding cap region within which the bridge helix is thought to rearrange during the nucleotide addition cycle. We report crystal structures of CBR inhibitor/Escherichia coli RNA polymerase complexes as well as biochemical tests that establish two distinct effects of the inhibitors on the RNA polymerase catalytic site. One effect involves inhibition of trigger-loop folding via the F loop in the cap, which affects both nucleotide addition and hydrolysis of 3'-terminal dinucleotides in certain backtracked complexes. The second effect is trigger-loop independent, affects only nucleotide addition and pyrophosphorolysis, and may involve inhibition of bridge-helix movements that facilitate reactive triphosphate alignment.
Collapse
|
37
|
New Insights into the Functions of Transcription Factors that Bind the RNA Polymerase Secondary Channel. Biomolecules 2015; 5:1195-209. [PMID: 26120903 PMCID: PMC4598747 DOI: 10.3390/biom5031195] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/06/2015] [Accepted: 06/09/2015] [Indexed: 11/25/2022] Open
Abstract
Transcription elongation is regulated at several different levels, including control by various accessory transcription elongation factors. A distinct group of these factors interacts with the RNA polymerase secondary channel, an opening at the enzyme surface that leads to its active center. Despite investigation for several years, the activities and in vivo roles of some of these factors remain obscure. Here, we review the recent progress in understanding the functions of the secondary channel binding factors in bacteria. In particular, we highlight the surprising role of global regulator DksA in fidelity of RNA synthesis and the resolution of RNA polymerase traffic jams by the Gre factor. These findings indicate a potential link between transcription fidelity and collisions of the transcription and replication machineries.
Collapse
|
38
|
Yuzenkova Y, Gamba P, Herber M, Attaiech L, Shafeeq S, Kuipers OP, Klumpp S, Zenkin N, Veening JW. Control of transcription elongation by GreA determines rate of gene expression in Streptococcus pneumoniae. Nucleic Acids Res 2014; 42:10987-99. [PMID: 25190458 PMCID: PMC4176173 DOI: 10.1093/nar/gku790] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 01/28/2023] Open
Abstract
Transcription by RNA polymerase may be interrupted by pauses caused by backtracking or misincorporation that can be resolved by the conserved bacterial Gre-factors. However, the consequences of such pausing in the living cell remain obscure. Here, we developed molecular biology and transcriptome sequencing tools in the human pathogen Streptococcus pneumoniae and provide evidence that transcription elongation is rate-limiting on highly expressed genes. Our results suggest that transcription elongation may be a highly regulated step of gene expression in S. pneumoniae. Regulation is accomplished via long-living elongation pauses and their resolution by elongation factor GreA. Interestingly, mathematical modeling indicates that long-living pauses cause queuing of RNA polymerases, which results in 'transcription traffic jams' on the gene and thus blocks its expression. Together, our results suggest that long-living pauses and RNA polymerase queues caused by them are a major problem on highly expressed genes and are detrimental for cell viability. The major and possibly sole function of GreA in S. pneumoniae is to prevent formation of backtracked elongation complexes.
