1
|
Matsumoto A, Kojima K, Miya F, Miyauchi A, Watanabe K, Iwamoto S, Kawai K, Kato M, Takahashi Y, Yamagata T. Two cases of DYNC1H1 mutations with intractable epilepsy. Brain Dev 2021; 43:857-862. [PMID: 34092403 DOI: 10.1016/j.braindev.2021.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The DYNC1H1 gene encodes the heavy chain of cytoplasmic dynein 1, a core structure of the cytoplasmic dynein complex. Dominant DYNC1H1 mutations are implicated in Charcot-Marie-Tooth disease, axonal, type 20, spinal muscular atrophy, lower extremity-predominant 1, and autosomal dominant mental retardation 13 with neuronal migration defects. We report two patients with DYNC1H1 mutations who had intractable epilepsy and intellectual disability (ID), one with and one without pachygyria. CASE REPORTS Patient 1 had severe ID. At the age of 2 months, she presented myoclonic seizures and tonic seizures, and later experienced atonic seizures and focal impaired-awareness seizures (FIAS). EEG showed slow waves in right central areas during myoclonic seizures. Brain MRI revealed pachygyria, predominantly in the occipital lobe. After callosal transection her atonic seizures disappeared, but FIAS remained. Patient 2 was diagnosed with autism spectrum disorder (ASD) and severe ID. At the age of 7 years, he presented generalized tonic-clonic seizures, myoclonic seizures, and FIAS. Interictal EEG showed generalized spike-and-wave complexes, predominantly in the left frontal area. Brain MRI was unremarkable. Exome sequencing revealed novel de novo mutations in DYNC1H1: c.4691A > T, p.(Glu1564Val) in Patient 1 and c.12536 T > C, p.(Leu4179Ser) in Patient 2. CONCLUSIONS DYNC1H1 comprises a stem, stalk, and six AAA domains. Patient 2 is the second report of an AAA6 domain mutation without malformations of cortical development. The p.(Gly4072Ser) mutation in the AAA6 domain was also reported in a patient with ASD. It may be that the AAA6 domain has little effect on neuronal movement of DYNC1H1 along microtubules.
Collapse
Affiliation(s)
- Ayumi Matsumoto
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan; Department of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Karin Kojima
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Fuyuki Miya
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akihiko Miyauchi
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Kazuhisa Watanabe
- Department of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Sadahiko Iwamoto
- Department of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Yukitoshi Takahashi
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | | |
Collapse
|
2
|
Ahel J, Lehner A, Vogel A, Schleiffer A, Meinhart A, Haselbach D, Clausen T. Moyamoya disease factor RNF213 is a giant E3 ligase with a dynein-like core and a distinct ubiquitin-transfer mechanism. eLife 2020; 9:e56185. [PMID: 32573437 PMCID: PMC7311170 DOI: 10.7554/elife.56185] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/19/2020] [Indexed: 12/24/2022] Open
Abstract
RNF213 is the major susceptibility factor for Moyamoya disease, a progressive cerebrovascular disorder that often leads to brain stroke in adults and children. Characterization of disease-associated mutations has been complicated by the enormous size of RNF213. Here, we present the cryo-EM structure of mouse RNF213. The structure reveals the intricate fold of the 584 kDa protein, comprising an N-terminal stalk, a dynein-like core with six ATPase units, and a multidomain E3 module. Collaboration with UbcH7, a cysteine-reactive E2, points to an unexplored ubiquitin-transfer mechanism that proceeds in a RING-independent manner. Moreover, we show that pathologic MMD mutations cluster in the composite E3 domain, likely interfering with substrate ubiquitination. In conclusion, the structure of RNF213 uncovers a distinct type of an E3 enzyme, highlighting the growing mechanistic diversity in ubiquitination cascades. Our results also provide the molecular framework for investigating the emerging role of RNF213 in lipid metabolism, hypoxia, and angiogenesis.
Collapse
Affiliation(s)
- Juraj Ahel
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Anita Lehner
- Vienna BioCenter Core Facilities, Vienna BioCenter, Vienna, Austria
| | - Antonia Vogel
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Anton Meinhart
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - David Haselbach
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Tim Clausen
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Behrens VA, Walter WJ, Peters C, Wang T, Brenner B, Geeves MA, Scholz T, Steffen W. Mg 2+ -free ATP regulates the processivity of native cytoplasmic dynein. FEBS Lett 2019; 593:296-307. [PMID: 30575960 DOI: 10.1002/1873-3468.13319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/15/2018] [Accepted: 12/12/2018] [Indexed: 11/07/2022]
Abstract
Cytoplasmic dynein, a microtubule-based motor protein, is responsible for many cellular functions ranging from cargo transport to cell division. The various functions are carried out by a single isoform of cytoplasmic dynein, thus requiring different forms of motor regulation. A possible pathway to regulate motor function was revealed in optical trap experiments. Switching motor function from single steps to processive runs could be achieved by changing Mg2+ and ATP concentrations. Here, we confirm by single molecule total internal reflection fluorescence microscopy that a native cytoplasmic dynein dimer is able to switch to processive runs of more than 680 consecutive steps or 5.5 μm. We also identified the ratio of Mg2+ -free ATP to Mg.ATP as the regulating factor and propose a model for dynein processive stepping.
Collapse
Affiliation(s)
| | | | - Carsten Peters
- Molecular and Cell Physiology, Hannover Medical School, Germany
| | - Tianbang Wang
- Molecular and Cell Physiology, Hannover Medical School, Germany
| | | | | | - Tim Scholz
- Molecular and Cell Physiology, Hannover Medical School, Germany
| | - Walter Steffen
- Molecular and Cell Physiology, Hannover Medical School, Germany
| |
Collapse
|
4
|
Omer S, Greenberg SR, Lee WL. Cortical dynein pulling mechanism is regulated by differentially targeted attachment molecule Num1. eLife 2018; 7:36745. [PMID: 30084355 PMCID: PMC6080947 DOI: 10.7554/elife.36745] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 07/05/2018] [Indexed: 12/17/2022] Open
Abstract
Cortical dynein generates pulling forces via microtubule (MT) end capture-shrinkage and lateral MT sliding mechanisms. In Saccharomyces cerevisiae, the dynein attachment molecule Num1 interacts with endoplasmic reticulum (ER) and mitochondria to facilitate spindle positioning across the mother-bud neck, but direct evidence for how these cortical contacts regulate dynein-dependent pulling forces is lacking. We show that loss of Scs2/Scs22, ER tethering proteins, resulted in defective Num1 distribution and loss of dynein-dependent MT sliding, the hallmark of dynein function. Cells lacking Scs2/Scs22 performed spindle positioning via MT end capture-shrinkage mechanism, requiring dynein anchorage to an ER- and mitochondria-independent population of Num1, dynein motor activity, and CAP-Gly domain of dynactin Nip100/p150Glued subunit. Additionally, a CAAX-targeted Num1 rescued loss of lateral patches and MT sliding in the absence of Scs2/Scs22. These results reveal distinct populations of Num1 and underline the importance of their spatial distribution as a critical factor for regulating dynein pulling force. Cells must divide so that organisms can grow, repair damaged tissues or reproduce. Before dividing, a cell creates two identical copies of its genetic information – one for each daughter. A molecular machine known as the mitotic spindle then moves each set of genetic material to where it will be needed when the daughter cells form. For the process to work properly, however, a motor protein known as dynein must correctly position the spindle by pulling it into place from the outskirts of the cell. When a baker’s yeast cell divides, it first forms a ‘bump’, which grows into a bud that will ultimately become another yeast. The spindle needs to be precisely placed at the midpoint between the original cell and the bud, so the genetic material can get into the future daughter cell. To do so, dynein travels to the bud, where a protein called Num1 helps it attach to the periphery and pull the filaments of the mitotic spindle (known as microtubules) to the correct position. Num1 also attaches to other cellular structures in the bud, including one known as the endoplasmic reticulum. It was unclear how this connection changes where dynein is located, and how it can pull on the spindle. To study this, Omer et al. labeled Num1, dynein and microtubules with fluorescent markers so they could be followed in living baker’s yeast using time-lapse microscopy. Mutant yeast strains were also used to disrupt how these proteins associate, which helps to tease out their roles. The experiments show that there are several populations of Num1 in the bud. One associates with the endoplasmic reticulum, and it helps dynein grab the side of a microtubule and make it slide into the bud. The other does not attach to the reticulum, but instead is located at the very tip of the bud. There, it makes dynein capture the end of the microtubule; this destabilizes the filament, which starts to shorten. As the microtubule shrinks, the spindle is pulled closer to the bud’s tip, which aligns it in the right position. The yeast cells thus need Num1 in both locations to fine-tune the pulling activity of dynein, and the spindle’s final positioning. In the human body, not all divisions create two identical cells; for example, the daughters of stem cells can have different fates. This is due to a precise asymmetric division which dynein partly controls. The results by Omer et al. could help to unravel this mechanism.
