1
|
Fujioka T, Murakami Y, Takahata S. Heterochromatin Protein Swi6 Suppresses Aberrant Gene Conversion at mat Loci by Adjusting the Balance Between the Two Pathways of Swi2 and Rad57. Genes Cells 2025; 30:e70012. [PMID: 40083061 DOI: 10.1111/gtc.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Heterochromatin protein 1 (HP1) is a highly conserved, canonical factor involved in heterochromatin formation. HP1 has been shown to interact with proteins other than silencing factors and heterochromatin effectors. In fission yeast, the loss of the HP1 homolog Swi6 disrupts heterochromatin structure and affects mating type switching at the mat locus, where heterochromatin exists; however, cell growth is unaffected. In this study, we focused on the Swi6 dimerization domain, which provides a binding surface for various interactors. We isolated a distinctive swi6H321Q mutant that does not affect heterochromatin structure but causes variegation in growth defects and abnormal recombination at the mat locus. This mutation disrupts the interaction between Swi6 and Swi2, a mat locus-specific recombination protein. The AT-hook motif of Swi2, which is also required for chromatin localization at the mat locus, is necessary for growth inhibition, suggesting that mislocalization of Swi2 at the mat locus induces growth inhibition. Genetic analysis revealed that abnormal recombination at the mat region was independent of Swi2 but dependent on the Rad57-dependent homologous recombination pathway. These results suggest that Swi6 plays an important role in gene conversion at the mat locus by producing an appropriate selection of homologous recombination factors.
Collapse
Affiliation(s)
- Takumi Fujioka
- Laboratory of Bioorganic Chemistry, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Yota Murakami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Shinya Takahata
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Mwaniki S, Sawant P, Osemwenkhae OP, Fujita Y, Ito M, Furukohri A, Shinohara A. Mutational analysis of Mei5, a subunit of Mei5-Sae3 complex, in Dmc1-mediated recombination during yeast meiosis. Genes Cells 2024; 29:650-666. [PMID: 38924305 DOI: 10.1111/gtc.13138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Interhomolog recombination in meiosis is mediated by the Dmc1 recombinase. The Mei5-Sae3 complex of Saccharomyces cerevisiae promotes Dmc1 assembly and functions with Dmc1 for homology-mediated repair of meiotic DNA double-strand breaks. How Mei5-Sae3 facilitates Dmc1 assembly remains poorly understood. In this study, we created and characterized several mei5 mutants featuring the amino acid substitutions of basic residues. We found that Arg97 of Mei5, conserved in its ortholog, SFR1 (complex with SWI5), RAD51 mediator, in humans and other organisms, is critical for complex formation with Sae3 for Dmc1 assembly. Moreover, the substitution of either Arg117 or Lys133 with Ala in Mei5 resulted in the production of a C-terminal truncated Mei5 protein during yeast meiosis. Notably, the shorter Mei5-R117A protein was observed in meiotic cells but not in mitotic cells when expressed, suggesting a unique regulation of Dmc1-mediated recombination by posttranslational processing of Mei5-Sae3.
Collapse
Affiliation(s)
- Stephen Mwaniki
- Division of Integrated Protein Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | | | - Osaretin P Osemwenkhae
- Division of Integrated Protein Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Yurika Fujita
- Division of Integrated Protein Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Masaru Ito
- Division of Integrated Protein Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Asako Furukohri
- Division of Integrated Protein Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Akira Shinohara
- Division of Integrated Protein Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
3
|
Baranowska G, Misiorna D, Białek W, Kramarz K, Dziadkowiec D. Replication stress response in fission yeast differentially depends on maintaining proper levels of Srs2 helicase and Rrp1, Rrp2 DNA translocases. PLoS One 2024; 19:e0300434. [PMID: 38905307 PMCID: PMC11192394 DOI: 10.1371/journal.pone.0300434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/27/2024] [Indexed: 06/23/2024] Open
Abstract
Homologous recombination is a key process that governs the stability of eukaryotic genomes during DNA replication and repair. Multiple auxiliary factors regulate the choice of homologous recombination pathway in response to different types of replication stress. Using Schizosaccharomyces pombe we have previously suggested the role of DNA translocases Rrp1 and Rrp2, together with Srs2 helicase, in the common synthesis-dependent strand annealing sub-pathway of homologous recombination. Here we show that all three proteins are important for completion of replication after hydroxyurea exposure and provide data comparing the effect of overproduction of Srs2 with Rrp1 and Rrp2. We demonstrate that Srs2 localises to rDNA region and is required for proper replication of rDNA arrays. Upregulation of Srs2 protein levels leads to enhanced replication stress, chromosome instability and viability loss, as previously reported for Rrp1 and Rrp2. Interestingly, our data suggests that dysregulation of Srs2, Rrp1 and Rrp2 protein levels differentially affects checkpoint response: overproduction of Srs2 activates simultaneously DNA damage and replication stress response checkpoints, while cells overproducing Rrp1 mainly launch DNA damage checkpoint. On the other hand, upregulation of Rrp2 primarily leads to replication stress response checkpoint activation. Overall, we propose that Srs2, Rrp1 and Rrp2 have important and at least partially independent functions in the maintenance of distinct difficult to replicate regions of the genome.
Collapse
Affiliation(s)
| | - Dorota Misiorna
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Wojciech Białek
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Karol Kramarz
- Faculty of Biological Sciences, Academic Excellence Hub—Research Centre for DNA Repair and Replication, University of Wrocław, Wrocław, Poland
| | | |
Collapse
|
4
|
Ito M, Furukohri A, Matsuzaki K, Fujita Y, Toyoda A, Shinohara A. FIGNL1 AAA+ ATPase remodels RAD51 and DMC1 filaments in pre-meiotic DNA replication and meiotic recombination. Nat Commun 2023; 14:6857. [PMID: 37891173 PMCID: PMC10611733 DOI: 10.1038/s41467-023-42576-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The formation of RAD51/DMC1 filaments on single-stranded (ss)DNAs essential for homology search and strand exchange in DNA double-strand break (DSB) repair is tightly regulated. FIGNL1 AAA+++ ATPase controls RAD51-mediated recombination in human cells. However, its role in gametogenesis remains unsolved. Here, we characterized a germ line-specific conditional knockout (cKO) mouse of FIGNL1. Fignl1 cKO male mice showed defective chromosome synapsis and impaired meiotic DSB repair with the accumulation of RAD51/DMC1 on meiotic chromosomes, supporting a positive role of FIGNL1 in homologous recombination at a post-assembly stage of RAD51/DMC1 filaments. Fignl1 cKO spermatocytes also accumulate RAD51/DMC1 on chromosomes in pre-meiotic S-phase. These RAD51/DMC1 assemblies are independent of meiotic DSB formation. We also showed that purified FIGNL1 dismantles RAD51 filament on double-stranded (ds)DNA as well as ssDNA. These results suggest an additional role of FIGNL1 in limiting the non-productive assembly of RAD51/DMC1 on native dsDNAs during pre-meiotic S-phase and meiotic prophase I.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Asako Furukohri
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kenichiro Matsuzaki
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara, Nara, 631-8505, Japan
| | - Yurika Fujita
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
5
|
Lee W, Iwasaki H, Tsubouchi H, Li HW. Hop2-Mnd1 and Swi5-Sfr1 stimulate Dmc1 filament assembly using distinct mechanisms. Nucleic Acids Res 2023; 51:8550-8562. [PMID: 37395447 PMCID: PMC10484676 DOI: 10.1093/nar/gkad561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023] Open
Abstract
In meiosis, Dmc1 recombinase and the general recombinase Rad51 are responsible for pairing homologous chromosomes and exchanging strands. Fission yeast (Schizosaccharomyces pombe) Swi5-Sfr1 and Hop2-Mnd1 stimulate Dmc1-driven recombination, but the stimulation mechanism is unclear. Using single-molecule fluorescence resonance energy transfer (smFRET) and tethered particle motion (TPM) experiments, we showed that Hop2-Mnd1 and Swi5-Sfr1 individually enhance Dmc1 filament assembly on single-stranded DNA (ssDNA) and adding both proteins together allows further stimulation. FRET analysis showed that Hop2-Mnd1 enhances the binding rate of Dmc1 while Swi5-Sfr1 specifically reduces the dissociation rate during the nucleation, about 2-fold. In the presence of Hop2-Mnd1, the nucleation time of Dmc1 filaments shortens, and doubling the ss/double-stranded DNA (ss/dsDNA) junctions of DNA substrates reduces the nucleation times in half. Order of addition experiments confirmed that Hop2-Mnd1 binds on DNA to recruit and stimulate Dmc1 nucleation at the ss/dsDNA junction. Our studies directly support the molecular basis of how Hop2-Mnd1 and Swi5-Sfr1 act on different steps during the Dmc1 filament assembly. DNA binding of these accessory proteins and nucleation preferences of recombinases thus dictate how their regulation can take place.
Collapse
Affiliation(s)
- Wei Lee
- Department of Chemistry, National Taiwan University, Taiwan
| | - Hiroshi Iwasaki
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Japan
| | - Hideo Tsubouchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Japan
| | - Hung-Wen Li
- Department of Chemistry, National Taiwan University, Taiwan
| |
Collapse
|
6
|
Liang P, Lister K, Yates L, Argunhan B, Zhang X. Phosphoregulation of DNA repair via the Rad51 auxiliary factor Swi5-Sfr1. J Biol Chem 2023; 299:104929. [PMID: 37330173 PMCID: PMC10366545 DOI: 10.1016/j.jbc.2023.104929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023] Open
Abstract
Homologous recombination (HR) is a major pathway for the repair of DNA double-strand breaks, the most severe form of DNA damage. The Rad51 protein is central to HR, but multiple auxiliary factors regulate its activity. The heterodimeric Swi5-Sfr1 complex is one such factor. It was previously shown that two sites within the intrinsically disordered domain of Sfr1 are critical for the interaction with Rad51. Here, we show that phosphorylation of five residues within this domain regulates the interaction of Swi5-Sfr1 with Rad51. Biochemical reconstitutions demonstrated that a phosphomimetic mutant version of Swi5-Sfr1 is defective in both the physical and functional interaction with Rad51. This translated to a defect in DNA repair, with the phosphomimetic mutant yeast strain phenocopying a previously established interaction mutant. Interestingly, a strain in which Sfr1 phosphorylation was blocked also displayed sensitivity to DNA damage. Taken together, we propose that controlled phosphorylation of Sfr1 is important for the role of Swi5-Sfr1 in promoting Rad51-dependent DNA repair.
