1
|
Thabet MA, Penadés JR, Haag AF. The ClpX protease is essential for inactivating the CI master repressor and completing prophage induction in Staphylococcus aureus. Nat Commun 2023; 14:6599. [PMID: 37852980 PMCID: PMC10584840 DOI: 10.1038/s41467-023-42413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
Bacteriophages (phages) are the most abundant biological entities on Earth, exerting a significant influence on the dissemination of bacterial virulence, pathogenicity, and antimicrobial resistance. Temperate phages integrate into the bacterial chromosome in a dormant state through intricate regulatory mechanisms. These mechanisms repress lytic genes while facilitating the expression of integrase and the CI master repressor. Upon bacterial SOS response activation, the CI repressor undergoes auto-cleavage, producing two fragments with the N-terminal domain (NTD) retaining significant DNA-binding ability. The process of relieving CI NTD repression, essential for prophage induction, remains unknown. Here we show a specific interaction between the ClpX protease and CI NTD repressor fragment of phages Ф11 and 80α in Staphylococcus aureus. This interaction is necessary and sufficient for prophage activation after SOS-mediated CI auto-cleavage, defining the final stage in the prophage induction cascade. Our findings unveil unexpected roles of bacterial protease ClpX in phage biology.
Collapse
Affiliation(s)
- Mohammed A Thabet
- School of Infection & Immunity, University of Glasgow, G12 8TA, Glasgow, UK
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha city, Al Aqiq, 65779, Kingdom of Saudi Arabia
| | - José R Penadés
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Andreas F Haag
- School of Infection & Immunity, University of Glasgow, G12 8TA, Glasgow, UK.
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK.
| |
Collapse
|
2
|
LexA protein of cyanobacterium Anabaena sp. strain PCC7120 exhibits in vitro pH-dependent and RecA-independent autoproteolytic activity. Int J Biochem Cell Biol 2015; 59:84-93. [DOI: 10.1016/j.biocel.2014.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 11/27/2014] [Accepted: 12/08/2014] [Indexed: 02/04/2023]
|
3
|
Botelho TO, Guevara T, Marrero A, Arêde P, Fluxà VS, Reymond JL, Oliveira DC, Gomis-Rüth FX. Structural and functional analyses reveal that Staphylococcus aureus antibiotic resistance factor HmrA is a zinc-dependent endopeptidase. J Biol Chem 2011; 286:25697-709. [PMID: 21622555 PMCID: PMC3138305 DOI: 10.1074/jbc.m111.247437] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/07/2011] [Indexed: 12/17/2022] Open
Abstract
HmrA is an antibiotic resistance factor of methicillin-resistant Staphylococcus aureus. Molecular analysis of this protein revealed that it is not a muramidase or β-lactamase but a nonspecific double-zinc endopeptidase consisting of a catalytic domain and an inserted oligomerization domain, which probably undergo a relative interdomain hinge rotation upon substrate binding. The active-site cleft is located at the domain interface. Four HmrA protomers assemble to a large ∼170-kDa homotetrameric complex of 125 Å. All four active sites are fully accessible and ∼50-70 Å apart, far enough apart to act on a large meshwork substrate independently but simultaneously. In vivo studies with four S. aureus strains of variable resistance levels revealed that the extracellular addition of HmrA protects against loss of viability in the presence of oxacillin and that this protection depends on proteolytic activity. All of these results indicate that HmrA is a peptidase that participates in resistance mechanisms in vivo in the presence of β-lactams. Furthermore, our results have implications for most S. aureus strains of known genomic sequences and several other cocci and bacilli, which harbor close orthologs. This suggests that HmrA may be a new widespread antibiotic resistance factor in bacteria.