Collapse
Affiliation(s)
- Safia Omer
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, United States
| | - Samuel R Greenberg
- Department of Biological Sciences, Dartmouth College, Hanover, United States
| | - Wei-Lih Lee
- Department of Biological Sciences, Dartmouth College, Hanover, United States
| |
Collapse
|
5
|
Schmidt H, Carter AP. Review: Structure and mechanism of the dynein motor ATPase. Biopolymers 2016; 105:557-67. [PMID: 27062277 PMCID: PMC4879348 DOI: 10.1002/bip.22856] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 12/21/2022]
Abstract
Dyneins are multiprotein complexes that move cargo along microtubules in the minus end direction. The largest individual component of the dynein complex is the heavy chain. Its C-terminal 3500 amino-acid residues form the motor domain, which hydrolyses ATP in its ring of AAA+ (ATPases associated with diverse cellular activities) domains to generate the force for movement. The production of force is synchronized with cycles of microtubule binding and release, another important prerequisite for efficient motility along the microtubule. Although the large scale conformational changes that lead to force production and microtubule affinity regulation are well established, it has been largely enigmatic how ATP-hydrolysis in the AAA+ ring causes these rearrangements. The past five years have seen a surge of high resolution information on the dynein motor domain that finally allowed unprecedented insights into this important open question. This review, part of the "ATP and GTP hydrolysis in Biology" special issue, will summarize our current understanding of the dynein motor mechanism with a special emphasis on the recently obtained crystal and EM structures. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 557-567, 2016.
Collapse
Affiliation(s)
- Helgo Schmidt
- Division of Structural Studies, Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Andrew P Carter
- Division of Structural Studies, Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
6
|
Xiao Q, Hu X, Wei Z, Tam KY. Cytoskeleton Molecular Motors: Structures and Their Functions in Neuron. Int J Biol Sci 2016; 12:1083-92. [PMID: 27570482 PMCID: PMC4997052 DOI: 10.7150/ijbs.15633] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/28/2016] [Indexed: 12/21/2022] Open
Abstract
Cells make use of molecular motors to transport small molecules, macromolecules and cellular organelles to target region to execute biological functions, which is utmost important for polarized cells, such as neurons. In particular, cytoskeleton motors play fundamental roles in neuron polarization, extension, shape and neurotransmission. Cytoskeleton motors comprise of myosin, kinesin and cytoplasmic dynein. F-actin filaments act as myosin track, while kinesin and cytoplasmic dynein move on microtubules. Cytoskeleton motors work together to build a highly polarized and regulated system in neuronal cells via different molecular mechanisms and functional regulations. This review discusses the structures and working mechanisms of the cytoskeleton motors in neurons.
Collapse
Affiliation(s)
- Qingpin Xiao
- 1. Faculty of Health Sciences, University of Macau, Taipa, Macau, China; 2. Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaohui Hu
- 1. Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Zhiyi Wei
- 2. Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kin Yip Tam
- 1. Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
7
|
Ananthanarayanan V. Activation of the motor protein upon attachment: Anchors weigh in on cytoplasmic dynein regulation. Bioessays 2016; 38:514-25. [PMID: 27143631 DOI: 10.1002/bies.201600002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cytoplasmic dynein is the major minus-end-directed motor protein in eukaryotes, and has functions ranging from organelle and vesicle transport to spindle positioning and orientation. The mode of regulation of dynein in the cell remains elusive, but a tantalising possibility is that dynein is maintained in an inhibited, non-motile state until bound to cargo. In vivo, stable attachment of dynein to the cell membrane via anchor proteins enables dynein to produce force by pulling on microtubules and serves to organise the nuclear material. Anchor proteins of dynein assume diverse structures and functions and differ in their interaction with the membrane. In yeast, the anchor protein has come to the fore as one of the key mediators of dynein activity. In other systems, much is yet to be discovered about the anchors, but future work in this area will prove invaluable in understanding dynein regulation in the cell.
Collapse
|
8
|
Cytoplasmic dynein regulates its attachment to microtubules via nucleotide state-switched mechanosensing at multiple AAA domains. Proc Natl Acad Sci U S A 2015; 112:6371-6. [PMID: 25941405 DOI: 10.1073/pnas.1417422112] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cytoplasmic dynein is a homodimeric microtubule (MT) motor protein responsible for most MT minus-end-directed motility. Dynein contains four AAA+ ATPases (AAA: ATPase associated with various cellular activities) per motor domain (AAA1-4). The main site of ATP hydrolysis, AAA1, is the only site considered by most dynein motility models. However, it remains unclear how ATPase activity and MT binding are coordinated within and between dynein's motor domains. Using optical tweezers, we characterize the MT-binding strength of recombinant dynein monomers as a function of mechanical tension and nucleotide state. Dynein responds anisotropically to tension, binding tighter to MTs when pulled toward the MT plus end. We provide evidence that this behavior results from an asymmetrical bond that acts as a slip bond under forward tension and a slip-ideal bond under backward tension. ATP weakens MT binding and reduces bond strength anisotropy, and unexpectedly, so does ADP. Using nucleotide binding and hydrolysis mutants, we show that, although ATP exerts its effects via binding AAA1, ADP effects are mediated by AAA3. Finally, we demonstrate "gating" of AAA1 function by AAA3. When tension is absent or applied via dynein's C terminus, ATP binding to AAA1 induces MT release only if AAA3 is in the posthydrolysis state. However, when tension is applied to the linker, ATP binding to AAA3 is sufficient to "open" the gate. These results elucidate the mechanisms of dynein-MT interactions, identify regulatory roles for AAA3, and help define the interplay between mechanical tension and nucleotide state in regulating dynein motility.
Collapse
|
9
|
Allosteric communication in the dynein motor domain. Cell 2015; 159:857-68. [PMID: 25417161 DOI: 10.1016/j.cell.2014.10.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 06/30/2014] [Accepted: 10/07/2014] [Indexed: 01/15/2023]
Abstract
Dyneins power microtubule motility using ring-shaped, AAA-containing motor domains. Here, we report X-ray and electron microscopy (EM) structures of yeast dynein bound to different ATP analogs, which collectively provide insight into the roles of dynein's two major ATPase sites, AAA1 and AAA3, in the conformational change mechanism. ATP binding to AAA1 triggers a cascade of conformational changes that propagate to all six AAA domains and cause a large movement of the "linker," dynein's mechanical element. In contrast to the role of AAA1 in driving motility, nucleotide transitions in AAA3 gate the transmission of conformational changes between AAA1 and the linker, suggesting that AAA3 acts as a regulatory switch. Further structural and mutational studies also uncover a role for the linker in regulating the catalytic cycle of AAA1. Together, these results reveal how dynein's two major ATP-binding sites initiate and modulate conformational changes in the motor domain during motility.