Collapse
Affiliation(s)
- Pengtao Liang
- Section of Structural and Synthetic Biology, Faculty of Medicine, Imperial College London, London, UK
| | - Katie Lister
- Section of Structural and Synthetic Biology, Faculty of Medicine, Imperial College London, London, UK
| | - Luke Yates
- Section of Structural and Synthetic Biology, Faculty of Medicine, Imperial College London, London, UK
| | - Bilge Argunhan
- Section of Structural and Synthetic Biology, Faculty of Medicine, Imperial College London, London, UK.
| | - Xiaodong Zhang
- Section of Structural and Synthetic Biology, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
7
|
Tsubouchi H. The Hop2-Mnd1 Complex and Its Regulation of Homologous Recombination. Biomolecules 2023; 13:biom13040662. [PMID: 37189409 DOI: 10.3390/biom13040662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Homologous recombination (HR) is essential for meiosis in most sexually reproducing organisms, where it is induced upon entry into meiotic prophase. Meiotic HR is conducted by the collaborative effort of proteins responsible for DNA double-strand break repair and those produced specifically during meiosis. The Hop2-Mnd1 complex was originally identified as a meiosis-specific factor that is indispensable for successful meiosis in budding yeast. Later, it was found that Hop2-Mnd1 is conserved from yeasts to humans, playing essential roles in meiosis. Accumulating evidence suggests that Hop2-Mnd1 promotes RecA-like recombinases towards homology search/strand exchange. This review summarizes studies on the mechanism of the Hop2-Mnd1 complex in promoting HR and beyond.
Collapse
Affiliation(s)
- Hideo Tsubouchi
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Kanagawa, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Kanagawa, Japan
| |
Collapse
|
8
|
Arcangioli B, Gangloff S. The Fission Yeast Mating-Type Switching Motto: "One-for-Two" and "Two-for-One". Microbiol Mol Biol Rev 2023; 87:e0000821. [PMID: 36629411 PMCID: PMC10029342 DOI: 10.1128/mmbr.00008-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Schizosaccharomyces pombe is an ascomycete fungus that divides by medial fission; it is thus commonly referred to as fission yeast, as opposed to the distantly related budding yeast Saccharomyces cerevisiae. The reproductive lifestyle of S. pombe relies on an efficient genetic sex determination system generating a 1:1 sex ratio and using alternating haploid/diploid phases in response to environmental conditions. In this review, we address how one haploid cell manages to generate two sister cells with opposite mating types, a prerequisite to conjugation and meiosis. This mating-type switching process depends on two highly efficient consecutive asymmetric cell divisions that rely on DNA replication, repair, and recombination as well as the structure and components of heterochromatin. We pay special attention to the intimate interplay between the genetic and epigenetic partners involved in this process to underscore the importance of basic research and its profound implication for a better understanding of chromatin biology.
Collapse
Affiliation(s)
- Benoît Arcangioli
- Genome Dynamics Unit, Genomes and Genetics Department, Pasteur Institute, Paris, France
| | - Serge Gangloff
- Genome Dynamics Unit, Genomes and Genetics Department, Pasteur Institute, Paris, France
- UMR3525, Genetics of Genomes, CNRS-Pasteur Institute, Paris, France
| |
Collapse
|
9
|
Rad52's DNA annealing activity drives template switching associated with restarted DNA replication. Nat Commun 2022; 13:7293. [PMID: 36435847 PMCID: PMC9701231 DOI: 10.1038/s41467-022-35060-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/17/2022] [Indexed: 11/28/2022] Open
Abstract
It is thought that many of the simple and complex genomic rearrangements associated with congenital diseases and cancers stem from mistakes made during the restart of collapsed replication forks by recombination enzymes. It is hypothesised that this recombination-mediated restart process transitions from a relatively accurate initiation phase to a less accurate elongation phase characterised by extensive template switching between homologous, homeologous and microhomologous DNA sequences. Using an experimental system in fission yeast, where fork collapse is triggered by a site-specific replication barrier, we show that ectopic recombination, associated with the initiation of recombination-dependent replication (RDR), is driven mainly by the Rad51 recombinase, whereas template switching, during the elongation phase of RDR, relies more on DNA annealing by Rad52. This finding provides both evidence and a mechanistic basis for the transition hypothesis.
Collapse
|
10
|
Esquivel-Chávez A, Maki T, Tsubouchi H, Handa T, Kimura H, Haber JE, Thon G, Iwasaki H. Euchromatin factors HULC and Set1C affect heterochromatin organization and mating-type switching in fission yeast Schizosaccharomyces pombe. Genes Genet Syst 2022; 97:123-138. [PMID: 35908934 DOI: 10.1266/ggs.22-00012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mating-type (P or M) of fission yeast Schizosaccharomyces pombe is determined by the transcriptionally active mat1 cassette and is switched by gene conversion using a donor, either mat2 or mat3, located in an adjacent heterochromatin region (mating-type switching; MTS). In the switching process, heterochromatic donors of genetic information are selected based on the P or M cell type and on the action of two recombination enhancers, SRE2 promoting the use of mat2-P and SRE3 promoting the use of mat3-M, leading to replacement of the content of the expressed mat1 cassette. Recently, we found that the histone H3K4 methyltransferase complex Set1C participates in donor selection, raising the question of how a complex best known for its effects in euchromatin controls recombination in heterochromatin. Here, we report that the histone H2BK119 ubiquitin ligase complex HULC functions with Set1C in MTS, as mutants in the shf1, brl1, brl2 and rad6 genes showed defects similar to Set1C mutants and belonged to the same epistasis group as set1Δ. Moreover, using H3K4R and H2BK119R histone mutants and a Set1-Y897A catalytic mutant, we found that ubiquitylation of histone H2BK119 by HULC and methylation of histone H3K4 by Set1C are functionally coupled in MTS. Cell-type biases in MTS in these mutants suggested that HULC and Set1C inhibit the use of the SRE3 recombination enhancer in M cells, thus favoring SRE2 and mat2-P. Consistent with this, imbalanced switching in the mutants was traced to compromised association of the directionality factor Swi6 with the recombination enhancers in M cells. Based on their known effects at other chromosomal locations, we speculate that HULC and Set1C control nucleosome mobility and strand invasion near the SRE elements. In addition, we uncovered distinct effects of HULC and Set1C on histone H3K9 methylation and gene silencing, consistent with additional functions in the heterochromatic domain.
Collapse
Affiliation(s)
- Alfredo Esquivel-Chávez
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology
- Institute of Innovative Research, Tokyo Institute of Technology
| | - Takahisa Maki
- Institute of Innovative Research, Tokyo Institute of Technology
| | - Hideo Tsubouchi
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology
- Institute of Innovative Research, Tokyo Institute of Technology
| | - Testuya Handa
- Institute of Innovative Research, Tokyo Institute of Technology
| | - Hiroshi Kimura
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology
- Institute of Innovative Research, Tokyo Institute of Technology
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University
| | | | - Hiroshi Iwasaki
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology
- Institute of Innovative Research, Tokyo Institute of Technology
| |
Collapse
|
11
|
Tsubouchi H, Argunhan B, Iwasaki H. Biochemical properties of fission yeast homologous recombination enzymes. Curr Opin Genet Dev 2021; 71:19-26. [PMID: 34246071 DOI: 10.1016/j.gde.2021.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/06/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022]
Abstract
Homologous recombination (HR) is a universal phenomenon conserved from viruses to humans. The mechanisms of HR are essentially the same in humans and simple unicellular eukaryotes like yeast. Two highly diverged yeast species, Saccharomyces cerevisiae and Schizosaccharomyces pombe, have proven exceptionally useful in understanding the fundamental mechanisms of eukaryotic HR by serving as a source for unique biological insights and also complementing each other. Here, we will review the features of S. pombe HR mechanisms in comparison to S. cerevisiae and other model organisms. Particular emphasis will be put on the biochemical characterization of HR mechanisms uncovered using S. pombe proteins.
Collapse
Affiliation(s)
- Hideo Tsubouchi
- Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan.
| | - Bilge Argunhan
- Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
| | - Hiroshi Iwasaki
- Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan.
| |
Collapse
|
12
|
Sevcovicova A, Plava J, Gazdarica M, Szabova E, Huraiova B, Gaplovska-Kysela K, Cipakova I, Cipak L, Gregan J. Mapping and Analysis of Swi5 and Sfr1 Phosphorylation Sites. Genes (Basel) 2021; 12:1014. [PMID: 34208949 PMCID: PMC8305525 DOI: 10.3390/genes12071014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 01/23/2023] Open
Abstract
The evolutionarily conserved Swi5-Sfr1 complex plays an important role in homologous recombination, a process crucial for the maintenance of genomic integrity. Here, we purified Schizosaccharomyces pombe Swi5-Sfr1 complex from meiotic cells and analyzed it by mass spectrometry. Our analysis revealed new phosphorylation sites on Swi5 and Sfr1. We found that mutations that prevent phosphorylation of Swi5 and Sfr1 do not impair their function but swi5 and sfr1 mutants encoding phosphomimetic aspartate at the identified phosphorylation sites are only partially functional. We concluded that during meiosis, Swi5 associates with Sfr1 and both Swi5 and Sfr1 proteins are phosphorylated. However, the functional relevance of Swi5 and Sfr1 phosphorylation remains to be determined.
Collapse
Affiliation(s)
- Andrea Sevcovicova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia; (A.S.); (J.P.); (M.G.); (E.S.); (B.H.); (K.G.-K.)
| | - Jana Plava
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia; (A.S.); (J.P.); (M.G.); (E.S.); (B.H.); (K.G.-K.)
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Matej Gazdarica
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia; (A.S.); (J.P.); (M.G.); (E.S.); (B.H.); (K.G.-K.)
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Eva Szabova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia; (A.S.); (J.P.); (M.G.); (E.S.); (B.H.); (K.G.-K.)
| | - Barbora Huraiova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia; (A.S.); (J.P.); (M.G.); (E.S.); (B.H.); (K.G.-K.)
| | - Katarina Gaplovska-Kysela
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia; (A.S.); (J.P.); (M.G.); (E.S.); (B.H.); (K.G.-K.)
| | - Ingrid Cipakova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia;
| | - Lubos Cipak
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia;
| | - Juraj Gregan
- Advanced Microscopy Facility, VBCF and Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| |
Collapse
|
13
|
Argunhan B, Iwasaki H, Tsubouchi H. Post-translational modification of factors involved in homologous recombination. DNA Repair (Amst) 2021; 104:103114. [PMID: 34111757 DOI: 10.1016/j.dnarep.2021.103114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/04/2023]
Abstract
DNA is the molecule that stores the chemical instructions necessary for life and its stability is therefore of the utmost importance. Despite this, DNA is damaged by both exogenous and endogenous factors at an alarming frequency. The most severe type of DNA damage is a double-strand break (DSB), in which a scission occurs in both strands of the double helix, effectively dividing a single normal chromosome into two pathological chromosomes. Homologous recombination (HR) is a universal DSB repair mechanism that solves this problem by identifying another region of the genome that shares high sequence similarity with the DSB site and using it as a template for repair. Rad51 possess the enzymatic activity that is essential for this repair but several auxiliary factors are required for Rad51 to fulfil its function. It is becoming increasingly clear that many HR factors are subjected to post-translational modification. Here, we review what is known about how these modifications affect HR. We first focus on cases where there is experimental evidence to support a function for the modification, then discuss speculative cases where a function can be inferred. Finally, we contemplate why such modifications might be necessary.