Collapse
Affiliation(s)
- Tiago O. Botelho
- From the Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, Barcelona Science Park, Helix Building, c/ Baldiri Reixac, 15-21, E-08028 Barcelona, Spain
| | - Tibisay Guevara
- From the Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, Barcelona Science Park, Helix Building, c/ Baldiri Reixac, 15-21, E-08028 Barcelona, Spain
| | - Aniebrys Marrero
- From the Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, Barcelona Science Park, Helix Building, c/ Baldiri Reixac, 15-21, E-08028 Barcelona, Spain
| | - Pedro Arêde
- the Center for Microbiological Resources, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, P-2829-516 Caparica, Portugal, and
| | - Viviana S. Fluxà
- the Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-301 Berne, Switzerland
| | - Jean-Louis Reymond
- the Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-301 Berne, Switzerland
| | - Duarte C. Oliveira
- the Center for Microbiological Resources, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, P-2829-516 Caparica, Portugal, and
| | - F. Xavier Gomis-Rüth
- From the Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, Barcelona Science Park, Helix Building, c/ Baldiri Reixac, 15-21, E-08028 Barcelona, Spain
| |
Collapse
|
4
|
Dongre M, Singh NS, Dureja C, Peddada N, Solanki AK, Ashish, Raychaudhuri S. Evidence on how a conserved glycine in the hinge region of HapR regulates its DNA binding ability: lessons from a natural variant. J Biol Chem 2011; 286:15043-9. [PMID: 21383015 DOI: 10.1074/jbc.m110.209346] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HapR has been recognized as a quorum-sensing master regulator in Vibrio cholerae. Because it controls a plethora of disparate cellular events, the absence of a functional HapR affects the physiology of V. cholerae to a great extent. In the current study, we pursued an understanding of an observation of a natural protease-deficient non-O1, non-O139 variant V. cholerae strain V2. Intriguingly, a nonfunctional HapR (henceforth designated as HapR(V2)) harboring a substitution of glycine to aspartate at position 39 of the N-terminal hinge region has been identified. An in vitro gel shift assay clearly suggested the inability of HapR(V2) to interact with various cognate promoters. Reinstatement of glycine at position 39 restores DNA binding ability of HapR(V2) (HapR(V2G)), thereby rescuing the protease-negative phenotype of this strain. The elution profile of HapR(V2) and HapR(V2G) proteins in size-exclusion chromatography and their circular dichroism spectra did not reflect any significant differences to explain the functional discrepancies between the two proteins. To gain insight into the structure-function relationship of these two proteins, we acquired small/wide angle x-ray scattering data from samples of the native and G39D mutant. Although Guinier analysis and indirect Fourier transformation of scattering indicated only a slight difference in the shape parameters, structure reconstruction using dummy amino acids concluded that although HapR adopts a "Y" shape similar to its crystal structure, the G39D mutation in hinge drastically altered the DNA binding domains by bringing them in close proximity. This altered spatial orientation of the helix-turn-helix domains in this natural variant provides the first structural evidence on the functional role of the hinge region in quorum sensing-related DNA-binding regulatory proteins of Vibrio spp.
Collapse
Affiliation(s)
- Mitesh Dongre
- Institute of Microbial Technology, Chandigarh, Council of Scientific and Industrial Research, Sector 39A, Chandigarh 160036, India
| | | | | | | | | | | | | |
Collapse
|
5
|
Cohn MT, Kjelgaard P, Frees D, Penadés JR, Ingmer H. Clp-dependent proteolysis of the LexA N-terminal domain in Staphylococcus aureus. MICROBIOLOGY-SGM 2010; 157:677-684. [PMID: 21183573 DOI: 10.1099/mic.0.043794-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The SOS response is governed by the transcriptional regulator LexA and is elicited in many bacterial species in response to DNA damaging conditions. Induction of the SOS response is mediated by autocleavage of the LexA repressor resulting in a C-terminal dimerization domain (CTD) and an N-terminal DNA-binding domain (NTD) known to retain some DNA-binding activity. The proteases responsible for degrading the LexA domains have been identified in Escherichia coli as ClpXP and Lon. Here, we show that in the human and animal pathogen Staphylococcus aureus, the ClpXP and ClpCP proteases contribute to degradation of the NTD and to a lesser degree the CTD. In the absence of the proteolytic subunit, ClpP, or one or both of the Clp ATPases, ClpX and ClpC, the LexA domains were stabilized after autocleavage. Production of a stabilized variant of the NTD interfered with mitomycin-mediated induction of sosA expression while leaving lexA unaffected, and also significantly reduced SOS-induced mutagenesis. Our results show that sequential proteolysis of LexA is conserved in S. aureus and that the NTD may differentially regulate a subset of genes in the SOS regulon.