Collapse
|
10
|
Schmidt H. Dynein motors: How AAA+ ring opening and closing coordinates microtubule binding and linker movement. Bioessays 2015; 37:532-43. [DOI: 10.1002/bies.201400215] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Helgo Schmidt
- Medical Research Council Laboratory of Molecular Biology; Division of Structural Studies; Cambridge UK
| |
Collapse
|
11
|
Lesich KA, dePinho TG, Dionne BJ, Lindemann CB. The effects of Ca2+ and ADP on dynein switching during the beat cycle of reactivated bull sperm models. Cytoskeleton (Hoboken) 2014; 71:611-27. [PMID: 25355469 DOI: 10.1002/cm.21196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/14/2014] [Accepted: 10/20/2014] [Indexed: 12/22/2022]
Abstract
Calcium regulation of flagellar motility is the basis for chemotaxis, phototaxis, and hyperactivation responses in eukaryotic flagellates and spermatozoa. Ca2+ is the internal messenger for these responses, but the coupling between Ca2+ and the motor mechanism that generates the flagellar beat is incompletely understood. We examined the effects of Ca2+ on the flagellar curvature at the switch-points of the beat cycle in bull sperm. The sperm were detergent extracted and reactivated with 0.1 mM adenosine triphosphate (ATP). With their heads immobilized and their tails beating freely it is possible to calculate the bending torque and the transverse force acting on the flagellum at the switch-points. An increase in the free Ca2+ concentration (pCa 8 to pCa 4) significantly decreased the development of torque and t-force in the principal bending direction, while having negligible effect on the reverse bend. The action of Ca2+ was more pronounced when the sperm were also treated with 4 mM adenosine diphosphate (ADP); it was sufficient to change the direction of bending that reaches the greater curvature. We also observed that the curvature of the distal half of the flagellum became locked in one direction in the presence of Ca2+ . This indicates that a subset of the dynein becomes continuously activated by Ca2+ and fails to switch with the beat cycle. Our evidence suggests this subset of dyneins is localized to doublets #1-4 of the axoneme.
Collapse
Affiliation(s)
- Kathleen A Lesich
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| | | | | | | |
Collapse
|
12
|
Redwine WB, Hernandez-Lopez R, Zou S, Huang J, Reck-Peterson SL, Leschziner AE. Structural basis for microtubule binding and release by dynein. Science 2012; 337:1532-1536. [PMID: 22997337 PMCID: PMC3919166 DOI: 10.1126/science.1224151] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cytoplasmic dynein is a microtubule-based motor required for intracellular transport and cell division. Its movement involves coupling cycles of track binding and release with cycles of force-generating nucleotide hydrolysis. How this is accomplished given the ~25 nanometers separating dynein's track- and nucleotide-binding sites is not understood. Here, we present a subnanometer-resolution structure of dynein's microtubule-binding domain bound to microtubules by cryo-electron microscopy that was used to generate a pseudo-atomic model of the complex with molecular dynamics. We identified large rearrangements triggered by track binding and specific interactions, confirmed by mutagenesis and single-molecule motility assays, which tune dynein's affinity for microtubules. Our results provide a molecular model for how dynein's binding to microtubules is communicated to the rest of the motor.
Collapse
Affiliation(s)
- W. B. Redwine
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, United States
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - R. Hernandez-Lopez
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, United States
| | - S. Zou
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - J. Huang
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - S. L. Reck-Peterson
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - A. E. Leschziner
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, United States
| |
Collapse
|
13
|
Analyses of dynein heavy chain mutations reveal complex interactions between dynein motor domains and cellular dynein functions. Genetics 2012; 191:1157-79. [PMID: 22649085 DOI: 10.1534/genetics.112.141580] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytoplasmic dynein transports cargoes for a variety of crucial cellular functions. However, since dynein is essential in most eukaryotic organisms, the in-depth study of the cellular function of dynein via genetic analysis of dynein mutations has not been practical. Here, we identify and characterize 34 different dynein heavy chain mutations using a genetic screen of the ascomycete fungus Neurospora crassa, in which dynein is nonessential. Interestingly, our studies show that these mutations segregate into five different classes based on the in vivo localization of the mutated dynein motors. Furthermore, we have determined that the different classes of dynein mutations alter vesicle trafficking, microtubule organization, and nuclear distribution in distinct ways and require dynactin to different extents. In addition, biochemical analyses of dynein from one mutant strain show a strong correlation between its in vitro biochemical properties and the aberrant intracellular function of that altered dynein. When the mutations were mapped to the published dynein crystal structure, we found that the three-dimensional structural locations of the heavy chain mutations were linked to particular classes of altered dynein functions observed in cells. Together, our data indicate that the five classes of dynein mutations represent the entrapment of dynein at five separate points in the dynein mechanochemical and transport cycles. We have developed N. crassa as a model system where we can dissect the complexities of dynein structure, function, and interaction with other proteins with genetic, biochemical, and cell biological studies.
Collapse
|
14
|
|
15
|
Qiu W, Derr ND, Goodman BS, Villa E, Wu D, Shih W, Reck-Peterson SL. Dynein achieves processive motion using both stochastic and coordinated stepping. Nat Struct Mol Biol 2012; 19:193-200. [PMID: 22231401 PMCID: PMC3272163 DOI: 10.1038/nsmb.2205] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 11/18/2011] [Indexed: 12/18/2022]
Abstract
Processivity, the ability of single molecules to move continuously along a track, is a fundamental requirement of cargo-transporting molecular motors. Here, we investigate how cytoplasmic dynein, a homodimeric, microtubule-based motor, achieves processive motion. To do this, we developed a versatile method for assembling Saccharomyces cerevisiae dynein heterodimers, using complementary DNA oligonucleotides covalently linked to dynein monomers labeled with different organic fluorophores. Using two-color, single-molecule microscopy and high-precision, two-dimensional tracking, we find that dynein has a highly variable stepping pattern that is distinct from all other processive cytoskeletal motors, which use 'hand-over-hand' mechanisms. Uniquely, dynein stepping is stochastic when its two motor domains are close together. However, coordination emerges as the distance between motor domains increases, implying that a tension-based mechanism governs these steps. This plasticity may allow tuning of dynein for its diverse cellular functions.
Collapse
Affiliation(s)
- Weihong Qiu
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Daghestani HN, Zhu G, Johnston PA, Shinde SN, Brodsky JL, Day BW. Characterization of inhibitors of glucocorticoid receptor nuclear translocation: a model of cytoplasmic dynein-mediated cargo transport. Assay Drug Dev Technol 2011; 10:46-60. [PMID: 21919741 DOI: 10.1089/adt.2010.0367] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Agonist-induced glucocorticoid receptor [GR] transport from the cytoplasm to the nucleus was used as a model to identify dynein-mediated cargo transport inhibitors. Cell-based screening of the library of pharmacologically active compound (LOPAC)-1280 collection identified several small molecules that stalled the agonist-induced transport of GR-green fluorescent protein (GFP) in a concentration-dependent manner. Fluorescent images of microtubule organization, nuclear DNA staining, expression of GR-GFP, and its subcellular distribution were inspected and quantified by image analysis to evaluate the impact of compounds on cell morphology, toxicity, and GR transport. Given the complexity of the multi-protein complex involved in dynein-mediated cargo transport and the variety of potential mechanisms for interruption of that process, we therefore developed and validated a panel of biochemical assays to investigate some of the more likely intracellular target(s) of the GR transport inhibitors. Although the apomorphine enantiomers exhibited the most potency toward the ATPase activities of cytoplasmic dynein, myosin, and the heat-shock proteins (HSPs), their apparent lack of specificity made them unattractive for further study in our quest. Other molecules appeared to be nonspecific inhibitors that targeted reactive cysteines of proteins. Ideally, specific retrograde transport inhibitors would either target dynein itself or one of the other important proteins associated with the transport process. Although the hits from the cell-based screen of the LOPAC-1280 collection did not exhibit this desired profile, this screening platform provided a promising phenotypic system for the discovery of dynein/HSP modulators.