Collapse
Affiliation(s)
- Yulia Yuzenkova
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Pamela Gamba
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Martijn Herber
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Laetitia Attaiech
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Sulman Shafeeq
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Oscar P Kuipers
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Stefan Klumpp
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Jan-Willem Veening
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
39
|
Nag JK, Shrivastava N, Chahar D, Gupta CL, Bajpai P, Misra-Bhattacharya S. Wolbachia transcription elongation factor "Wol GreA" interacts with α2ββ'σ subunits of RNA polymerase through its dimeric C-terminal domain. PLoS Negl Trop Dis 2014; 8:e2930. [PMID: 24945631 PMCID: PMC4063747 DOI: 10.1371/journal.pntd.0002930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 04/25/2014] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES Wolbachia, an endosymbiont of filarial nematode, is considered a promising target for therapy against lymphatic filariasis. Transcription elongation factor GreA is an essential factor that mediates transcriptional transition from abortive initiation to productive elongation by stimulating the escape of RNA polymerase (RNAP) from native prokaryotic promoters. Upon screening of 6257 essential bacterial genes, 57 were suggested as potential future drug targets, and GreA is among these. The current study emphasized the characterization of Wol GreA with its domains. METHODOLOGY/PRINCIPAL FINDINGS Biophysical characterization of Wol GreA with its N-terminal domain (NTD) and C-terminal domain (CTD) was performed with fluorimetry, size exclusion chromatography, and chemical cross-linking. Filter trap and far western blotting were used to determine the domain responsible for the interaction with α2ββ'σ subunits of RNAP. Protein-protein docking studies were done to explore residual interaction of RNAP with Wol GreA. The factor and its domains were found to be biochemically active. Size exclusion and chemical cross-linking studies revealed that Wol GreA and CTD exist in a dimeric conformation while NTD subsists in monomeric conformation. Asp120, Val121, Ser122, Lys123, and Ser134 are the residues of CTD through which monomers of Wol GreA interact and shape into a dimeric conformation. Filter trap, far western blotting, and protein-protein docking studies revealed that dimeric CTD of Wol GreA through Lys82, Ser98, Asp104, Ser105, Glu106, Tyr109, Glu116, Asp120, Val121, Ser122, Ser127, Ser129, Lys140, Glu143, Val147, Ser151, Glu153, and Phe163 residues exclusively participates in binding with α2ββ'σ subunits of polymerase. CONCLUSIONS/SIGNIFICANCE To the best of our knowledge, this research is the first documentation of the residual mode of action in wolbachial mutualist. Therefore, findings may be crucial to understanding the transcription mechanism of this α-proteobacteria and in deciphering the role of Wol GreA in filarial development.
Collapse
Affiliation(s)
- Jeetendra Kumar Nag
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Nidhi Shrivastava
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Dhanvantri Chahar
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | | | - Preeti Bajpai
- Department of Biosciences, Integral University, Lucknow, India
| | - Shailja Misra-Bhattacharya
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
40
|
Zenkin N. Multiple personalities of the RNA polymerase active centre. MICROBIOLOGY-SGM 2014; 160:1316-1320. [PMID: 24763425 DOI: 10.1099/mic.0.079020-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transcription in all living organisms is accomplished by highly conserved multi-subunit RNA polymerases (RNAPs). Our understanding of the functioning of the active centre of RNAPs has transformed recently with the finding that a conserved flexible domain near the active centre, the trigger loop (TL), participates directly in the catalysis of RNA synthesis and serves as a major determinant for fidelity of transcription. It also appears that the TL is involved in the unique ability of RNAPs to exchange catalytic activities of the active centre. In this phenomenon the TL is replaced by a transcription factor which changes the amino acid content and, as a result, the catalytic properties of the active centre. The existence of a number of transcription factors that act through substitution of the TL suggests that the RNAP has several different active centres to choose from in response to external or internal signals. A video of this Prize Lecture, presented at the Society for General Microbiology Annual Conference 2014, can be viewed via this link: https://www.youtube.com/watch?v=79Z7iXVEPo4.
Collapse
Affiliation(s)
- Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| |
Collapse
|
41
|
Desai KK, Cheng CL, Bingman CA, Phillips GN, Raines RT. A tRNA splicing operon: Archease endows RtcB with dual GTP/ATP cofactor specificity and accelerates RNA ligation. Nucleic Acids Res 2014; 42:3931-42. [PMID: 24435797 PMCID: PMC3973293 DOI: 10.1093/nar/gkt1375] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Archease is a 16-kDa protein that is conserved in all three domains of life. In diverse bacteria and archaea, the genes encoding Archease and the tRNA ligase RtcB are localized into an operon. Here we provide a rationale for this operon organization by showing that Archease and RtcB from Pyrococcus horikoshii function in tandem, with Archease altering the catalytic properties of the RNA ligase. RtcB catalyzes the GTP and Mn(II)-dependent joining of either 2',3'-cyclic phosphate or 3'-phosphate termini to 5'-hydroxyl termini. We find that catalytic concentrations of Archease are sufficient to activate RtcB, and that Archease accelerates both the RNA 3'-P guanylylation and ligation steps. In addition, we show that Archease can alter the NTP specificity of RtcB such that ATP, dGTP or ITP is used efficiently. Moreover, RtcB variants that have inactivating substitutions in the guanine-binding pocket can be rescued by the addition of Archease. We also present a 1.4 Å-resolution crystal structure of P. horikoshii Archease that reveals a metal-binding site consisting of conserved carboxylates located at the protein tip. Substitution of the Archease metal-binding residues drastically reduced Archease-dependent activation of RtcB. Thus, evolution has sought to co-express archease and rtcB by creating a tRNA splicing operon.