Collapse
Affiliation(s)
- Bilge Argunhan
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan.
| | - Hiroshi Iwasaki
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Hideo Tsubouchi
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
14
|
Carver A, Zhang X. Rad51 filament dynamics and its antagonistic modulators. Semin Cell Dev Biol 2021; 113:3-13. [PMID: 32631783 DOI: 10.1016/j.semcdb.2020.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/10/2020] [Accepted: 06/20/2020] [Indexed: 02/07/2023]
Abstract
Rad51 recombinase is the central player in homologous recombination, the faithful repair pathway for double-strand breaks and key event during meiosis. Rad51 forms nucleoprotein filaments on single-stranded DNA, exposed by a double-strand break. These filaments are responsible for homology search and strand invasion, which lead to homology-directed repair. Due to its central roles in DNA repair and genome stability, Rad51 is modulated by multiple factors and post-translational modifications. In this review, we summarize our current understanding of the dynamics of Rad51 filaments, the roles of other factors and their modes of action in modulating key stages of Rad51 filaments: formation, stability and disassembly.
Collapse
Affiliation(s)
- Alexander Carver
- Section of Structural Biology, Department of Infectious Diseases, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ, UK
| | - Xiaodong Zhang
- Section of Structural Biology, Department of Infectious Diseases, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
15
|
Afshar N, Argunhan B, Palihati M, Taniguchi G, Tsubouchi H, Iwasaki H. A novel motif of Rad51 serves as an interaction hub for recombination auxiliary factors. eLife 2021; 10:64131. [PMID: 33493431 PMCID: PMC7837696 DOI: 10.7554/elife.64131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/26/2020] [Indexed: 12/14/2022] Open
Abstract
Homologous recombination (HR) is essential for maintaining genome stability. Although Rad51 is the key protein that drives HR, multiple auxiliary factors interact with Rad51 to potentiate its activity. Here, we present an interdisciplinary characterization of the interactions between Rad51 and these factors. Through structural analysis, we identified an evolutionarily conserved acidic patch of Rad51. The neutralization of this patch completely abolished recombinational DNA repair due to defects in the recruitment of Rad51 to DNA damage sites. This acidic patch was found to be important for the interaction with Rad55-Rad57 and essential for the interaction with Rad52. Furthermore, biochemical reconstitutions demonstrated that neutralization of this acidic patch also impaired the interaction with Rad54, indicating that a single motif is important for the interaction with multiple auxiliary factors. We propose that this patch is a fundamental motif that facilitates interactions with auxiliary factors and is therefore essential for recombinational DNA repair.
Collapse
Affiliation(s)
- Negar Afshar
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan.,Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Bilge Argunhan
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Maierdan Palihati
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan.,Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Goki Taniguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan.,Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Hideo Tsubouchi
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan.,Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Hiroshi Iwasaki
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan.,Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
16
|
Two auxiliary factors promote Dmc1-driven DNA strand exchange via stepwise mechanisms. Proc Natl Acad Sci U S A 2020; 117:12062-12070. [PMID: 32414915 DOI: 10.1073/pnas.1917419117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Homologous recombination (HR) is a universal mechanism operating in somatic and germ-line cells, where it contributes to the maintenance of genome stability and ensures the faithful distribution of genetic material, respectively. The ability to identify and exchange the strands of two homologous DNA molecules lies at the heart of HR and is mediated by RecA-family recombinases. Dmc1 is a meiosis-specific RecA homolog in eukaryotes, playing a predominant role in meiotic HR. However, Dmc1 cannot function without its two major auxiliary factor complexes, Swi5-Sfr1 and Hop2-Mnd1. Through biochemical reconstitutions, we demonstrate that Swi5-Sfr1 and Hop2-Mnd1 make unique contributions to stimulate Dmc1-driven strand exchange in a synergistic manner. Mechanistically, Swi5-Sfr1 promotes establishment of the Dmc1 nucleoprotein filament, whereas Hop2-Mnd1 defines a critical, rate-limiting step in initiating strand exchange. Following execution of this function, we propose that Swi5-Sfr1 then promotes strand exchange with Hop2-Mnd1. Thus, our findings elucidate distinct yet complementary roles of two auxiliary factors in Dmc1-driven strand exchange, providing mechanistic insights into some of the most critical steps in meiotic HR.
Collapse
|
17
|
Argunhan B, Sakakura M, Afshar N, Kurihara M, Ito K, Maki T, Kanamaru S, Murayama Y, Tsubouchi H, Takahashi M, Takahashi H, Iwasaki H. Cooperative interactions facilitate stimulation of Rad51 by the Swi5-Sfr1 auxiliary factor complex. eLife 2020; 9:52566. [PMID: 32204793 PMCID: PMC7093153 DOI: 10.7554/elife.52566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/13/2020] [Indexed: 01/26/2023] Open
Abstract
Although Rad51 is the key protein in homologous recombination (HR), a major DNA double-strand break repair pathway, several auxiliary factors interact with Rad51 to promote productive HR. We present an interdisciplinary characterization of the interaction between Rad51 and Swi5-Sfr1, a conserved auxiliary factor. Two distinct sites within the intrinsically disordered N-terminus of Sfr1 (Sfr1N) were found to cooperatively bind Rad51. Deletion of this domain impaired Rad51 stimulation in vitro and rendered cells sensitive to DNA damage. By contrast, amino acid-substitution mutants, which had comparable biochemical defects, could promote DNA repair, suggesting that Sfr1N has another role in addition to Rad51 binding. Unexpectedly, the DNA repair observed in these mutants was dependent on Rad55-Rad57, another auxiliary factor complex hitherto thought to function independently of Swi5-Sfr1. When combined with the finding that they form a higher-order complex, our results imply that Swi5-Sfr1 and Rad55-Rad57 can collaboratively stimulate Rad51 in Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Bilge Argunhan
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Masayoshi Sakakura
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Negar Afshar
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Misato Kurihara
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Kentaro Ito
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Takahisa Maki
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Shuji Kanamaru
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Yasuto Murayama
- Center for Frontier Research, National Institute of Genetics, Shizuoka, Japan
| | - Hideo Tsubouchi
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Masayuki Takahashi
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Hideo Takahashi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Hiroshi Iwasaki
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
18
|
Role of Rad51 and DNA repair in cancer: A molecular perspective. Pharmacol Ther 2020; 208:107492. [PMID: 32001312 DOI: 10.1016/j.pharmthera.2020.107492] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 12/24/2022]
Abstract
The maintenance of genome integrity is essential for any organism survival and for the inheritance of traits to offspring. To the purpose, cells have developed a complex DNA repair system to defend the genetic information against both endogenous and exogenous sources of damage. Accordingly, multiple repair pathways can be aroused from the diverse forms of DNA lesions, which can be effective per se or via crosstalk with others to complete the whole DNA repair process. Deficiencies in DNA healing resulting in faulty repair and/or prolonged DNA damage can lead to genes mutations, chromosome rearrangements, genomic instability, and finally carcinogenesis and/or cancer progression. Although it might seem paradoxical, at the same time such defects in DNA repair pathways may have therapeutic implications for potential clinical practice. Here we provide an overview of the main DNA repair pathways, with special focus on the role played by homologous repair and the RAD51 recombinase protein in the cellular DNA damage response. We next discuss the recombinase structure and function per se and in combination with all its principal mediators and regulators. Finally, we conclude with an analysis of the manifold roles that RAD51 plays in carcinogenesis, cancer progression and anticancer drug resistance, and conclude this work with a survey of the most promising therapeutic strategies aimed at targeting RAD51 in experimental oncology.
Collapse
|
19
|
Thon G, Maki T, Haber JE, Iwasaki H. Mating-type switching by homology-directed recombinational repair: a matter of choice. Curr Genet 2018; 65:351-362. [PMID: 30382337 PMCID: PMC6420890 DOI: 10.1007/s00294-018-0900-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/13/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022]
Abstract
In eukaryotes, all DNA transactions happen in the context of chromatin that often takes part in regulatory mechanisms. In particular, chromatin structure can regulate exchanges of DNA occurring through homologous recombination. Few systems have provided as detailed a view on this phenomenon as mating-type switching in yeast. Mating-type switching entails the choice of a template for the gene conversions of the expressed mating-type locus. In the fission yeast Schizosaccharomyces pombe, correct template choice requires two competing small recombination enhancers, SRE2 and SRE3, that function in the context of heterochromatin. These two enhancers act with the Swi2/Swi5 recombination accessory complex to initiate strand exchange in a cell-type-specific manner, from SRE2 in M cells and SRE3 in P cells. New research indicates that the Set1C complex, responsible for H3K4 methylation, and the Brl2 ubiquitin ligase, that catalyzes H2BK119 ubiquitylation, participate in the cell-type-specific selection of SRE2 or SRE3. Here, we review these findings, compare donor preference in S. pombe to the distantly related budding yeast Saccharomyces cerevisiae, and contrast the positive effects of heterochromatin on the donor selection process with other situations, where heterochromatin represses recombination.
Collapse
Affiliation(s)
- Geneviève Thon
- Department of Biology, BioCenter, University of Copenhagen, Copenhagen, Denmark.
| | - Takahisa Maki
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, 02453, USA
| | - Hiroshi Iwasaki
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan.,Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
20
|
Swi5-Sfr1 stimulates Rad51 recombinase filament assembly by modulating Rad51 dissociation. Proc Natl Acad Sci U S A 2018; 115:E10059-E10068. [PMID: 30297419 DOI: 10.1073/pnas.1812753115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic Rad51 protein is essential for homologous-recombination repair of DNA double-strand breaks. Rad51 recombinases first assemble onto single-stranded DNA to form a nucleoprotein filament, required for function in homology pairing and strand exchange. This filament assembly is the first regulation step in homologous recombination. Rad51 nucleation is kinetically slow, and several accessory factors have been identified to regulate this step. Swi5-Sfr1 (S5S1) stimulates Rad51-mediated homologous recombination by stabilizing Rad51 nucleoprotein filaments, but the mechanism of stabilization is unclear. We used single-molecule tethered particle motion experiments to show that mouse S5S1 (mS5S1) efficiently stimulates mouse RAD51 (mRAD51) nucleus formation and inhibits mRAD51 dissociation from filaments. We also used single-molecule fluorescence resonance energy transfer experiments to show that mS5S1 promotes stable nucleus formation by specifically preventing mRAD51 dissociation. This leads to a reduction of nucleation size from three mRAD51 to two mRAD51 molecules in the presence of mS5S1. Compared with mRAD51, fission yeast Rad51 (SpRad51) exhibits fast nucleation but quickly dissociates from the filament. SpS5S1 specifically reduces SpRad51 disassembly to maintain a stable filament. These results clearly demonstrate the conserved function of S5S1 by primarily stabilizing Rad51 on DNA, allowing both the formation of the stable nucleus and the maintenance of filament length.