Collapse
Affiliation(s)
- Hikmat N Daghestani
- Department of Structural Biology, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Dynein, which is a minus-end-directed microtubule motor, is crucial to a range of cellular processes. The mass of its motor domain is about 10 times that of kinesin, the other microtubule motor. Its large size and the difficulty of expressing and purifying mutants have hampered progress in dynein research. Recently, however, electron microscopy, X-ray crystallography and single-molecule nanometry have shed light on several key unsolved questions concerning how the dynein molecule is organized, what conformational changes in the molecule accompany ATP hydrolysis, and whether two or three motor domains are coordinated in the movements of dynein. This minireview describes our current knowledge of the molecular organization and the force-generating mechanism of dynein, with emphasis on findings from electron microscopy and single-molecule nanometry.
Collapse
Affiliation(s)
- Hitoshi Sakakibara
- National Institute of Information and Communications Technology, Nishi-ku, Kobe, Japan
| | | |
Collapse
|
18
|
Abstract
Dyneins are microtubule-based motor proteins that power ciliary beating, transport intracellular cargos, and help to construct the mitotic spindle. Evolved from ring-shaped hexameric AAA-family adenosine triphosphatases (ATPases), dynein's large size and complexity have posed challenges for understanding its structure and mechanism. Here, we present a 6 angstrom crystal structure of a functional dimer of two ~300-kilodalton motor domains of yeast cytoplasmic dynein. The structure reveals an unusual asymmetric arrangement of ATPase domains in the ring-shaped motor domain, the manner in which the mechanical element interacts with the ATPase ring, and an unexpected interaction between two coiled coils that create a base for the microtubule binding domain. The arrangement of these elements provides clues as to how adenosine triphosphate-driven conformational changes might be transmitted across the motor domain.
Collapse
Affiliation(s)
- Andrew P Carter
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California-San Francisco, 600 16th Street, San Francisco, CA 94158, USA.
| | | | | | | |
Collapse
|
19
|
|
20
|
Zhang J, Zhuang L, Lee Y, Abenza JF, Peñalva MA, Xiang X. The microtubule plus-end localization of Aspergillus dynein is important for dynein-early-endosome interaction but not for dynein ATPase activation. J Cell Sci 2010; 123:3596-604. [PMID: 20876661 DOI: 10.1242/jcs.075259] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cytoplasmic dynein in filamentous fungi accumulates at microtubule plus-ends near the hyphal tip, which is important for minus-end-directed transport of early endosomes. It was hypothesized that dynein is switched on at the plus-end by cargo association. Here, we show in Aspergillus nidulans that kinesin-1-dependent plus-end localization is not a prerequisite for dynein ATPase activation. First, the Walker A and Walker B mutations in the dynein heavy chain AAA1 domain implicated in blocking different steps of the ATPase cycle cause different effects on dynein localization to microtubules, arguing against the suggestion that ATPase is inactive before arriving at the plus-end. Second, dynein from ΔkinA (kinesin 1) mutant cells has normal ATPase activity despite the absence of dynein plus-end accumulation. In ΔkinA hyphae, dynein localizes along microtubules and does not colocalize with abnormally accumulated early endosomes at the hyphal tip. This is in contrast to the colocalization of dynein and early endosomes in the absence of NUDF/LIS1. However, the Walker B mutation allows dynein to colocalize with the hyphal-tip-accumulated early endosomes in the ΔkinA background. We suggest that the normal ability of dyenin to interact with microtubules as an active minus-end-directed motor demands kinesin-1-mediated plus-end accumulation for effective interactions with early endosomes.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, USUHS, Bethesda, MD 20814, USA
| | | | | | | | | | | |
Collapse
|
21
|
Lindemann CB, Lesich KA. Flagellar and ciliary beating: the proven and the possible. J Cell Sci 2010; 123:519-28. [PMID: 20145000 DOI: 10.1242/jcs.051326] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The working mechanism of the eukaryotic flagellar axoneme remains one of nature's most enduring puzzles. The basic mechanical operation of the axoneme is now a story that is fairly complete; however, the mechanism for coordinating the action of the dynein motor proteins to produce beating is still controversial. Although a full grasp of the dynein switching mechanism remains elusive, recent experimental reports provide new insights that might finally disclose the secrets of the beating mechanism: the special role of the inner dynein arms, especially dynein I1 and the dynein regulatory complex, the importance of the dynein microtubule-binding affinity at the stalk, and the role of bending in the selection of the active dynein group have all been implicated by major new evidence. This Commentary considers this new evidence in the context of various hypotheses of how axonemal dynein coordination might work.
Collapse
Affiliation(s)
- Charles B Lindemann
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.
| | | |
Collapse
|
22
|
Crozat E, Meglio A, Allemand JF, Chivers CE, Howarth M, Vénien-Bryan C, Grainge I, Sherratt DJ. Separating speed and ability to displace roadblocks during DNA translocation by FtsK. EMBO J 2010; 29:1423-33. [PMID: 20379135 PMCID: PMC2868570 DOI: 10.1038/emboj.2010.29] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 02/12/2010] [Indexed: 11/18/2022] Open
Abstract
FtsK translocates dsDNA directionally at >5 kb/s, even under strong forces. In vivo, the action of FtsK at the bacterial division septum is required to complete the final stages of chromosome unlinking and segregation. Despite the availability of translocase structures, the mechanism by which ATP hydrolysis is coupled to DNA translocation is not understood. Here, we use covalently linked translocase subunits to gain insight into the DNA translocation mechanism. Covalent trimers of wild-type subunits dimerized efficiently to form hexamers with high translocation activity and an ability to activate XerCD-dif chromosome unlinking. Covalent trimers with a catalytic mutation in the central subunit formed hexamers with two mutated subunits that had robust ATPase activity. They showed wild-type translocation velocity in single-molecule experiments, activated translocation-dependent chromosome unlinking, but had an impaired ability to displace either a triplex oligonucleotide, or streptavidin linked to biotin-DNA, during translocation along DNA. This separation of translocation velocity and ability to displace roadblocks is more consistent with a sequential escort mechanism than stochastic, hand-off, or concerted mechanisms.
Collapse
Affiliation(s)
- Estelle Crozat
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Adrien Meglio
- Laboratoire de Physique Statistique et Département de Biologie, Ecole Normale Supérieure, UPMC, Paris 06, Université Paris Diderot, CNRS, Paris, France
| | - Jean-François Allemand
- Laboratoire de Physique Statistique et Département de Biologie, Ecole Normale Supérieure, UPMC, Paris 06, Université Paris Diderot, CNRS, Paris, France
| | | | - Mark Howarth
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Ian Grainge
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | |
Collapse
|
23
|
Coordinating mitosis with cell polarity: Molecular motors at the cell cortex. Semin Cell Dev Biol 2010; 21:283-9. [PMID: 20109571 DOI: 10.1016/j.semcdb.2010.01.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 01/19/2010] [Indexed: 01/05/2023]
Abstract
In many cell divisions, the position of the spindle apparatus is coordinated with polarity signals at the cell cortex so that copies of the genome are delivered to regions of the cell that are designated for differential inheritance by the two progeny. To coordinate spindle position with cell polarity, the spindle interfaces with elements on the cortex, where molecular motors often produce the forces that power displacement. Here we describe the molecular pathways by which cortical motors translocate the spindle in budding yeast, where the mechanisms are understood relatively well, and we compare these pathways to spindle positioning processes in metazoan systems, where the molecular details are less well understood.
Collapse
|
24
|
Abstract
Eukaryotic cells use cytoskeletal motor proteins to transport many different intracellular cargos. Numerous kinesins and myosins have evolved to cope with the various transport needs that have arisen during eukaryotic evolution. Surprisingly, a single cytoplasmic dynein (a minus end-directed microtubule motor) carries out similarly diverse transport activities as the many different types of kinesin. How is dynein coupled to its wide range of cargos and how is it spatially and temporally regulated? The answer could lie in the several multifunctional adaptors, including dynactin, lissencephaly 1, nuclear distribution protein E (NUDE) and NUDE-like, Bicaudal D, Rod-ZW10-Zwilch and Spindly, that regulate dynein function and localization.