Collapse
Affiliation(s)
- Kevin K Desai
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA, Department of Biochemistry and Cell Biology and Department of Chemistry, Rice University, Houston, TX 77005, USA and Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
42
|
Deaconescu AM. RNA polymerase between lesion bypass and DNA repair. Cell Mol Life Sci 2013; 70:4495-509. [PMID: 23807206 PMCID: PMC11113250 DOI: 10.1007/s00018-013-1384-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 05/13/2013] [Accepted: 05/23/2013] [Indexed: 11/29/2022]
Abstract
DNA damage leads to heritable changes in the genome via DNA replication. However, as the DNA helix is the site of numerous other transactions, notably transcription, DNA damage can have diverse repercussions on cellular physiology. In particular, DNA lesions have distinct effects on the passage of transcribing RNA polymerases, from easy bypass to almost complete block of transcription elongation. The fate of the RNA polymerase positioned at a lesion is largely determined by whether the lesion is structurally subtle and can be accommodated and eventually bypassed, or bulky, structurally distorting and requiring remodeling/complete dissociation of the transcription elongation complex, excision, and repair. Here we review cellular responses to DNA damage that involve RNA polymerases with a focus on bacterial transcription-coupled nucleotide excision repair and lesion bypass via transcriptional mutagenesis. Emphasis is placed on the explosion of new structural information on RNA polymerases and relevant DNA repair factors and the mechanistic models derived from it.
Collapse
Affiliation(s)
- Alexandra M Deaconescu
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South St., MS029, Waltham, MA, 02454, USA,
| |
Collapse
|
43
|
Sosunova E, Sosunov V, Epshtein V, Nikiforov V, Mustaev A. Control of transcriptional fidelity by active center tuning as derived from RNA polymerase endonuclease reaction. J Biol Chem 2013; 288:6688-703. [PMID: 23283976 DOI: 10.1074/jbc.m112.424002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Precise transcription by cellular RNA polymerase requires the efficient removal of noncognate nucleotide residues that are occasionally incorporated. Mis-incorporation causes the transcription elongation complex to backtrack, releasing a single strand 3'-RNA segment bearing a noncognate residue, which is hydrolyzed by the active center that carries two Mg(2+) ions. However, in most x-ray structures only one Mg(2+) is present. This Mg(2+) is tightly bound to the active center aspartates, creating an inactive stable state. The first residue of the single strand RNA segment in the backtracked transcription elongation complex strongly promotes transcript hydrolytic cleavage by establishing a network of interactions that force a shift of stably bound Mg(2+) to release some of its aspartate coordination valences for binding to the second Mg(2+) thus enabling catalysis. Such a rearrangement that we call active center tuning (ACT) occurs when all recognition contacts of the active center-bound RNA segment are established and verified by tolerance to stress. Transcription factor Gre builds on the ACT mechanism in the same reaction by increasing the retention of the second Mg(2+) and by activating the attacking water, causing 3000-4000-fold reaction acceleration and strongly reinforcing proofreading. The unified mechanism for RNA synthesis and degradation by RNA polymerase predicts that ACT also executes NTP selection thereby contributing to high transcription fidelity.