Collapse
Affiliation(s)
- Marianne T Cohn
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
| | - Peter Kjelgaard
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
| | - Dorte Frees
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
| | - José R Penadés
- Departamento de Quimica, Bioquimica y Biologia Molecular, Universidad Cardenal Herrera-CEU, Moncada, Valencia 46113, Spain.,Centro Investigación y Tecnologia Animal, Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA), Apdo 187, Segorbe, Castellón, Spain
| | - Hanne Ingmer
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
| |
Collapse
|
6
|
Butala M, Hodoscek M, Anderluh G, Podlesek Z, Zgur-Bertok D. Intradomain LexA rotation is a prerequisite for DNA binding specificity. FEBS Lett 2007; 581:4816-20. [PMID: 17884043 DOI: 10.1016/j.febslet.2007.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Revised: 09/04/2007] [Accepted: 09/06/2007] [Indexed: 10/22/2022]
Abstract
In the absence of DNA damage the LexA protein represses the bacterial SOS system. We performed molecular dynamic simulations of two LexA dimers bound to operators. Our model predicted that rotation of the LexA DNA binding domain, with respect to the dimerised C-terminal domain, is required for selective DNA binding. To confirm the model, double and quadruple cysteine LexA mutants were engineered. Electrophoretic mobility-shift assay and surface plasmon resonance showed that disulfide bond formation between the introduced cysteine residues precluded LexA specific DNA binding due to blocked domain reorientation. Our model could provide the basis for novel drug design.
Collapse
Affiliation(s)
- Matej Butala
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
7
|
Agarwal R, Burley SK, Swaminathan S. Structural analysis of a ternary complex of allantoate amidohydrolase from Escherichia coli reveals its mechanics. J Mol Biol 2007; 368:450-63. [PMID: 17362992 DOI: 10.1016/j.jmb.2007.02.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 02/03/2007] [Accepted: 02/05/2007] [Indexed: 11/21/2022]
Abstract
Purine metabolism plays a major role in regulating the availability of purine nucleotides destined for nucleic acid synthesis. Allantoate amidohydrolase catalyzes the conversion of allantoate to (S)-ureidoglycolate, one of the crucial alternate steps in purine metabolism. The crystal structure of a ternary complex of allantoate amidohydrolase with its substrate allantoate and an allosteric effector, a sulfate ion, from Escherichia coli was determined to understand better the catalytic mechanism and substrate specificity. The 2.25 A resolution X-ray structure reveals an alpha/beta scaffold akin to zinc exopeptidases of the peptidase M20 family and lacks the (beta/alpha)(8)-barrel fold characteristic of the amidohydrolases. Arrangement of the substrate and the two co-catalytic zinc ions at the active site governs catalytic specificity for hydrolysis of N-carbamyl versus the peptide bond in exopeptidases. In its crystalline form, allantoate amidohydrolase adopts a relatively open conformation. However, structural analysis reveals the possibility of a significant movement of domains via rotation about two hinge regions upon allosteric effector and substrate binding resulting in a closed catalytically competent conformation by bringing the substrate allantoate closer to co-catalytic zinc ions. Two cis-prolyl peptide bonds found on either side of the dimerization domain in close proximity to the substrate and ligand-binding sites may be involved in protein folding and in preserving the integrity of the catalytic site.
Collapse
Affiliation(s)
- Rakhi Agarwal
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | | |
Collapse
|
8
|
Camas FM, Blázquez J, Poyatos JF. Autogenous and nonautogenous control of response in a genetic network. Proc Natl Acad Sci U S A 2006; 103:12718-23. [PMID: 16908855 PMCID: PMC1568915 DOI: 10.1073/pnas.0602119103] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Feedback-based control methods determine the behavior of cellular systems, an example being autogenous control, the regulation of production of a protein by itself. This control strategy was theoretically shown to be superior to an equivalent but nonautogenously regulated system when based on a repressor. Although some of its advantages were later confirmed with isolated synthetic circuits, the superiority of autogenous control in natural networks remains untested. Here, we use the SOS DNA repair system of Escherichia coli, where autogenous control is part of a single-input module, as a valid model to evaluate the functional advantages and biological implications of this mechanism. We redesign the control of its master regulator, the protein LexA, so that it becomes nonautogenously controlled. We compare both systems by combining high-resolution expression measurements with mathematical modeling. We show that the stronger stability associated with the autogenous regulation prevents false triggering of the response due to transient fluctuations in the inducing signal and that this control also reduces the system recovery time at low DNA damage. Likewise, autoregulation produces responses proportional to the damage signal level. In contrast, bacteria with LexA constitutively expressed induce maximal action even for very low damage levels. This excess in response comes at a cost, because it reduces comparatively the growth rate of these cells. Our results suggest that autogenous control evolved as a strategy to optimally respond to multiple levels of input signal minimizing the costs of the response and highlights reasons why master regulators of single-input modules are mostly autorepressed.