Collapse
|
25
|
Kon T, Shima T, Sutoh K. Protein engineering approaches to study the dynein mechanism using a Dictyostelium expression system. Methods Cell Biol 2009; 92:65-82. [PMID: 20409799 DOI: 10.1016/s0091-679x(08)92005-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dyneins are microtubule-based motor complexes that power a wide variety of motile processes within eukaryotic cells, including the beating of cilia and flagella and intracellular trafficking along microtubules. Mechanistic studies on dynein have been hampered by their enormous size (molecular masses of 0.5-3MDa) and molecular complexity. However, the recent establishment of recombinant expression systems for cytoplasmic dynein, together with structural and functional analyses, has advanced our understanding of the molecular mechanisms of dynein motility. Here, we describe several protocols for protein engineering approaches to the dynein mechanism using a Dictyostelium discoideum expression system. We first describe the design and preparation of recombinant dynein suitable for mechanistic studies. We then discuss two distinct functional assays that take advantage of the recombinant dynein. One is for detection of dynein's conformational changes during the ATPase cycle. Another is an in vitro motility assay at multiple- and single-molecule levels for examination of the dynamic behavior of dynein moving on a microtubule.
Collapse
Affiliation(s)
- Takahide Kon
- Department of Life Sciences, University of Tokyo, Japan
| | | | | |
Collapse
|
26
|
Abstract
In recent decades, the development of technologies such as optical trap nanometry and advanced fluorescence microscopy have provided tools for studying the dynamics of single protein molecules in vitro and in vivo with nanometer precision over timescales from milliseconds to seconds. The single-molecule sensitivities of these methods permit studies to be made on conformational changes and dynamics of protein molecules that are masked in ensemble-averaged experiments. For protein motors, force generation, processivity, step size, transitions among mechanical states, and mechanochemical coupling are among the properties that can be directly measured by single-molecule techniques. Our understanding of the functions of protein motors has thus benefited considerably from the application of single-molecule techniques. This chapter will focus on single-molecule techniques applicable to axonemal dyneins, the principles upon which they work and how they are constructed and conducted.
Collapse
Affiliation(s)
- Hiroaki Kojima
- Kobe Advanced ICT Research Center, National Institute of Information and Communications Technology, Nishi-ku, Japan
| | | | | | | |
Collapse
|
27
|
Höök P, Yagi T, Ghosh-Roy A, Williams JC, Vallee RB. The dynein stalk contains an antiparallel coiled coil with region-specific stability. Biochemistry 2009; 48:2710-3. [PMID: 19222235 DOI: 10.1021/bi900223x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dynein motor proteins interact with microtubules at the distal end of an unusual 12-15 nm stalk, which communicates with the sites for nucleotide hydrolysis and microtubule binding in a cyclical, bidirectional manner. Here, we report that the stalk shaft of rat cytoplasmic dynein is an antiparallel alpha-helical coiled coil, the stability of which is markedly altered by changes at its proximal and distal ends, consistent with a structure capable of rapid, cyclical rearrangement during the dynein cross-bridge cycle.
Collapse
Affiliation(s)
- Peter Höök
- Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
28
|
Moore JK, Stuchell-Brereton MD, Cooper JA. Function of dynein in budding yeast: mitotic spindle positioning in a polarized cell. ACTA ACUST UNITED AC 2009; 66:546-55. [PMID: 19402153 DOI: 10.1002/cm.20364] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cytoplasmic dynein is a microtubule motor that powers minus-end-directed motility in a variety of biological settings. The budding yeast, Saccharomyces cerevisiae, has been a useful system for the study of dynein, due to its molecular genetics and cell biology capabilities, coupled with the conservation of dynein-pathway proteins. In this review we discuss how budding yeast use dynein to manipulate the position of the mitotic spindle and the nucleus during cell division, using cytoplasmic microtubules, and we describe our current understanding of the genes required for dynein function. Cell Motil. Cytoskeleton 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Jeffrey K Moore
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA.
| | | | | |
Collapse
|
29
|
Serohijos AWR, Tsygankov D, Liu S, Elston TC, Dokholyan NV. Multiscale approaches for studying energy transduction in dynein. Phys Chem Chem Phys 2009; 11:4840-50. [PMID: 19506759 PMCID: PMC2823375 DOI: 10.1039/b902028d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cytoplasmic dynein is an important motor that drives all minus-end directed movement along microtubules. Dynein is a complex motor whose processive motion is driven by ATP-hydrolysis. Dynein's run length has been measured to be several millimetres with typical velocities in the order of a few nanometres per second. Therefore, the average time between steps is a fraction of a second. When this time scale is compared with typical time scales for protein side chain and backbone movements (approximately 10(-9) s and approximately 10(-5) s, respectively), it becomes clear that a multi-timescale modelling approach is required to understand energy transduction in this protein. Here, we review recent efforts to use computational and mathematical modelling to understand various aspects of dynein's chemomechanical cycle. First, we describe a structural model of dynein's motor unit showing a heptameric organization of the motor subunits. Second, we describe our molecular dynamics simulations of the motor unit that are used to investigate the dynamics of the various motor domains. Third, we present a kinetic model of the coordination between the two dynein heads. Lastly, we investigate the various potential geometries of the dimer during its hydrolytic and stepping cycle.
Collapse
Affiliation(s)
- Adrian W. R. Serohijos
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, NC, USA
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, NC, USA
- Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, NC, USA
| | - Denis Tsygankov
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Shubin Liu
- Research Computing Center, University of North Carolina at Chapel Hill, NC, USA
| | - Timothy C. Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
- Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, NC, USA
| | - Nikolay V. Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, NC, USA
- Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
30
|
Tsygankov D, Serohijos AWR, Dokholyan NV, Elston TC. Kinetic models for the coordinated stepping of cytoplasmic dynein. J Chem Phys 2009; 130:025101. [PMID: 19154055 DOI: 10.1063/1.3050098] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To generate processive motion along a polymer track requires that motor proteins couple their ATP hydrolysis cycle with conformational changes in their structural subunits. Numerous experimental and theoretical efforts have been devoted to establishing how this chemomechanical coupling occurs. However, most processive motors function as dimers. Therefore a full understanding of the motor's performance also requires knowledge of the coordination between the chemomechanical cycles of the two heads. We consider a general two-headed model for cytoplasmic dynein that is built from experimental measurements on the chemomechanical states of monomeric dynein. We explore different possible scenarios of coordination that simultaneously satisfy two main requirements of the dimeric protein: high processivity (long run length) and high motor velocity (fast ATP turnover). To demonstrate the interplay between these requirements and the necessity for coordination, we first develop and analyze a simple mechanical model for the force-induced stepping in the absence of ATP. Next we use a simplified model of dimeric dynein's chemomechanical cycle to establish the kinetic rules that must be satisfied for the model to be consistent with recent data for the motor's performance from single molecule experiments. Finally, we use the results of these investigations to develop a full model for dimeric dynein's chemomechanical cycle and analyze this model to make experimentally testable predictions.
Collapse
Affiliation(s)
- Denis Tsygankov
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | | | |
Collapse
|
31
|
Kon T, Imamula K, Roberts AJ, Ohkura R, Knight PJ, Gibbons IR, Burgess SA, Sutoh K. Helix sliding in the stalk coiled coil of dynein couples ATPase and microtubule binding. Nat Struct Mol Biol 2009; 16:325-33. [PMID: 19198589 PMCID: PMC2757048 DOI: 10.1038/nsmb.1555] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 01/05/2009] [Indexed: 01/01/2023]
Abstract
Coupling between ATPase and track binding sites is essential for molecular motors to move along cytoskeletal tracks. In dynein, these sites are separated by a long coiled coil stalk that must mediate communication between them, but the underlying mechanism remains unclear. Here we show that changes in registration between the two helices of the coiled coil can perform this function. We locked the coiled coil at three specific registrations using oxidation to disulfides of paired cysteine residues introduced into the two helices. These trapped ATPase activity either in a microtubule-independent high or low state, and microtubule binding activity either in an ATP-insensitive strong or weak state, depending on the registry of the coiled coil. Our results provide direct evidence that dynein uses sliding between the two helices of the stalk to couple ATPase and microtubule binding activities during its mechanochemical cycle.