Collapse
|
21
|
Mre11 complex links sister chromatids to promote repair of a collapsed replication fork. Proc Natl Acad Sci U S A 2018; 115:8793-8798. [PMID: 30104346 DOI: 10.1073/pnas.1808189115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Collapsed replication forks, which are a major source of DNA double-strand breaks (DSBs), are repaired by sister chromatid recombination (SCR). The Mre11-Rad50-Nbs1 (MRN) protein complex, assisted by CtIP/Sae2/Ctp1, initiates SCR by nucleolytically resecting the single-ended DSB (seDSB) at the collapsed fork. The molecular architecture of the MRN intercomplex, in which zinc hooks at the apices of long Rad50 coiled-coils connect two Mre112-Rad502 complexes, suggests that MRN also structurally assists SCR. Here, Rad50 ChIP assays in Schizosaccharomyces pombe show that MRN sequentially localizes with the seDSB and sister chromatid at a collapsed replication fork. Ctp1, which has multivalent DNA-binding and DNA-bridging activities, has the same DNA interaction pattern. Provision of an intrachromosomal repair template alleviates the nonnucleolytic requirement for MRN to repair the broken fork. Mutations of zinc-coordinating cysteines in the Rad50 hook severely impair SCR. These data suggest that the MRN complex facilitates SCR by linking the seDSB and sister chromatid.
Collapse
|
22
|
New insights into donor directionality of mating-type switching in Schizosaccharomyces pombe. PLoS Genet 2018; 14:e1007424. [PMID: 29852001 PMCID: PMC6007933 DOI: 10.1371/journal.pgen.1007424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/19/2018] [Accepted: 05/17/2018] [Indexed: 11/29/2022] Open
Abstract
Mating-type switching in Schizosaccharomyces pombe entails programmed gene conversion events regulated by DNA replication, heterochromatin, and the HP1-like chromodomain protein Swi6. The whole mechanism remains to be fully understood. Using a gene deletion library, we screened ~ 3400 mutants for defects in the donor selection step where a heterochromatic locus, mat2-P or mat3-M, is chosen to convert the expressed mat1 locus. By measuring the biases in mat1 content that result from faulty directionality, we identified in total 20 factors required for donor selection. Unexpectedly, these included the histone H3 lysine 4 (H3K4) methyltransferase complex subunits Set1, Swd1, Swd2, Swd3, Spf1 and Ash2, the BRE1-like ubiquitin ligase Brl2 and the Elongator complex subunit Elp6. The mutant defects were investigated in strains with reversed donor loci (mat2-M mat3-P) or when the SRE2 and SRE3 recombination enhancers, adjacent to the donors, were deleted or transposed. Mutants in Set1C, Brl2 or Elp6 altered balanced donor usage away from mat2 and the SRE2 enhancer, towards mat3 and the SRE3 enhancer. The defects in these mutants were qualitatively similar to heterochromatin mutants lacking Swi6, the NAD+-dependent histone deacetylase Sir2, or the Clr4, Raf1 or Rik1 subunits of the histone H3 lysine 9 (H3K9) methyltransferase complex, albeit not as extreme. Other mutants showed clonal biases in switching. This was the case for mutants in the NAD+-independent deacetylase complex subunits Clr1, Clr2 and Clr3, the casein kinase CK2 subunit Ckb1, the ubiquitin ligase component Pof3, and the CENP-B homologue Cbp1, as well as for double mutants lacking Swi6 and Brl2, Pof3, or Cbp1. Thus, we propose that Set1C cooperates with Swi6 and heterochromatin to direct donor choice to mat2-P in M cells, perhaps by inhibiting the SRE3 recombination enhancer, and that in the absence of Swi6 other factors are still capable of imposing biases to donor choice. Effects of chromatin structure on recombination can be studied in the fission yeast S. pombe where two heterochromatic loci, mat2 and mat3, are chosen in a cell-type specific manner to convert the expressed mat1 locus and switch the yeast mating-type. The system has previously revealed the determining role of heterochromatin, histone H3K9 methylation and HP1 family protein Swi6, in donor selection. Here, we find that other chromatin modifiers and protein complexes, including components of the histone H3K4 methyltransferase complex Set1C, the histone H2B ubiquitin ligase HULC and Elongator, also participate in donor selection. Our findings open up new research paths to study mating-type switching in fission yeast and the roles of these complexes in recombination.
Collapse
|
23
|
Genetic interactions between the chromosome axis-associated protein Hop1 and homologous recombination determinants in Schizosaccharomyces pombe. Curr Genet 2018; 64:1089-1104. [PMID: 29550859 PMCID: PMC6153652 DOI: 10.1007/s00294-018-0827-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/14/2018] [Indexed: 11/28/2022]
Abstract
Hop1 is a component of the meiosis-specific chromosome axis and belongs to the evolutionarily conserved family of HORMA domain proteins. Hop1 and its orthologs in higher eukaryotes are a major factor in promoting double-strand DNA break formation and inter-homolog recombination. In budding yeast and mammals, they are also involved in a meiotic checkpoint kinase cascade monitoring the completion of double-strand DNA break repair. We used the fission yeast, Schizosaccharomyces pombe, which lacks a canonical synaptonemal complex to test whether Hop1 has a role beyond supporting the generation of double-strand DNA breaks and facilitating inter-homolog recombination events. We determined how mutants of homologous recombination factors genetically interact with hop1, studied the role(s) of the HORMA domain of Hop1, and characterized a bio-informatically predicted interactor of Hop1, Aho1 (SPAC688.03c). Our observations indicate that in fission yeast, Hop1 does require its HORMA domain to support wild-type levels of meiotic recombination and localization to meiotic chromatin. Furthermore, we show that hop1∆ only weakly interacts genetically with mutants of homologous recombination factors, and in fission yeast likely has no major role beyond break formation and promoting inter-homolog events. We speculate that after the evolutionary loss of the synaptonemal complex, Hop1 likely has become less important for modulating recombination outcome during meiosis in fission yeast, and that this led to a concurrent rewiring of genetic pathways controlling meiotic recombination.
Collapse
|
24
|
Ito K, Murayama Y, Takahashi M, Iwasaki H. Two three-strand intermediates are processed during Rad51-driven DNA strand exchange. Nat Struct Mol Biol 2017; 25:29-36. [PMID: 29323270 DOI: 10.1038/s41594-017-0002-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/31/2017] [Indexed: 11/09/2022]
Abstract
During homologous recombination, Rad51 forms a nucleoprotein filament with single-stranded DNA (ssDNA) that undergoes strand exchange with homologous double-stranded DNA (dsDNA). Here, we use real-time analysis to show that strand exchange by fission yeast Rad51 proceeds via two distinct three-strand intermediates, C1 and C2. Both intermediates contain Rad51, but whereas the donor duplex remains intact in C1, the ssDNA strand is intertwined with the complementary strand of the donor duplex in C2. Swi5-Sfr1, an evolutionarily conserved recombination activator, facilitates the C1-C2 transition and subsequent ssDNA release from C2 to complete strand exchange in an ATP-hydrolysis-dependent manner. In contrast, Ca2+, which activates the Rad51 filament by curbing ATP hydrolysis, facilitates the C1-C2 transition but does not promote strand exchange. These results reveal that Swi5-Sfr1 and Ca2+ have different activation modes in the late synaptic phase, despite their common function in stabilizing the presynaptic filament.
Collapse
Affiliation(s)
- Kentaro Ito
- School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, Japan
| | - Yasuto Murayama
- School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, Japan.,Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan.,National Institute of Genetics, Shizuoka, Japan
| | - Masayuki Takahashi
- School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, Japan
| | - Hiroshi Iwasaki
- School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, Japan. .,Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan.
| |
Collapse
|
25
|
Argunhan B, Murayama Y, Iwasaki H. The differentiated and conserved roles of Swi5-Sfr1 in homologous recombination. FEBS Lett 2017; 591:2035-2047. [PMID: 28423184 PMCID: PMC5573924 DOI: 10.1002/1873-3468.12656] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 11/13/2022]
Abstract
Homologous recombination (HR) is the process whereby two DNA molecules that share high sequence similarity are able to recombine to generate hybrid DNA molecules. Throughout evolution, the ability of HR to identify highly similar DNA sequences has been adopted for numerous biological phenomena including DNA repair, meiosis, telomere maintenance, ribosomal DNA amplification and immunological diversity. Although Rad51 and Dmc1 are the key proteins that promote HR in mitotic and meiotic cells, respectively, accessory proteins that allow Rad51 and Dmc1 to effectively fulfil their functions have been identified in all examined model systems. In this Review, we discuss the roles of the highly conserved Swi5‐Sfr1 accessory complex in yeast, mice and humans, and explore similarities and differences between these species.