Collapse
Affiliation(s)
- Ekaterina Sosunova
- Public Health Research Institute Center, New Jersey Medical School, Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | | | | | | | |
Collapse
|
44
|
Voliotis M, Cohen N, Molina-París C, Liverpool TB. Proofreading of misincorporated nucleotides in DNA transcription. Phys Biol 2012; 9:036002. [PMID: 22551978 DOI: 10.1088/1478-3975/9/3/036002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The accuracy of DNA transcription is crucial for the proper functioning of the cell. Although RNA polymerases demonstrate selectivity for correct nucleotides, additional active mechanisms of transcriptional error correction are required to achieve observed levels of fidelity. Recent experimental findings have shed light on a particular mechanism of transcriptional error correction involving: (i) diffusive translocation of the RNA polymerase along the DNA (backtracking) and (ii) irreversible RNA cleavage. This mechanism achieves preferential cleavage of misincorporated nucleotides by biasing the local rates of translocation. Here, we study how misincorporated nucleotides affect backtracking dynamics and how this effect determines the level of transcriptional fidelity. We consider backtracking as a diffusive process in a periodic, one-dimensional energy landscape, which at a coarse-grained level gives rise to a hopping process between neighbouring local minima. We propose a model for how misincorporated nucleotides deform this energy landscape and hence affect the hopping rates. In particular, we show that this model can be used to derive both the theoretical limit on the fidelity (i.e. the minimum fraction of misincorporated nucleotides) and the actual fidelity relative to this optimum, achieved for specific combinations of the cleavage and polymerization rates. Finally, we study how external factors influencing backtracking dynamics affect transcriptional fidelity. We show that biologically relevant loads, similar to those exerted by nucleosomes or other transcriptional barriers, increase error correction.
Collapse
Affiliation(s)
- Margaritis Voliotis
- School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK.
| | | | | | | |
Collapse
|
45
|
Furman R, Sevostyanova A, Artsimovitch I. Transcription initiation factor DksA has diverse effects on RNA chain elongation. Nucleic Acids Res 2011; 40:3392-402. [PMID: 22210857 PMCID: PMC3333854 DOI: 10.1093/nar/gkr1273] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacterial transcription factors DksA and GreB belong to a family of coiled-coil proteins that bind within the secondarychannel of RNA polymerase (RNAP). These proteins display structural homology but play different regulatory roles. DksA disrupts RNAP interactions with promoter DNA and inhibits formation of initiation complexes, sensitizing rRNA synthesis to changes in concentrations of ppGpp and NTPs. Gre proteins remodel the RNAP active site and facilitate cleavage of the nascent RNA in elongation complexes. However, DksA and GreB were shown to have overlapping effects during initiation, and in vivo studies suggested that DksA may also function at post-initiation steps. Here we show that DksA has many features of an elongation factor: it inhibits both RNA chain extension and RNA shortening by exonucleolytic cleavage or pyrophosphorolysis and increases intrinsic termination in vitro and in vivo. However, DksA has no effect on Rho- or Mfd-mediated RNA release or nascent RNA cleavage in backtracked complexes, the regulatory target of Gre factors. Our results reveal that DksA effects on elongating RNAP are very different from those of GreB, suggesting that these regulators recognize distinct states of the transcription complex.
Collapse
Affiliation(s)
- Ran Furman
- Department of Microbiology and The Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
46
|
Zhilina E, Esyunina D, Brodolin K, Kulbachinskiy A. Structural transitions in the transcription elongation complexes of bacterial RNA polymerase during σ-dependent pausing. Nucleic Acids Res 2011; 40:3078-91. [PMID: 22140106 PMCID: PMC3326312 DOI: 10.1093/nar/gkr1158] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A transcription initiation factor, the σ70 subunit of Escherichia coli RNA polymerase (RNAP) induces transcription pausing through the binding to a promoter-like pause-inducing sequence in the DNA template during transcription elongation. Here, we investigated the mechanism of σ-dependent pausing using reconstituted transcription elongation complexes which allowed highly efficient and precisely controlled pause formation. We demonstrated that, following engagement of the σ subunit to the pause site, RNAP continues RNA synthesis leading to formation of stressed elongation complexes, in which the nascent RNA remains resistant to Gre-induced cleavage while the transcription bubble and RNAP footprint on the DNA template extend in downstream direction, likely accompanied by DNA scrunching. The stressed complexes can then either break σ-mediated contacts and continue elongation or isomerize to a backtracked conformation. Suppressing of the RNAP backtracking decreases pausing and increases productive elongation. On the contrary, core RNAP mutations that impair RNAP interactions with the downstream part of the DNA template stimulate pausing, presumably by destabilizing the stressed complexes. We propose that interplay between DNA scrunching and RNAP backtracking may have an essential role in transcription pausing and its regulation in various systems.