Collapse
Affiliation(s)
- Takahide Kon
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo 153-8902, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Markus SM, Punch JJ, Lee WL. Motor- and tail-dependent targeting of dynein to microtubule plus ends and the cell cortex. Curr Biol 2009; 19:196-205. [PMID: 19185494 DOI: 10.1016/j.cub.2008.12.047] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 12/11/2008] [Accepted: 12/15/2008] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cytoplasmic dynein mediates spindle positioning in budding yeast by powering sliding of microtubules along the cell cortex. Although previous studies have demonstrated cortical and plus-end targeting of dynein heavy chain (Dyn1/HC), the regulation of its recruitment to these sites remains elusive. RESULTS Here we show that separate domains of Dyn1/HC confer differential localization to the dynein complex. The N-terminal tail domain targets Dyn1/HC to cortical Num1 receptor sites, whereas the C-terminal motor domain targets Dyn1/HC to microtubule plus ends in a Bik1/CLIP-170- and Pac1/LIS1-dependent manner. Surprisingly, the isolated motor domain blocks plus-end targeting of Dyn1/HC, leading to a dominant-negative effect on dynein function. Overexpression of Pac1/LIS1, but not Bik1/CLIP-170, rescues the dominant negativity by restoring Dyn1/HC to plus ends. In contrast, the isolated tail domain has no inhibitory effect on Dyn1/HC targeting and function. However, cortical targeting of the tail construct is more robust than full-length Dyn1/HC and occurs independently of Bik1/CLIP-170 or Pac1/LIS1. CONCLUSIONS Our results suggest that the cortical association domain is normally masked in the full-length dynein molecule. We propose that targeting of dynein to plus ends unmasks the tail, priming the motor for off-loading to cortical Num1 sites.
Collapse
Affiliation(s)
- Steven M Markus
- Biology Department, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | | | | |
Collapse
|
33
|
Gennerich A, Vale RD. Walking the walk: how kinesin and dynein coordinate their steps. Curr Opin Cell Biol 2009; 21:59-67. [PMID: 19179063 DOI: 10.1016/j.ceb.2008.12.002] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 12/18/2008] [Accepted: 12/19/2008] [Indexed: 12/22/2022]
Abstract
Molecular motors drive key biological processes such as cell division, intracellular organelle transport, and sperm propulsion and defects in motor function can give rise to various human diseases. Two dimeric microtubule-based motor proteins, kinesin-1 and cytoplasmic dynein can take over one hundred steps without detaching from the track. In this review, we discuss how these processive motors coordinate the activities of their two identical motor domains so that they can walk along microtubules.
Collapse
Affiliation(s)
- Arne Gennerich
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158-2200, USA
| | | |
Collapse
|
34
|
Varma D, Monzo P, Stehman SA, Vallee RB. Direct role of dynein motor in stable kinetochore-microtubule attachment, orientation, and alignment. ACTA ACUST UNITED AC 2008; 182:1045-54. [PMID: 18809721 PMCID: PMC2542467 DOI: 10.1083/jcb.200710106] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytoplasmic dynein has been implicated in diverse mitotic functions, several involving its association with kinetochores. Much of the supporting evidence comes from inhibition of dynein regulatory factors. To obtain direct insight into kinetochore dynein function, we expressed a series of dynein tail fragments, which we find displace motor-containing dynein heavy chain (HC) from kinetochores without affecting other subunits, regulatory factors, or microtubule binding proteins. Cells with bipolar mitotic spindles progress to late prometaphase-metaphase at normal rates. However, the dynein tail, dynactin, Mad1, and BubR1 persist at the aligned kinetochores, which is consistent with a role for dynein in self-removal and spindle assembly checkpoint inactivation. Kinetochore pairs also show evidence of misorientation relative to the spindle equator and abnormal oscillatory behavior. Further, kinetochore microtubule bundles are severely destabilized at reduced temperatures. Dynein HC RNAi and injection of anti-dynein antibody in MG132-arrested metaphase cells produced similar effects. These results identify a novel function for the dynein motor in stable microtubule attachment and maintenance of kinetochore orientation during metaphase chromosome alignment.
Collapse
Affiliation(s)
- Dileep Varma
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
35
|
Cho C, Reck-Peterson SL, Vale RD. Regulatory ATPase sites of cytoplasmic dynein affect processivity and force generation. J Biol Chem 2008; 283:25839-45. [PMID: 18650442 PMCID: PMC2533788 DOI: 10.1074/jbc.m802951200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The heavy chain of cytoplasmic dynein contains four nucleotide-binding
domains referred to as AAA1–AAA4, with the first domain (AAA1) being the
main ATP hydrolytic site. Although previous studies have proposed regulatory
roles for AAA3 and AAA4, the role of ATP hydrolysis at these sites remains
elusive. Here, we have analyzed the single molecule motility properties of
yeast cytoplasmic dynein mutants bearing mutations that prevent ATP hydrolysis
at AAA3 or AAA4. Both mutants remain processive, but the AAA4 mutant exhibits
a surprising increase in processivity due to its tighter affinity for
microtubules. In addition to changes in motility characteristics, AAA3 and
AAA4 mutants produce less maximal force than wild-type dynein. These results
indicate that the nucleotide binding state at AAA3 and AAA4 can allosterically
modulate microtubule binding affinity and affect dynein processivity and force
production.
Collapse
Affiliation(s)
- Carol Cho
- Howard Hughes Medical Institute, University of California, San Francisco, California 94158-2517, USA
| | | | | |
Collapse
|
36
|
Mukherji S. Model for the unidirectional motion of a dynein molecule. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:051916. [PMID: 18643111 DOI: 10.1103/physreve.77.051916] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Revised: 02/25/2008] [Indexed: 05/15/2023]
Abstract
Cytoplasmic dyneins transport cellular organelles by moving on a microtubule filament. It has been found recently that depending on the applied force and the concentration of the adenosine triphosphate molecules, dynein's step size varies. Based on these studies, we propose a simple model for dynein's unidirectional motion taking into account the variations in its step size. We study how the average velocity and the relative dispersion in the displacement vary with the applied load. The model is amenable to further extensions by inclusion of details associated with the structure and the processivity of the molecule.
Collapse
Affiliation(s)
- Sutapa Mukherji
- Department of Physics, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
37
|
Insights into the mechanism of ADP action on flagellar motility derived from studies on bull sperm. Biophys J 2008; 95:472-82. [PMID: 18375503 DOI: 10.1529/biophysj.107.127951] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adenosine diphosphate (ADP) is known to have interesting effects on flagellar motility. Permeabilized and reactivated bull sperm exhibit a marked reduction in beating frequency and a greatly increased beat amplitude in the presence of 1-4 mM ADP. In this study we examined the force production of sperm reactivated with 0.1 mM ATP with and without 1 mM ADP and found that there is little or no resulting change in the stalling force produced by a bull sperm flagella in response to ADP. Because bull sperm bend to a higher curvature after ADP treatment we explored the possibility that ADP-treated sperm flagella are more flexible. We measured the stiffness of 50 muM sodium vanadate treated bull sperm in the presence of 4 mM ADP, but found no change in the passive flagellar stiffness. When we analyzed the torque that develops in ADP-treated sperm at the point of beat reversal we found that the torque developed by the flagellum is significantly increased. Our torque estimates also allow us to calculate the transverse force (t-force) acting on the flagellum at the point of beat direction reversal. We find that the t-force at the switch-point of the beat is increased significantly in the ADP treated condition, averaging 0.7 +/- 0.29 nN/microm in 0.1 mM ATP and increasing to 2.9 +/- 1.2 nN/microm in 0.1 mM ATP plus 4 mM ADP. This suggests that ADP is exerting its effect on the beat by increasing the tenacity of dynein attachment at the B-subtubule. This could be a direct result of a regulatory effect of ADP on the binding affinity of dynein for the B-subtubule of the outer doublets. This result could also help to explain a number of previous experimental observations, as discussed.