Collapse
Affiliation(s)
- Bilge Argunhan
- Institute of Innovative Research, Tokyo Institute of Technology, Japan
| | - Yasuto Murayama
- Institute of Innovative Research, Tokyo Institute of Technology, Japan
| | - Hiroshi Iwasaki
- Institute of Innovative Research, Tokyo Institute of Technology, Japan
| |
Collapse
|
26
|
Sequential and counter-selectable cassettes for fission yeast. BMC Biotechnol 2016; 16:76. [PMID: 27825338 PMCID: PMC5101803 DOI: 10.1186/s12896-016-0307-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/21/2016] [Indexed: 01/26/2023] Open
Abstract
Background Fission yeast is one of the most commonly used model organisms for studying genetics. For selection of desirable genotypes, antibiotic resistance cassettes are widely integrated into the genome near genes of interest. In yeasts, this is achieved by PCR amplification of the cassette flanked by short homology sequences, which can be incorporated by homology directed repair. However, the currently available cassettes all share the same tef promoter and terminator sequences. It can therefore be challenging to perform multiple genetic modifications by PCR-based targeting, as existing resistance cassettes in strains can be favored for recombination due to shared homology between the cassettes. Results Here we have generated new selection cassettes that do not recombine with those traditionally used. We achieved this by swapping the tef promoter and terminator sequences in the established antibiotic resistance MX6 cassette series for alternative promoters and/or terminators. The newly created selection cassettes did not recombine with the tef-containing MX6 cassettes already present in the genome, allowing for sequential gene targeting using the PCR-based method. In addition, we have generated a series of plasmids to facilitate the C-terminal tagging of genes with desired epitopes. We also utilized the anti-selection gene HSV-TK, which results in cell death in strains grown on the drug 5-Fluoro-2’-deoxyuridine (FdU, Floxuridin or FUDR). By fusing an antibiotic resistance gene to HSV-TK, we were able to select on the relevant antibiotic as well as counter-select on FdU media to confirm the desired genomic modification had been made. We noted that the efficiency of the counter selection by FdU was enhanced by treatment with hydroxyurea. However, a number of DNA replication checkpoint and homologous recombination mutants, including rad3∆, cds1∆, rad54∆ and rad55∆, exhibited sensitivity to FdU even though those strains did not carry the HSV-TK gene. To remove counter-selectable markers, we introduced the Cre-loxP irreversible recombination method. Finally, utilizing the negative selectable markers, we showed efficient induction of point mutations in an endogenous gene by a two-step transformation method. Conclusions The plasmid constructs and techniques described here are invaluable tools for sequential gene targeting and will simplify construction of fission yeast strains required for study.
Collapse
|
27
|
Su GC, Yeh HY, Lin SW, Chung CI, Huang YS, Liu YC, Lyu PC, Chi P. Role of the RAD51-SWI5-SFR1 Ensemble in homologous recombination. Nucleic Acids Res 2016; 44:6242-51. [PMID: 27131790 PMCID: PMC5291256 DOI: 10.1093/nar/gkw375] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/25/2016] [Indexed: 12/22/2022] Open
Abstract
During DNA double-strand break and replication fork repair by homologous recombination, the RAD51 recombinase catalyzes the DNA strand exchange reaction via a helical polymer assembled on single-stranded DNA, termed the presynaptic filament. Our published work has demonstrated a dual function of the SWI5-SFR1 complex in RAD51-mediated DNA strand exchange, namely, by stabilizing the presynaptic filament and maintaining the catalytically active ATP-bound state of the filament via enhancement of ADP release. In this study, we have strived to determine the basis for physical and functional interactions between Mus musculus SWI5-SFR1 and RAD51. We found that SWI5-SFR1 preferentially associates with the oligomeric form of RAD51. Specifically, a C-terminal domain within SWI5 contributes to RAD51 interaction. With specific RAD51 interaction defective mutants of SWI5-SFR1 that we have isolated, we show that the physical interaction is indispensable for the stimulation of the recombinase activity of RAD51. Our results thus help establish the functional relevance of the trimeric RAD51-SWI5-SFR1 complex and provide insights into the mechanistic underpinnings of homology-directed DNA repair in mammalian cells.
Collapse
Affiliation(s)
- Guan-Chin Su
- Institute of Biochemical Sciences, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Hsin-Yi Yeh
- Institute of Biochemical Sciences, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Sheng-Wei Lin
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Chan-I Chung
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Yu-Shan Huang
- National Synchrotron Radiation Research Center, No.101, Hsin-Ann Road, Hsinchu, Science Park, Hsinchu 30076, Taiwan
| | - Yi-Chung Liu
- Institute of Population Sciences, National Health Research Institutes, NO. 35 Keyan, Road, Zhunan, Miaoli County 35053, Taiwan
| | - Ping-Chiang Lyu
- Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
28
|
Khasanova OS, Khasanov FK. New class of Sfr1 protein repeats essential for homologous recombination in Schizosaccharomyces pombe yeast in mitosis. Mol Biol 2016. [DOI: 10.1134/s0026893316010064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Hoa NN, Akagawa R, Yamasaki T, Hirota K, Sasa K, Natsume T, Kobayashi J, Sakuma T, Yamamoto T, Komatsu K, Kanemaki MT, Pommier Y, Takeda S, Sasanuma H. Relative contribution of four nucleases, CtIP, Dna2, Exo1 and Mre11, to the initial step of DNA double-strand break repair by homologous recombination in both the chicken DT40 and human TK6 cell lines. Genes Cells 2015; 20:1059-76. [PMID: 26525166 DOI: 10.1111/gtc.12310] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/27/2015] [Indexed: 01/26/2023]
Abstract
Homologous recombination (HR) is initiated by double-strand break (DSB) resection, during which DSBs are processed by nucleases to generate 3' single-strand DNA. DSB resection is initiated by CtIP and Mre11 followed by long-range resection by Dna2 and Exo1 in Saccharomyces cerevisiae. To analyze the relative contribution of four nucleases, CtIP, Mre11, Dna2 and Exo1, to DSB resection, we disrupted genes encoding these nucleases in chicken DT40 cells. CtIP and Dna2 are required for DSB resection, whereas Exo1 is dispensable even in the absence of Dna2, which observation agrees with no developmental defect in Exo1-deficient mice. Despite the critical role of Mre11 in DSB resection in S. cerevisiae, loss of Mre11 only modestly impairs DSB resection in DT40 cells. To further test the role of CtIP and Mre11 in other species, we conditionally disrupted CtIP and MRE11 genes in the human TK6 B cell line. As with DT40 cells, CtIP contributes to DSB resection considerably more significantly than Mre11 in TK6 cells. Considering the critical role of Mre11 in HR, this study suggests that Mre11 is involved in a mechanism other than DSB resection. In summary, CtIP and Dna2 are sufficient for DSB resection to ensure efficient DSB repair by HR.
Collapse
Affiliation(s)
- Nguyen Ngoc Hoa
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Remi Akagawa
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tomomi Yamasaki
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kouji Hirota
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kentaro Sasa
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Toyoaki Natsume
- Centre for Frontier Research, National Institute of Genetics, ROIS, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Junya Kobayashi
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | - Kenshi Komatsu
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masato T Kanemaki
- Centre for Frontier Research, National Institute of Genetics, ROIS, Yata 1111, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, SOKENDAI, Yata 1111, Mishima, Shizuoka, 411-8540, Japan.,JST, PREST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
30
|
Lorenz A, Mehats A, Osman F, Whitby MC. Rad51/Dmc1 paralogs and mediators oppose DNA helicases to limit hybrid DNA formation and promote crossovers during meiotic recombination. Nucleic Acids Res 2014; 42:13723-35. [PMID: 25414342 PMCID: PMC4267644 DOI: 10.1093/nar/gku1219] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 10/17/2014] [Accepted: 11/06/2014] [Indexed: 11/30/2022] Open
Abstract
During meiosis programmed DNA double-strand breaks (DSBs) are repaired by homologous recombination using the sister chromatid or the homologous chromosome (homolog) as a template. This repair results in crossover (CO) and non-crossover (NCO) recombinants. Only CO formation between homologs provides the physical linkages guiding correct chromosome segregation, which are essential to produce healthy gametes. The factors that determine the CO/NCO decision are still poorly understood. Using Schizosaccharomyces pombe as a model we show that the Rad51/Dmc1-paralog complexes Rad55-Rad57 and Rdl1-Rlp1-Sws1 together with Swi5-Sfr1 play a major role in antagonizing both the FANCM-family DNA helicase/translocase Fml1 and the RecQ-type DNA helicase Rqh1 to limit hybrid DNA formation and promote Mus81-Eme1-dependent COs. A common attribute of these protein complexes is an ability to stabilize the Rad51/Dmc1 nucleoprotein filament, and we propose that it is this property that imposes constraints on which enzymes gain access to the recombination intermediate, thereby controlling the manner in which it is processed and resolved.
Collapse
Affiliation(s)
- Alexander Lorenz
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK The Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alizée Mehats
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Fekret Osman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Matthew C Whitby
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
31
|
Increased meiotic crossovers and reduced genome stability in absence of Schizosaccharomyces pombe Rad16 (XPF). Genetics 2014; 198:1457-72. [PMID: 25293972 DOI: 10.1534/genetics.114.171355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Schizosaccharomyces pombe Rad16 is the ortholog of the XPF structure-specific endonuclease, which is required for nucleotide excision repair and implicated in the single strand annealing mechanism of recombination. We show that Rad16 is important for proper completion of meiosis. In its absence, cells suffer reduced spore viability and abnormal chromosome segregation with evidence for fragmentation. Recombination between homologous chromosomes is increased, while recombination within sister chromatids is reduced, suggesting that Rad16 is not required for typical homolog crossovers but influences the balance of recombination between the homolog and the sister. In vegetative cells, rad16 mutants show evidence for genome instability. Similar phenotypes are associated with mutants affecting Rhp14(XPA) but are independent of other nucleotide excision repair proteins such as Rad13(XPG). Thus, the XPF/XPA module of the nucleotide excision repair pathway is incorporated into multiple aspects of genome maintenance even in the absence of external DNA damage.
Collapse
|
32
|
Klar AJS, Ishikawa K, Moore S. A Unique DNA Recombination Mechanism of the Mating/Cell-type Switching of Fission Yeasts: a Review. Microbiol Spectr 2014; 2:10.1128/microbiolspec.MDNA3-0003-2014. [PMID: 26104357 PMCID: PMC7687047 DOI: 10.1128/microbiolspec.mdna3-0003-2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Indexed: 12/29/2022] Open
Abstract
Cells of the highly diverged Schizosaccharomyces (S.) pombe and S. japonicus fission yeasts exist in one of two sex/mating types, called P (for plus) or M (for minus), specified by which allele, M or P, resides at mat1. The fission yeasts have evolved an elegant mechanism for switching P or M information at mat1 by a programmed DNA recombination event with a copy of one of the two silent mating-type genes residing nearby in the genome. The switching process is highly cell-cycle and generation dependent such that only one of four grandchildren of a cell switches mating type. Extensive studies of fission yeast established the natural DNA strand chirality at the mat1 locus as the primary basis of asymmetric cell division. The asymmetry results from a unique site- and strand-specific epigenetic "imprint" at mat1 installed in one of the two chromatids during DNA replication. The imprint is inherited by one daughter cell, maintained for one cell cycle, and is then used for initiating recombination during mat1 replication in the following cell cycle. This mechanism of cell-type switching is considered to be unique to these two organisms, but determining the operation of such a mechanism in other organisms has not been possible for technical reasons. This review summarizes recent exciting developments in the understanding of mating-type switching in fission yeasts and extends these observations to suggest how such a DNA strand-based epigenetic mechanism of cellular differentiation could also operate in diploid organisms.