Collapse
Affiliation(s)
- Ekaterina Zhilina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | | | | | | |
Collapse
|
47
|
Proshkin SA, Mironov AS. Regulation of bacterial transcription elongation. Mol Biol 2011. [DOI: 10.1134/s0026893311020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Roghanian M, Yuzenkova Y, Zenkin N. Controlled interplay between trigger loop and Gre factor in the RNA polymerase active centre. Nucleic Acids Res 2011; 39:4352-9. [PMID: 21266474 PMCID: PMC3105419 DOI: 10.1093/nar/gkq1359] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 12/27/2010] [Accepted: 12/28/2010] [Indexed: 11/14/2022] Open
Abstract
The highly processive transcription by multi-subunit RNA polymerases (RNAP) can be interrupted by misincorporation or backtracking events that may stall transcription or lead to erroneous transcripts. Backtracked/misincorporated complexes can be resolved via hydrolysis of the transcript. Here, we show that, in response to misincorporation and/or backtracking, the catalytic domain of RNAP active centre, the trigger loop (TL), is substituted by transcription factor Gre. This substitution turns off the intrinsic TL-dependent hydrolytic activity of RNAP active centre, and exchanges it to a far more efficient Gre-dependent mechanism of RNA hydrolysis. Replacement of the TL by Gre factor occurs only in backtracked/misincorporated complexes, and not in correctly elongating complexes. This controlled switching of RNAP activities allows the processivity of elongation to be unaffected by the hydrolytic activity of Gre, while ensuring efficient proofreading of transcription and resolution of backtracked complexes.
Collapse
Affiliation(s)
| | | | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| |
Collapse
|
49
|
Transcription factor GreA contributes to resolving promoter-proximal pausing of RNA polymerase in Bacillus subtilis cells. J Bacteriol 2011; 193:3090-9. [PMID: 21515770 DOI: 10.1128/jb.00086-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial Gre factors associate with RNA polymerase (RNAP) and stimulate intrinsic cleavage of the nascent transcript at the active site of RNAP. Biochemical and genetic studies to date have shown that Escherichia coli Gre factors prevent transcriptional arrest during elongation and enhance transcription fidelity. Furthermore, Gre factors participate in the stimulation of promoter escape and the suppression of promoter-proximal pausing during the beginning of RNA synthesis in E. coli. Although Gre factors are conserved in general bacteria, limited functional studies have been performed in bacteria other than E. coli. In this investigation, ChAP-chip analysis (chromatin affinity precipitation coupled with DNA microarray) was conducted to visualize the distribution of Bacillus subtilis GreA on the chromosome and to determine the effects of GreA inactivation on core RNAP trafficking. Our data show that GreA is uniformly distributed in the transcribed region from the promoter to coding region with core RNAP, and its inactivation induces RNAP accumulation at many promoter or promoter-proximal regions. Based on these findings, we propose that GreA would constantly associate with core RNAP during transcriptional initiation and elongation and resolves its stalling at promoter or promoter-proximal regions, thus contributing to the even distribution of RNAP along the promoter and coding regions in B. subtilis cells.
Collapse
|
50
|
Poteete AR. Recombination phenotypes of Escherichia coli greA mutants. BMC Mol Biol 2011; 12:12. [PMID: 21453489 PMCID: PMC3078854 DOI: 10.1186/1471-2199-12-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 03/31/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The elongation factor GreA binds to RNA polymerase and modulates transcriptional pausing. Some recent research suggests that the primary role of GreA may not be to regulate gene expression, but rather, to promote the progression of replication forks which collide with RNA polymerase, and which might otherwise collapse. Replication fork collapse is known to generate dsDNA breaks, which can be recombinogenic. It follows that GreA malfunction could have consequences affecting homologous recombination. RESULTS Escherichia coli mutants bearing substitutions of the active site acidic residues of the transcription elongation factor GreA, D41N and E44K, were isolated as suppressors of growth inhibition by a toxic variant of the bacteriophage lambda Red-beta recombination protein. These mutants, as well as a D41A greA mutant and a greA deletion, were tested for proficiency in recombination events. The mutations were found to increase the efficiency of RecA-RecBCD-mediated and RecA-Red-mediated recombination, which are replication-independent, and to decrease the efficiency of replication-dependent Red-mediated recombination. CONCLUSION These observations provide new evidence for a role of GreA in resolving conflicts between replication and transcription.
Collapse
Affiliation(s)
- Anthony R Poteete
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|