Collapse
|
38
|
Molecular mechanism of force generation by dynein, a molecular motor belonging to the AAA+ family. Biochem Soc Trans 2008; 36:131-5. [PMID: 18208400 DOI: 10.1042/bst0360131] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dynein is an AAA+ (ATPase associated with various cellular activities)-type motor complex that utilizes ATP hydrolysis to actively drive microtubule sliding. The dynein heavy chain (molecular mass >500 kDa) contains six tandemly linked AAA+ modules and exhibits full motor activities. Detailed molecular dissection of this motor with unique architecture was hampered by the lack of an expression system for the recombinant heavy chain, as a result of its large size. However, the recent success of recombinant protein expression with full motor activities has provided a method for advances in structure-function studies in order to elucidate the molecular mechanism of force generation.
Collapse
|
39
|
Abstract
Models commonly used to explain the mechanism of myosin motors typically include a power stroke that is attributed to a conformational change in the motor domain and amplified by a long lever arm that connects the motor domain to the cargo. Similar models have proved less enlightening in the case of microtubule motors, for which it may be more helpful to consider models involving thermally driven mechanisms.
Collapse
Affiliation(s)
- L A Amos
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, United Kingdom.
| |
Collapse
|
40
|
Gennerich A, Carter AP, Reck-Peterson SL, Vale RD. Force-induced bidirectional stepping of cytoplasmic dynein. Cell 2008; 131:952-65. [PMID: 18045537 DOI: 10.1016/j.cell.2007.10.016] [Citation(s) in RCA: 273] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 07/24/2007] [Accepted: 10/08/2007] [Indexed: 12/21/2022]
Abstract
Cytoplasmic dynein is a minus-end-directed microtubule motor whose mechanism of movement remains poorly understood. Here, we use optical tweezers to examine the force-dependent stepping behavior of yeast cytoplasmic dynein. We find that dynein primarily advances in 8 nm increments but takes other sized steps (4-24 nm) as well. An opposing force induces more frequent backward stepping by dynein, and the motor walks backward toward the microtubule plus end at loads above its stall force of 7 pN. Remarkably, in the absence of ATP, dynein steps processively along microtubules under an external load, with less force required for minus-end- than for plus-end-directed movement. This nucleotide-independent walking reveals that force alone can drive repetitive microtubule detachment-attachment cycles of dynein's motor domains. These results suggest a model for how dynein's two motor domains coordinate their activities during normal processive motility and provide new clues for understanding dynein-based motility in living cells.
Collapse
Affiliation(s)
- Arne Gennerich
- The Howard Hughes Medical Institute and the Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158-2200, USA
| | | | | | | |
Collapse
|
41
|
Yoshimura A, Nakano I, Shingyoji C. Inhibition by ATP and activation by ADP in the regulation of flagellar movement in sea urchin sperm. ACTA ACUST UNITED AC 2007; 64:777-93. [PMID: 17685440 DOI: 10.1002/cm.20222] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ATP and ADP are known to play inhibitory and activating roles, respectively, in the regulation of dynein motile activity of flagella. To elucidate how these nucleotide functions are related to the regulation of normal flagellar beating, we examined their effects on the motility of reactivated sea urchin sperm flagella at low pH. At pH 7.0-7.2 which is lower than the physiological pH of 8, about 90% of reactivated flagella were motionless at 1 mM ATP, while about 60% were motile at 0.02 mM ATP. The motionless flagella at 1 mM ATP maintained a single large bend or an S-shaped bend, indicating formation of dynein crossbridges in the axoneme. The ATP-dependent inhibition of flagellar movement was released by ADP, and was absent in outer arm-depleted flagella. Similar inhibition was also observed at 0.02 mM ATP when demembranated flagella were reactivated in the presence of Li+ or pretreated with protein phosphatase 1 (PP1). ADP also released this type of ATP-inhibition. In PP1-pretreated axonemes the binding of a fluorescent analogue of ADP to dynein decreased. Under elastase-treatment at pH 8.0, the beating of demembranated flagella at 1 mM ATP and 0.02 mM ATP lasted for approximately 100 and 45 s, respectively. The duration of beating at 0.02 mM ATP was prolonged by Li+, and that at 1 mM ATP was shortened by removal of outer arms. These results indicate that the regulation of on/off switching of dynein motile activity of flagella involves ATP-induced inhibition and ADP-induced activation, probably through phosphorylation/dephosphorylation of outer arm-linked protein(s).
Collapse
Affiliation(s)
- Azumi Yoshimura
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo, Japan
| | | | | |
Collapse
|
42
|
Imamula K, Kon T, Ohkura R, Sutoh K. The coordination of cyclic microtubule association/dissociation and tail swing of cytoplasmic dynein. Proc Natl Acad Sci U S A 2007; 104:16134-9. [PMID: 17911268 PMCID: PMC1999400 DOI: 10.1073/pnas.0702370104] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dynein motor domain is composed of a tail, head, and stalk and is thought to generate a force to microtubules by swinging the tail against the head during its ATPase cycle. For this "power stroke," dynein has to coordinate the tail swing with microtubule association/dissociation at the tip of the stalk. Although a detailed picture of the former process is emerging, the latter process remains to be elucidated. By using the single-headed recombinant motor domain of Dictyostelium cytoplasmic dynein, we address the questions of how the interaction of the motor domain with a microtubule is modulated by ATPase steps, how the two mechanical cycles (the microtubule association/dissociation and tail swing) are coordinated, and which ATPase site among the multiple sites in the motor domain regulates the coordination. Based on steady-state and pre-steady-state measurements, we demonstrate that the two mechanical cycles proceed synchronously at most of the intermediate states in the ATPase cycle: the motor domain in the poststroke state binds strongly to the microtubule with a K(d) of approximately 0.2 microM, whereas most of the motor domains in the prestroke state bind weakly to the microtubule with a K(d) of >10 microM. However, our results suggest that the timings of the microtubule affinity change and tail swing are staggered at the recovery stroke step in which the tail swings from the poststroke to the prestroke position. The ATPase site in the AAA1 module of the motor domain was found to be responsible for the coordination of these two mechanical processes.
Collapse
Affiliation(s)
- Kenji Imamula
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo 153-8902, Japan
| | - Takahide Kon
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo 153-8902, Japan
| | - Reiko Ohkura
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo 153-8902, Japan
| | - Kazuo Sutoh
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo 153-8902, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Mogami T, Kon T, Ito K, Sutoh K. Kinetic characterization of tail swing steps in the ATPase cycle of Dictyostelium cytoplasmic dynein. J Biol Chem 2007; 282:21639-44. [PMID: 17548361 DOI: 10.1074/jbc.m701914200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
According to the power stroke model of dynein deduced from electron microscopic and fluorescence resonance energy transfer studies, the power stroke and the recovery stroke are expected to take place at the two isomerization steps of the ATPase cycle at the primary ATPase site. Here, we have conducted presteady-state kinetic analyses of these two isomerization steps with the single-headed motor domain of Dictyostelium cytoplasmic dynein by employing fluorescence resonance energy transfer to probe ATPase steps at the primary site and tail positions. Our results show that the recovery stroke at the first isomerization step proceeds quickly ( approximately 180 s(-1)), whereas the power stroke at the second isomerization step is very slow ( approximately 0.2 s(-1)) in the absence of microtubules, and that the presence of microtubules accelerates the second but not the first step. Moreover, a comparison of the microtubule-induced acceleration of the power stroke step and that of steady-state ATP hydrolysis implies the intriguing possibility that microtubules simultaneously accelerate the ATPase activity not only at the primary site but also at other site(s) in the motor domain.