Collapse
Affiliation(s)
- Amar J S Klar
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702-1201
| | - Ken Ishikawa
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702-1201
| | - Sharon Moore
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702-1201
| |
Collapse
|
33
|
Tsutsui Y, Kurokawa Y, Ito K, Siddique MSP, Kawano Y, Yamao F, Iwasaki H. Multiple regulation of Rad51-mediated homologous recombination by fission yeast Fbh1. PLoS Genet 2014; 10:e1004542. [PMID: 25165823 PMCID: PMC4148199 DOI: 10.1371/journal.pgen.1004542] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 06/16/2014] [Indexed: 11/18/2022] Open
Abstract
Fbh1, an F-box helicase related to bacterial UvrD, has been proposed to modulate homologous recombination in fission yeast. We provide several lines of evidence for such modulation. Fbh1, but not the related helicases Srs2 and Rqh1, suppressed the formation of crossover recombinants from single HO-induced DNA double-strand breaks. Purified Fbh1 in complex with Skp1 (Fbh1-Skp1 complex) inhibited Rad51-driven DNA strand exchange by disrupting Rad51 nucleoprotein filaments in an ATP-dependent manner; this disruption was alleviated by the Swi5-Sfr1 complex, an auxiliary activator of Rad51. In addition, the reconstituted SCFFbh1 complex, composed of purified Fbh1-Skp1 and Pcu1-Rbx1, displayed ubiquitin-ligase E3 activity toward Rad51. Furthermore, Fbh1 reduced the protein level of Rad51 in stationary phase in an F-box-dependent, but not in a helicase domain-independent manner. These results suggest that Fbh1 negatively regulates Rad51-mediated homologous recombination via its two putative, unrelated activities, namely DNA unwinding/translocation and ubiquitin ligation. In addition to its anti-recombinase activity, we tentatively suggest that Fbh1 might also have a pro-recombination role in vivo, because the Fbh1-Skp1 complex stimulated Rad51-mediated strand exchange in vitro after strand exchange had been initiated. Homologous recombination is required for repairing DNA double-strand breaks (DSBs), which are induced by exogenous factors such as DNA damaging agents or by endogenous factors such as collapse of DNA replication fork in mitotic cells. If improperly processed, DSBs could lead to chromosome rearrangement, cell death, or tumorigenesis in mammals, and thus HR is strictly controlled at several steps, including Rad51 recombinase-driven DNA strand exchange reaction. Specifically, DNA helicases have been shown to be important for suppression of inappropriate recombination events. In this study, we analyzed one such DNA helicase, fission yeast Fbh1. We used an in vivo single-DSB repair assay to show that Fbh1 suppresses crossover formation between homologous chromosomes. Next, we obtained in vitro evidence that Fbh1 acts as an inhibitor of the strand-exchange reaction in the absence of Swi5-Sfr1, but stimulates the reaction after it starts. Furthermore, we found that SCFFbh1 has ubiquitin-ligase activity toward Rad51 in vitro and that Fbh1 regulates the protein level of Rad51 in the stationary phase. These results suggest Fbh1 regulates Rad51-mediated homologous recombination by its seemingly-unrelated two activities, DNA helicase/translocase and ubiquitin ligase.
Collapse
Affiliation(s)
- Yasuhiro Tsutsui
- Department of Biological Sciences, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
- * E-mail: (YT); (HI)
| | - Yumiko Kurokawa
- Education Academy of Computational Life Science, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Kentaro Ito
- Department of Biological Sciences, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Md. Shahjahan P. Siddique
- Department of Biological Sciences, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Yumiko Kawano
- Department of Biological Sciences, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Fumiaki Yamao
- International Institute for Advanced Studies, Kizugawa, Kyoto, Japan
| | - Hiroshi Iwasaki
- Department of Biological Sciences, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
- * E-mail: (YT); (HI)
| |
Collapse
|
34
|
Murayama Y, Kurokawa Y, Tsutsui Y, Iwasaki H. Dual regulation of Dmc1-driven DNA strand exchange by Swi5-Sfr1 activation and Rad22 inhibition. Genes Dev 2013; 27:2299-304. [PMID: 24186976 PMCID: PMC3828516 DOI: 10.1101/gad.218693.113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Meiotic recombination requires two key recombinases: the ubiquitously expressed Rad51 and the meiosis-specific Dmc1. Rad52 and its fission yeast ortholog, Rad22, are mediators that help load Rad51 onto ssDNA coated with replication protein A (RPA). Here, Iwasaki and colleagues reveal how the Swi5–Sfr1 complex functions as both a mediator (loading DMC1 onto ssDNA) and an activator (stimulating Dmc1-driven strand exchange). In contrast, Rad22 inhibits Dmc1 by competing for binding to RPA-coated ssDNA. This study thus provides a novel regulatory mechanism for meiotic recombination. Both ubiquitously expressed Rad51 and meiosis-specific Dmc1 are required for crossover production during meiotic recombination. The budding yeast Rad52 and its fission yeast ortholog, Rad22, are “mediators;” i.e., they help load Rad51 onto ssDNA coated with replication protein A (RPA). Here we show that the Swi5–Sfr1 complex from fission yeast is both a mediator that loads Dmc1 onto ssDNA and a direct “activator” of DNA strand exchange by Dmc1. In stark contrast, Rad22 inhibits Dmc1 action by competing for its binding to RPA-coated ssDNA. Thus, Rad22 plays dual roles in regulating meiotic recombination: activating Rad51 and inhibiting Dmc1.
Collapse
Affiliation(s)
- Yasuto Murayama
- Department of Biological Sciences, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | | | | | | |
Collapse
|
35
|
Fornander LH, Renodon-Cornière A, Kuwabara N, Ito K, Tsutsui Y, Shimizu T, Iwasaki H, Nordén B, Takahashi M. Swi5-Sfr1 protein stimulates Rad51-mediated DNA strand exchange reaction through organization of DNA bases in the presynaptic filament. Nucleic Acids Res 2013; 42:2358-65. [PMID: 24304898 PMCID: PMC3936755 DOI: 10.1093/nar/gkt1257] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Swi5-Sfr1 heterodimer protein stimulates the Rad51-promoted DNA strand exchange reaction, a crucial step in homologous recombination. To clarify how this accessory protein acts on the strand exchange reaction, we have analyzed how the structure of the primary reaction intermediate, the Rad51/single-stranded DNA (ssDNA) complex filament formed in the presence of ATP, is affected by Swi5-Sfr1. Using flow linear dichroism spectroscopy, we observe that the nucleobases of the ssDNA are more perpendicularly aligned to the filament axis in the presence of Swi5-Sfr1, whereas the bases are more randomly oriented in the absence of Swi5-Sfr1. When using a modified version of the natural protein where the N-terminal part of Sfr1 is deleted, which has no affinity for DNA but maintained ability to stimulate the strand exchange reaction, we still observe the improved perpendicular DNA base orientation. This indicates that Swi5-Sfr1 exerts its activating effect through interaction with the Rad51 filament mainly and not with the DNA. We propose that the role of a coplanar alignment of nucleobases induced by Swi5-Sfr1 in the presynaptic Rad51/ssDNA complex is to facilitate the critical matching with an invading double-stranded DNA, hence stimulating the strand exchange reaction.
Collapse
Affiliation(s)
- Louise H Fornander
- Department of Chemical and Biological Engineering, Chalmers University of Technology, S-41296 Gothenburg, Sweden, Research Unit FRE3478, Centre National de la Recherche Scientifique & University of Nantes, F-44322 Nantes cedex 3, France, Graduate School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan, Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, KEK, Tsukuba, 305-0801, Japan and Department of Life Science, Graduate School of Bioscience & Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Jakočiūnas T, Holm LR, Verhein-Hansen J, Trusina A, Thon G. Two portable recombination enhancers direct donor choice in fission yeast heterochromatin. PLoS Genet 2013; 9:e1003762. [PMID: 24204285 PMCID: PMC3812072 DOI: 10.1371/journal.pgen.1003762] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 07/18/2013] [Indexed: 01/06/2023] Open
Abstract
Mating-type switching in fission yeast results from gene conversions of the active mat1 locus by heterochromatic donors. mat1 is preferentially converted by mat2-P in M cells and by mat3-M in P cells. Here, we report that donor choice is governed by two portable recombination enhancers capable of promoting use of their adjacent cassette even when they are transposed to an ectopic location within the mat2-mat3 heterochromatic domain. Cells whose silent cassettes are swapped to mat2-M mat3-P switch mating-type poorly due to a defect in directionality but cells whose recombination enhancers were transposed together with the cassette contents switched like wild type. Trans-acting mutations that impair directionality affected the wild-type and swapped cassettes in identical ways when the recombination enhancers were transposed together with their cognate cassette, showing essential regulatory steps occur through the recombination enhancers. Our observations lead to a model where heterochromatin biases competitions between the two recombination enhancers to achieve directionality. The state of chromatin, heterochromatin or euchromatin, affects homologous recombination in eukaryotes. We study mating-type switching in fission yeast to learn how recombination is regulated in heterochromatin. Fission yeast exists as two mating-types, P or M, determined by the allele present at the expressed mat1 locus. Genetic information for the P and M mating-types is stored in two silent heterochromatic cassettes, mat2-P and mat3-M. Cells can switch mating-type by a replication-coupled recombination event where one of the silent cassettes is used as donor to convert mat1. Mating-type switching occurs in a directional manner where mat2-P is a preferred donor in M cells and mat3-M is preferred in P cells. In this study, we investigated factors responsible for these directed recombination events. We found that two portable recombination enhancers within the heterochromatic region compete with each other and direct recombination in a cell-type specific manner. We also found that heterochromatin plays an important role in directionality by biasing competitions between the two enhancers. Our findings suggest a new model for directed recombination in a heterochromatic domain and open the field for further studies of recombination regulation in other chromatin contexts.