Collapse
Affiliation(s)
- Francisco M. Camas
- Spanish National Biotechnology Centre (CNB)–Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; and
- Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain
| | - Jesús Blázquez
- Spanish National Biotechnology Centre (CNB)–Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; and
- To whom correspondence may be addressed at:
Microbial Biotechnology Department, Spanish National Biotechnology Centre (CNB), 28049 Madrid, Spain. E-mail:
| | - Juan F. Poyatos
- Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain
- To whom correspondence may be addressed at:
Evolutionary Systems Biology Initiative, Structural and Computational Biology Programme, Spanish National Cancer Centre (CNIO) Melchor Fernández Almagro, 3, 28029 Madrid, Spain. E-mail:
| |
Collapse
|
9
|
Abstract
A complete three dimensional model for the LexA repressor dimer bound to the recA operator site consistent with relevant biochemical and biophysical data for the repressor was proposed from our laboratory when no crystal structure of LexA was available. Subsequently, the crystal structures of four LexA mutants Delta(1-67) S119A, S119A, G85D and Delta(1-67) quadruple mutant in the absence of operator were reported. It is examined in this paper to what extent our previous model was correct and how, using the crystal structure of the operator-free LexA dimer we can predict an improved model of LexA dimer bound to recA operator. In our improved model, the C-domain dimerization observed repeatedly in the mutant operator-free crystals is retained but the relative orientation between the two domains within a LexA molecule changes. The crystal structure of wild type LexA with or without the recA operator cannot be solved as it autocleaves itself. We argue that the 'cleavable' cleavage site region found in the crystal structures is actually the more relevant form of the region in wild-type LexA since it agrees with the value of the pre-exponential Arrhenius factor for its autocleavage, absence of various types of trans-cleavages, difficulty in modifying the catalytic serine by diisopropyl flourophosphate and lack of cleavage at Arg 81 by trypsin; hence the concept of a 'conformational switch' inferred from the crystal structures is meaningless.
Collapse
|
10
|
Chattopadhyaya R, Ghosh K, Namboodiri VM. Model of a LexA repressor dimer bound to recA operator. J Biomol Struct Dyn 2000; 18:181-97. [PMID: 11089640 DOI: 10.1080/07391102.2000.10506657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A complete three dimensional model (RCSB000408; PDB code 1qaa) for the LexA repressor dimer bound to the recA operator site consistent with relevant biochemical and biophysical data for the repressor is proposed. A model of interaction of the N-terminal operator binding domain 1-72 with the operator was available. We have modelled residues 106-202 of LexA on the basis of the crystal structure of a homologous protein, UmuD'. Residues 70-105 have been modelled by us, residues 70-77 comprising the real hinge, followed by a beta-strand and an alpha-helix, both interacting with the rest of the C-domain. The preexponential Arrhenius factor for the LexA autocleavage is shown to be approximately 10(9) s(-1) at 298K whereas the exponential factor is approximately 2 x 10(-12), demanding that the autocleavage site is quite close to the catalytic site but reaction is slow due to an activation energy barrier. We propose that in the operator bound form, Ala 84- Gly 85 is about 7-10A from the catalytic groups, but the reaction does not occur as the geometry is not suitable for a nucleophilic attack from Ser 119 Ogamma, since Pro 87 is held in the cis conformation. When pH is elevated or under the action of activated RecA, cleavage may occur following a cis --> trans isomerization at Pro 87 and/or a rotation of the region beta9-beta10 about beta7-beta8 following the disruption of two hydrogen bonds. We show that the C-C interaction comprises the approach of two negatively charged surfaces neutralized by sodium ions, the C-domains of the monomers making a new beta barrel at the interface burying 710A2 of total surface area of each monomer.