Collapse
Affiliation(s)
- Toshifumi Mogami
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo, Japan
| | | | | | | |
Collapse
|
44
|
Zhuang L, Zhang J, Xiang X. Point mutations in the stem region and the fourth AAA domain of cytoplasmic dynein heavy chain partially suppress the phenotype of NUDF/LIS1 loss in Aspergillus nidulans. Genetics 2007; 175:1185-96. [PMID: 17237507 PMCID: PMC1840067 DOI: 10.1534/genetics.106.069013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cytoplasmic dynein performs multiple cellular tasks but its regulation remains unclear. The dynein heavy chain has a N-terminal stem that binds to other subunits and a C-terminal motor unit that contains six AAA (ATPase associated with cellular activities) domains and a microtubule-binding site located between AAA4 and AAA5. In Aspergillus nidulans, NUDF (a LIS1 homolog) functions in the dynein pathway, and two nudF6 partial suppressors were mapped to the nudA dynein heavy chain locus. Here we identified these two mutations. The nudAL1098F mutation resides in the stem region, and nudAR3086C is in the end of AAA4. These mutations partially suppress the phenotype of nudF deletion but do not suppress the phenotype exhibited by mutants of dynein intermediate chain and Arp1. Surprisingly, the stronger DeltanudF suppressor, nudAR3086C, causes an obvious decrease in the basal level of dynein's ATPase activity and an increase in dynein's distribution along microtubules. Thus, suppression of the DeltanudF phenotype may result from mechanisms other than simply the enhancement of dynein's ATPase activity. The fact that a mutation in the end of AAA4 negatively regulates dynein's ATPase activity but partially compensates for NUDF loss indicates the importance of the AAA4 domain in dynein regulation in vivo.
Collapse
Affiliation(s)
- Lei Zhuang
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| | | | | |
Collapse
|
45
|
Affiliation(s)
- Peter Höök
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
46
|
Xie P, Dou SX, Wang PY. Model for unidirectional movement of axonemal and cytoplasmic dynein molecules. Acta Biochim Biophys Sin (Shanghai) 2006; 38:711-24. [PMID: 17033718 DOI: 10.1111/j.1745-7270.2006.00223.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A model for the unidirectional movement of dynein is presented based on the structural observations and biochemical experimental results available. In this model, the binding affinity of dynein for microtubule (MT) is independent of its nucleotide state and the change between strong and weak MT-binding is determined naturally by the variation of relative orientation between the stalk and MT, as the stalk rotates following nucleotide-state transition. Thus the enigmatic communication from the adenosine triphosphate (ATP)-binding site in the globular domain to the far MT-binding site in the tip of the stalk, which is a prerequisite in conventional models, is not required. Using the present model, the previous experimental results such as the effect of ATP and adenosine diphosphate (ADP) bindings on dissociation of dynein from MT, the movement of single-headed axonemal dyneins at saturating ATP concentration, the load dependence of step-size for the movement of two-headed cytoplasmic dyneins and the dependence of stall force on ATP concentration can be well explained.
Collapse
Affiliation(s)
- Ping Xie
- Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China.
| | | | | |
Collapse
|
47
|
Reck-Peterson SL, Yildiz A, Carter AP, Gennerich A, Zhang N, Vale RD. Single-molecule analysis of dynein processivity and stepping behavior. Cell 2006; 126:335-48. [PMID: 16873064 PMCID: PMC2851639 DOI: 10.1016/j.cell.2006.05.046] [Citation(s) in RCA: 436] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2006] [Revised: 05/04/2006] [Accepted: 05/17/2006] [Indexed: 11/29/2022]
Abstract
Cytoplasmic dynein, the 1.2 MDa motor driving minus-end-directed motility, has been reported to move processively along microtubules, but its mechanism of motility remains poorly understood. Here, using S. cerevisiae to produce recombinant dynein with a chemically controlled dimerization switch, we show by structural and single-molecule analysis that processivity requires two dynein motor domains but not dynein's tail domain or any associated subunits. Dynein advances most frequently in 8 nm steps, although longer as well as side and backward steps are observed. Individual motor domains show a different stepping pattern, which is best explained by the two motor domains shuffling in an alternating manner between rear and forward positions. Our results suggest that cytoplasmic dynein moves processively through the coordination of its two motor domains, but its variable step size and direction suggest a considerable diffusional component to its step, which differs from Kinesin-1 and is more akin to myosin VI.
Collapse
Affiliation(s)
- Samara L. Reck-Peterson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158 USA
| | - Ahmet Yildiz
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158 USA
| | - Andrew P. Carter
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158 USA
| | - Arne Gennerich
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158 USA
| | - Nan Zhang
- Howard Hughes Medical Institute, University of California, San Francisco, CA, 94158 USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158 USA
| | - Ronald D. Vale
- Howard Hughes Medical Institute, University of California, San Francisco, CA, 94158 USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158 USA
- Contact:
| |
Collapse
|
48
|
Brau RR, Tarsa PB, Ferrer JM, Lee P, Lang MJ. Interlaced optical force-fluorescence measurements for single molecule biophysics. Biophys J 2006; 91:1069-77. [PMID: 16648165 PMCID: PMC1563781 DOI: 10.1529/biophysj.106.082602] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Combining optical tweezers with single molecule fluorescence offers a powerful technique to study the biophysical properties of single proteins and molecules. However, such integration into a combined, coincident arrangement has been severely limited by the dramatic reduction in fluorescence longevity of common dyes under simultaneous exposure to trapping and fluorescence excitation beams. We present a novel approach to overcome this problem by alternately modulating the optical trap and excitation beams to prevent simultaneous exposure of the fluorescent dye. We demonstrate the dramatic reduction of trap-induced photobleaching effects on the common single molecule fluorescence dye Cy3, which is highly susceptible to this destructive pathway. The extension in characteristic fluorophore longevity, a 20-fold improvement when compared to simultaneous exposure to both beams, prolongs the fluorescence emission to several tens of seconds in a combined, coincident arrangement. Furthermore, we show that this scheme, interlaced optical force-fluorescence, does not compromise the trap stiffness or single molecule fluorescence sensitivity at sufficiently high modulation frequencies. Such improvement permits the simultaneous measurement of the mechanical state of a system with optical tweezers and the localization of molecular changes with single molecule fluorescence, as demonstrated by mechanically unzipping a 15-basepair DNA segment labeled with Cy3.
Collapse
Affiliation(s)
- Ricardo R Brau
- Department of Mechanical Engineering, Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | | | | | | | |
Collapse
|
49
|
Vallee RB, Höök P. Autoinhibitory and other autoregulatory elements within the dynein motor domain. J Struct Biol 2006; 156:175-81. [PMID: 16647270 DOI: 10.1016/j.jsb.2006.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 02/02/2006] [Accepted: 02/17/2006] [Indexed: 11/17/2022]
Abstract
The dyneins are a family of microtubule motor proteins. The motor domain, which represents the C-terminal 2/3 of the dynein heavy chain, exhibits homology to the AAA family of ATPases. It consists of a ring of six related but divergent AAA+ units, with two substantial sized protruding projections, the stem, or tail, which anchors the protein to diverse subcellular sites, and the stalk, which binds microtubules. This article reviews recent efforts to probe the mechanism by which the dyneins produce force, and work from the authors' lab regarding long-range conformational regulation of dynein enzymatic activity.
Collapse
Affiliation(s)
- Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, P and S 15-410, 630 W. 168th St., New York, NY 10032, USA.
| | | |
Collapse
|
50
|
LeBrasseur N, Katsnelson A. Golden Gate Cells: The American Society for Cell Biology San Francisco, CA December 10-14, 2005. J Biophys Biochem Cytol 2006. [PMCID: PMC2063668 DOI: 10.1083/jcb.1724mr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|