Collapse
Affiliation(s)
- Tadas Jakočiūnas
- Department of Biology, University of Copenhagen, BioCenter, Copenhagen, Denmark
| | - Lærke Rebekka Holm
- Department of Biology, University of Copenhagen, BioCenter, Copenhagen, Denmark
| | | | - Ala Trusina
- Department of Biology, University of Copenhagen, BioCenter, Copenhagen, Denmark
| | - Geneviève Thon
- Department of Biology, University of Copenhagen, BioCenter, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
37
|
Su GC, Chung CI, Liao CY, Lin SW, Tsai CT, Huang T, Li HW, Chi P. Enhancement of ADP release from the RAD51 presynaptic filament by the SWI5-SFR1 complex. Nucleic Acids Res 2013; 42:349-58. [PMID: 24078249 PMCID: PMC3874192 DOI: 10.1093/nar/gkt879] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Homologous recombination catalyzed by the RAD51 recombinase eliminates deleterious DNA lesions from the genome. In the presence of ATP, RAD51 forms a nucleoprotein filament on single-stranded DNA, termed the presynaptic filament, to initiate homologous recombination-mediated DNA double-strand break repair. The SWI5-SFR1 complex stabilizes the presynaptic filament and enhances its ability to mediate the homologous DNA pairing reaction. Here we characterize the RAD51 presynaptic filament stabilization function of the SWI5-SFR1 complex using optical tweezers. Biochemical experiments reveal that SWI5-SFR1 enhances ATP hydrolysis by single-stranded DNA-bound RAD51. Importantly, we show that SWI5-SFR1 acts by facilitating the release of ADP from the presynaptic filament. Our results thus provide mechanistic understanding of the function of SWI5-SFR1 in RAD51-mediated DNA recombination.
Collapse
Affiliation(s)
- Guan-Chin Su
- Institute of Biochemical Sciences, National Taiwan University, NO. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan and Department of Chemistry, National Taiwan University, NO. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Dziadkowiec D, Kramarz K, Kanik K, Wisniewski P, Carr AM. Involvement of Schizosaccharomyces pombe rrp1+ and rrp2+ in the Srs2- and Swi5/Sfr1-dependent pathway in response to DNA damage and replication inhibition. Nucleic Acids Res 2013; 41:8196-209. [PMID: 23828040 PMCID: PMC3783160 DOI: 10.1093/nar/gkt564] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Previously we identified Rrp1 and Rrp2 as two proteins required for the Sfr1/Swi5-dependent branch of homologous recombination (HR) in Schizosaccharomyces pombe. Here we use a yeast two-hybrid approach to demonstrate that Rrp1 and Rrp2 can interact with each other and with Swi5, an HR mediator protein. Rrp1 and Rrp2 form co-localizing methyl methanesulphonate-induced foci in nuclei, further suggesting they function as a complex. To place the Rrp1/2 proteins more accurately within HR sub-pathways, we carried out extensive epistasis analysis between mutants defining Rrp1/2, Rad51 (recombinase), Swi5 and Rad57 (HR-mediators) plus the anti-recombinogenic helicases Srs2 and Rqh1. We confirm that Rrp1 and Rrp2 act together with Srs2 and Swi5 and independently of Rad57 and show that Rqh1 also acts independently of Rrp1/2. Mutants devoid of Srs2 are characterized by elevated recombination frequency with a concomitant increase in the percentage of conversion-type recombinants. Strains devoid of Rrp1 or Rrp2 did not show a change in HR frequency, but the number of conversion-type recombinants was increased, suggesting a possible function for Rrp1/2 with Srs2 in counteracting Rad51 activity. Our data allow us to propose a model placing Rrp1 and Rrp2 functioning together with Swi5 and Srs2 in a synthesis-dependent strand annealing HR repair pathway.
Collapse
Affiliation(s)
- Dorota Dziadkowiec
- Faculty of Biotechnology, Wrocław University, Przybyszewskiego 63-77, 51-148 Wrocław, Poland, Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 1410, 50-950 Wrocław, Poland and Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | | | | | | | | |
Collapse
|
39
|
Fission yeast RecQ helicase Rqh1 is required for the maintenance of circular chromosomes. Mol Cell Biol 2013; 33:1175-87. [PMID: 23297345 DOI: 10.1128/mcb.01713-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protection of telomeres protein 1 (Pot1) binds to single-stranded telomere overhangs and protects chromosome ends. RecQ helicases regulate homologous recombination at multiple stages, including resection, strand displacement, and resolution. Fission yeast pot1 and RecQ helicase rqh1 double mutants are synthetically lethal, but the mechanism is not fully understood. Here, we show that the synthetic lethality of pot1Δ rqh1Δ double mutants is due to inappropriate homologous recombination, as it is suppressed by the deletion of rad51(+). The expression of Rad51 in the pot1Δ rqh1Δ rad51Δ triple mutant, which has circular chromosomes, is lethal. Reduction of the expression of Rqh1 in a pot1 disruptant with circular chromosomes caused chromosome missegregation, and this defect was partially suppressed by the deletion of rad51(+). Taken together, our results suggest that Rqh1 is required for the maintenance of circular chromosomes when homologous recombination is active. Crossovers between circular monomeric chromosomes generate dimers that cannot segregate properly in Escherichia coli. We propose that Rqh1 inhibits crossovers between circular monomeric chromosomes to suppress the generation of circular dimers.
Collapse
|
40
|
Khasanova OS, Vagin DA, Khasanov FK. Recombinational repair in Schizosaccharomyces pombe: The role of mediator proteins. Mol Biol 2012. [DOI: 10.1134/s0026893312050068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Kuwabara N, Murayama Y, Hashimoto H, Kokabu Y, Ikeguchi M, Sato M, Mayanagi K, Tsutsui Y, Iwasaki H, Shimizu T. Mechanistic insights into the activation of Rad51-mediated strand exchange from the structure of a recombination activator, the Swi5-Sfr1 complex. Structure 2012; 20:440-9. [PMID: 22405003 DOI: 10.1016/j.str.2012.01.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/19/2011] [Accepted: 01/04/2012] [Indexed: 10/28/2022]
Abstract
Rad51 forms a helical filament on single-stranded DNA and promotes strand exchange between two homologous DNA molecules during homologous recombination. The Swi5-Sfr1 complex interacts directly with Rad51 and stimulates strand exchange. Here we describe structural and functional aspects of the complex. Swi5 and the C-terminal core domain of Sfr1 form an essential activator complex with a parallel coiled-coil heterodimer joined firmly together via two previously uncharacterized leucine-zipper motifs and a bundle. The resultant coiled coil is sharply kinked, generating an elongated crescent-shaped structure suitable for transient binding within the helical groove of the Rad51 filament. The N-terminal region of Sfr1, meanwhile, has an interface for binding of Rad51. Our data suggest that the snug fit resulting from the complementary geometry of the heterodimer activates the Rad51 filament and that the N-terminal domain of Sfr1 plays a role in the efficient recruitment of the Swi5-Sfr1 complex to the Rad51 filaments.
Collapse
Affiliation(s)
- Naoyuki Kuwabara
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tsai SP, Su GC, Lin SW, Chung CI, Xue X, Dunlop MH, Akamatsu Y, Jasin M, Sung P, Chi P. Rad51 presynaptic filament stabilization function of the mouse Swi5-Sfr1 heterodimeric complex. Nucleic Acids Res 2012; 40:6558-69. [PMID: 22492707 PMCID: PMC3413116 DOI: 10.1093/nar/gks305] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Homologous recombination (HR) represents a major error-free pathway to eliminate pre-carcinogenic chromosomal lesions. The DNA strand invasion reaction in HR is mediated by a helical filament of the Rad51 recombinase assembled on single-stranded DNA that is derived from the nucleolytic processing of the primary lesion. Recent studies have found that the human and mouse Swi5 and Sfr1 proteins form a complex that influences Rad51-mediated HR in cells. Here, we provide biophysical evidence that the mouse Swi5–Sfr1 complex has a 1:1 stoichiometry. Importantly, the Swi5–Sfr1 complex, but neither Swi5 nor Sfr1 alone, physically interacts with Rad51 and stimulates Rad51-mediated homologous DNA pairing. This stimulatory effect stems from the stabilization of the Rad51–ssDNA presynaptic filament. Moreover, we provide evidence that the RSfp (rodent Sfr1 proline rich) motif in Sfr1 serves as a negative regulatory element. These results thus reveal an evolutionarily conserved function in the Swi5–Sfr1 complex and furnish valuable information as to the regulatory role of the RSfp motif that isspecific to themammalianSfr1 orthologs.
Collapse
Affiliation(s)
- Shang-Pu Tsai
- Institute of Biochemical Sciences, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Krejci L, Altmannova V, Spirek M, Zhao X. Homologous recombination and its regulation. Nucleic Acids Res 2012; 40:5795-818. [PMID: 22467216 PMCID: PMC3401455 DOI: 10.1093/nar/gks270] [Citation(s) in RCA: 467] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Homologous recombination (HR) is critical both for repairing DNA lesions in mitosis and for chromosomal pairing and exchange during meiosis. However, some forms of HR can also lead to undesirable DNA rearrangements. Multiple regulatory mechanisms have evolved to ensure that HR takes place at the right time, place and manner. Several of these impinge on the control of Rad51 nucleofilaments that play a central role in HR. Some factors promote the formation of these structures while others lead to their disassembly or the use of alternative repair pathways. In this article, we review these mechanisms in both mitotic and meiotic environments and in different eukaryotic taxa, with an emphasis on yeast and mammal systems. Since mutations in several proteins that regulate Rad51 nucleofilaments are associated with cancer and cancer-prone syndromes, we discuss how understanding their functions can lead to the development of better tools for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Lumir Krejci
- Department of Biology, Masaryk University, Brno, Czech Republic.
| | | | | | | |
Collapse
|
44
|
Going in the right direction: mating-type switching of Schizosaccharomyces pombe is controlled by judicious expression of two different swi2 transcripts. Genetics 2011; 190:977-87. [PMID: 22209903 DOI: 10.1534/genetics.111.137109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Schizosaccharomyces pombe, the fission yeast, cells alternate between P- and M-mating type, controlled by the alternate alleles of the mating-type locus (mat1). The mat1 switching occurs by replacing mat1 with a copy derived from a silenced "donor locus," mat2P or mat3M. The mechanism of donor choice ensuring that switching occurs primarily and productively to the opposite type, called directionality, is largely unknown. Here we identified the mat1-Mc gene, a mammalian sex-determination gene (SRY) homolog, as the primary gene that dictates directionality in M cells. A previously unrecognized, shorter swi2 mRNA, a truncated form of the swi2, was identified, and its expression requires the mat1-Mc function. We also found that the abp1 gene (human CENPB homolog) controls directionality through swi2 regulation. In addition, we implicated a cis-acting DNA sequence in mat2 utilization. Overall, we showed that switching directionality is controlled by judicious expression of two swi2 transcripts through a cell-type-regulated dual promoter. In this respect, this regulation mechanism resembles that of the Drosophila sex-determination Slx gene.
Collapse
|
45
|
Kokabu Y, Murayama Y, Kuwabara N, Oroguchi T, Hashimoto H, Tsutsui Y, Nozaki N, Akashi S, Unzai S, Shimizu T, Iwasaki H, Sato M, Ikeguchi M. Fission yeast Swi5-Sfr1 protein complex, an activator of Rad51 recombinase, forms an extremely elongated dogleg-shaped structure. J Biol Chem 2011; 286:43569-76. [PMID: 22033972 PMCID: PMC3234860 DOI: 10.1074/jbc.m111.303339] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 10/25/2011] [Indexed: 12/03/2022] Open
Abstract
In eukaryotes, DNA strand exchange is the central reaction of homologous recombination, which is promoted by Rad51 recombinases forming a right-handed nucleoprotein filament on single-stranded DNA, also known as a presynaptic filament. Accessory proteins known as recombination mediators are required for the formation of the active presynaptic filament. One such mediator in the fission yeast Schizosaccharomyces pombe is the Swi5-Sfr1 complex, which has been identified as an activator of Rad51 that assists in presynaptic filament formation and stimulates its strand exchange reaction. Here, we determined the 1:1 binding stoichiometry between the two subunits of the Swi5-Sfr1 complex using analytical ultracentrifugation and electrospray ionization mass spectrometry. Small-angle x-ray scattering experiments revealed that the Swi5-Sfr1 complex displays an extremely elongated dogleg-shaped structure in solution, which is consistent with its exceptionally high frictional ratio (f/f(0)) of 2.0 ± 0.2 obtained by analytical ultracentrifugation. Furthermore, we determined a rough topology of the complex by comparing the small-angle x-ray scattering-based structures of the Swi5-Sfr1 complex and four Swi5-Sfr1-Fab complexes, in which the Fab fragments of monoclonal antibodies were specifically bound to experimentally determined sites of Sfr1. We propose a model for how the Swi5-Sfr1 complex binds to the Rad51 filament, in which the Swi5-Sfr1 complex fits into the groove of the Rad51 filament, leading to an active and stable presynaptic filament.
Collapse
Affiliation(s)
- Yuichi Kokabu
- From the Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045
| | | | - Naoyuki Kuwabara
- the Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomotaka Oroguchi
- From the Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045
| | - Hiroshi Hashimoto
- From the Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045
| | | | - Naohito Nozaki
- Bio-Frontier Research Center, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, and
| | - Satoko Akashi
- From the Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045
| | - Satoru Unzai
- From the Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045
| | - Toshiyuki Shimizu
- the Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | - Mamoru Sato
- From the Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045
| | - Mitsunori Ikeguchi
- From the Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045
| |
Collapse
|
46
|
A homolog of male sex-determining factor SRY cooperates with a transposon-derived CENP-B protein to control sex-specific directed recombination. Proc Natl Acad Sci U S A 2011; 108:18754-9. [PMID: 22042869 DOI: 10.1073/pnas.1109988108] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Schizosaccharomyces pombe cells switch mating type by replacing genetic information at the expressed mat1 locus with sequences copied from mat2-P or mat3-M silent donor loci. The choice of donor locus is dictated by cell type, such that mat2 is the preferred donor in M cells and mat3 is the preferred donor in P cells. Donor choice involves a recombination-promoting complex (RPC) containing Swi2 and Swi5. In P cells, the RPC localizes to a specific DNA element located adjacent to mat3, but in M cells it spreads across the silent mating-type region, including mat2-P. This differential distribution of the RPC regulates nonrandom choice of donors. However, cell-type-specific differences in RPC localization are not understood. Here we show that the mat1-M-encoded factor Mc, which shares structural and functional similarities with the male sex-determining factor SRY, is highly enriched at the swi2 and swi5 loci and promotes elevated levels of RPC components. Loss of Mc reduces Swi2 and Swi5 to levels comparable to those in P cells and disrupts RPC spreading across the mat2/3 region. Mc also localizes to loci expressed preferentially in M cells and to retrotransposon LTRs. We demonstrate that Mc localization at LTRs and at swi2 requires Abp1, a homolog of transposon-derived CENP-B protein and that loss of Abp1 impairs Swi2 protein expression and the donor choice mechanism. These results suggest that Mc modulates levels of recombination factors, which is important for mating-type donor selection and for the biased gene conversion observed during meiosis, where M cells serve as preferential donors of genetic information.
Collapse
|
47
|
Cal-Bakowska M, Litwin I, Bocer T, Wysocki R, Dziadkowiec D. The Swi2-Snf2-like protein Uls1 is involved in replication stress response. Nucleic Acids Res 2011; 39:8765-77. [PMID: 21764775 PMCID: PMC3203583 DOI: 10.1093/nar/gkr587] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Saccharomyces cerevisiae Uls1 belongs to the Swi2–Snf2 family of DNA-dependent ATPases and a new protein family of SUMO-targeted ubiquitin ligases. Here, we examine a physiological role of Uls1 and report for the first time its involvement in response to replication stress. We found that deletion of ULS1 in cells lacking RAD52 caused a synthetic growth defect accompanied by prolonged S phase and aberrant cell morphology. uls1Δ also progressed slower through S phase upon MMS treatment and took longer to resolve replication intermediates during recovery. This suggests an important function for Uls1 during replication stress. Consistently, cells lacking Uls1 and endonuclease Mus81 were more sensitive to HU, MMS and CPT than single mus81Δ. Interestingly, deletion of ULS1 attenuated replication stress-related defects in sgs1Δ, such as sensitivity to HU and MMS while increasing the level of PCNA ubiquitination and Rad53 phosphorylation. Importantly, Uls1 interactions with Mus81 and Sgs1 were dependent on its helicase domain. We propose that Uls1 directs a subset of DNA structures arising during replication into the Sgs1-dependent pathway facilitating S phase progression. Thus, in the absence of Uls1 other modes of replication fork processing and repair are employed.
Collapse
Affiliation(s)
- Magdalena Cal-Bakowska
- Institute of Plant Biology, Faculty of Biological Sciences, University of Wrocław, 50-328 Wrocław, Poland
| | | | | | | | | |
Collapse
|
48
|
Say AF, Ledford LL, Sharma D, Singh AK, Leung WK, Sehorn HA, Tsubouchi H, Sung P, Sehorn MG. The budding yeast Mei5-Sae3 complex interacts with Rad51 and preferentially binds a DNA fork structure. DNA Repair (Amst) 2011; 10:586-94. [PMID: 21543267 PMCID: PMC3119066 DOI: 10.1016/j.dnarep.2011.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 03/12/2011] [Accepted: 03/14/2011] [Indexed: 10/18/2022]
Abstract
Meiotic homologous recombination in Saccharomyces cerevisiae involves formation of nucleoprotein filaments of Rad51 and Dmc1 that mediate DNA strand exchange between homologous chromosomes. The Mei5-Sae3 protein complex functions as a recombination mediator to promote nucleation of the Dmc1 recombinase onto replication protein A-coated single-stranded DNA. Here, we have expressed and purified the Mei5 protein, Sae3 protein and the Mei5-Sae3 complex for biochemical studies. We show the Mei5-Sae3 complex preferentially binds a fork-like DNA substrate to 3' overhanging DNA, single-stranded DNA or double-stranded DNA. We demonstrate that Mei5 confers DNA binding activity to the Mei5-Sae3 complex. We determined Mei5-Sae3 interacts with the Rad51 recombinase through the N-terminal domain of Mei5. Unlike Rad52, Mei5-Sae3 lacks recombination mediator activity for Rad51. Importantly, we find that the Mei5-Sae3 complex does not harbor single-strand DNA annealing activity. These properties of the Mei5-Sae3 complex distinguishes it from the Rad52 protein, which serves as the mediator of Rad51 and is involved in the single-strand DNA annealing pathway of homologous recombination.
Collapse
Affiliation(s)
- Amanda F. Say
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634
| | - LeAnna L. Ledford
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634
| | - Deepti Sharma
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634
| | - Akhilesh K. Singh
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520
| | - Wing-Kit Leung
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Hilarie A. Sehorn
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634
| | - Hideo Tsubouchi
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520
| | - Michael G. Sehorn
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634
| |
Collapse
|
49
|
Murayama Y, Tsutsui Y, Iwasaki H. The fission yeast meiosis-specific Dmc1 recombinase mediates formation and branch migration of Holliday junctions by preferentially promoting strand exchange in a direction opposite to that of Rad51. Genes Dev 2011; 25:516-27. [PMID: 21363965 DOI: 10.1101/gad.1997511] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Homologous recombination proceeds via the formation of several intermediates including Holliday junctions (HJs), which are important for creating crossover products. DNA strand exchange is a core reaction that produces these intermediates that is directly catalyzed by RecA family recombinases, of which there are two types in eukaryotes: universal Rad51 and meiosis-specific Dmc1. We demonstrated previously that Rad51 promotes four-strand exchange, mimicking the formation and branch migration of HJs. Here we show that Dmc1 from fission yeast has a similar activity, which requires ATP hydrolysis and is independent of an absolute requirement for the Swi5-Sfr1 complex. These features are critically different from three-strand exchange mediated by Dmc1, but similar to those of four-strand exchange mediated by Rad51, suggesting that strand exchange reactions between duplex-duplex and single-duplex DNAs are mechanistically different. Interestingly, despite similarities in protein structure and in reaction features, the preferential polarities of Dmc1 and Rad51 strand exchange are different (Dmc1 promotes exchange in the 5'-to-3' direction and Rad51 promotes exchange in the 3'-to-5' direction relative to the ssDNA region of the DNA substrate). The significance of the Dmc1 polarity is discussed within the context of the necessity for crossover production.
Collapse
Affiliation(s)
- Yasuto Murayama
- Department of Life Science, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan
| | | | | |
Collapse
|
50
|
Yuan J, Chen J. The role of the human SWI5-MEI5 complex in homologous recombination repair. J Biol Chem 2011; 286:9888-93. [PMID: 21252223 DOI: 10.1074/jbc.m110.207290] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Swi5-Mei5 complex and its homologues are involved in specialized recombination pathways in budding and fission yeasts. Although the fission yeast homologue Swi5-Sfr1 is critical for homologous recombination repair, the budding yeast counterpart Sae3-Mei5 is meiosis-specific, interacts with Dmc1, and promotes assembly of Dmc1 on meiotic chromosomes. Here, we identify and characterize the human SWI5-MEI5 (C9orf119-C10orf78) complex. We showed that SWI5 and MEI5 form a stable complex in vitro and in vivo. The C-terminal Swi5 domain of SWI5 and the middle coiled-coil region of MEI5 dictate this conserved interaction. In addition, SWI5-MEI5 directly interacts with RAD51 in vitro. Depletion of SWI5 or MEI5 in human cells causes defects in homologous recombination repair. Finally, SWI5- or MEI5-depleted cells display enhanced sensitivity to ionizing radiation, consistent with the role of this complex in HR repair. Our results suggest that human SWI5-MEI5 has an evolutionarily conserved function in homologous recombination repair.
Collapse
Affiliation(s)
- Jingsong Yuan
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|