Collapse
|
11
|
Mustard JA, Little JW. Analysis of Escherichia coli RecA interactions with LexA, lambda CI, and UmuD by site-directed mutagenesis of recA. J Bacteriol 2000; 182:1659-70. [PMID: 10692372 PMCID: PMC94464 DOI: 10.1128/jb.182.6.1659-1670.2000] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An early event in the induction of the SOS system of Escherichia coli is RecA-mediated cleavage of the LexA repressor. RecA acts indirectly as a coprotease to stimulate repressor self-cleavage, presumably by forming a complex with LexA. How complex formation leads to cleavage is not known. As an approach to this question, it would be desirable to identify the protein-protein interaction sites on each protein. It was previously proposed that LexA and other cleavable substrates, such as phage lambda CI repressor and E. coli UmuD, bind to a cleft located between two RecA monomers in the crystal structure. To test this model, and to map the interface between RecA and its substrates, we carried out alanine-scanning mutagenesis of RecA. Twenty double mutations were made, and cells carrying them were characterized for RecA-dependent repair functions and for coprotease activity towards LexA, lambda CI, and UmuD. One mutation in the cleft region had partial defects in cleavage of CI and (as expected from previous data) of UmuD. Two mutations in the cleft region conferred constitutive cleavage towards CI but not towards LexA or UmuD. By contrast, no mutations in the cleft region or elsewhere in RecA were found to specifically impair the cleavage of LexA. Our data are consistent with binding of CI and UmuD to the cleft between two RecA monomers but do not provide support for the model in which LexA binds in this cleft.
Collapse
Affiliation(s)
- J A Mustard
- Department of Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
12
|
Mohana-Borges R, Pacheco AB, Sousa FJ, Foguel D, Almeida DF, Silva JL. LexA repressor forms stable dimers in solution. The role of specific dna in tightening protein-protein interactions. J Biol Chem 2000; 275:4708-12. [PMID: 10671501 DOI: 10.1074/jbc.275.7.4708] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cooperativity in the interactions among proteins subunits and DNA is crucial for DNA recognition. LexA repressor was originally thought to bind DNA as a monomer, with cooperativity leading to tighter binding of the second monomer. The main support for this model was a high value of the dissociation constant for the LexA dimer (micromolar range). Here we show that the protein is a dimer at nanomolar concentrations under different conditions. The reversible dissociation of LexA dimer was investigated by the effects of hydrostatic pressure or urea, using fluorescence emission and polarization to monitor the dissociation process. The dissociation constant lies in the picomolar range (lower than 20 pM). LexA monomers associate with an unusual large volume change (340 ml/mol), indicating the burial of a large surface area upon dimerization. Whereas nonspecific DNA has no stabilizing effect, specific DNA induces tightening of the dimer and a 750-fold decrease in the K(d). In contrast to the previous model, a tight dimer rather than a monomer is the functional repressor. Accordingly, the LexA dimer only loses its ability to recognize a specific DNA sequence by RecA-induced autoproteolysis. Our work provides insights into the linkage between protein-protein interactions, DNA recognition, and DNA repair.
Collapse
Affiliation(s)
- R Mohana-Borges
- Departamento de Bioquímica Médica-ICB, Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas and Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
13
|
Filutowicz M, Rakowski SA. Regulatory implications of protein assemblies at the gamma origin of plasmid R6K - a review. Gene 1998; 223:195-204. [PMID: 9858731 DOI: 10.1016/s0378-1119(98)00367-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recognition of the replication origin (ori) by initiator protein is a recurring theme for the regulated initiation of DNA replication in diverse biological systems. The objective of the work reviewed here is to understand the initiation process focusing specifically on the gamma-ori of the antibiotic-resistance plasmid R6K. The control of gamma-ori copy number is determined by both plasmid-encoded and host-encoded factors. The two central regulatory elements of the plasmid are a multifunctional initiator protein pi, and sequence-related DNA target sites, the inverted half-repeats (IRs) and the direct repeats (DRs). The replication activator and inhibitor activities of pi seem to be at least partially distributed between two naturally occurring pi polypeptides (designated by their molecular weights pi35.0 and pi30.5). Regulatory variants of pi with altered states of oligomerization in nucleoprotein complexes with DRs and IRs have been isolated. The properties of these mutants laid the foundation for our model of pi protein activity which proposes that different protein surfaces are required for the formation of functionally distinct complexes of pi with DRs and IRs. These mutants also suggest that pi polypeptides have a modular structure; the C-terminus contains the DNA-binding domain while the N-terminus controls protein oligomerization. Additionally, pi35.0 binds to a novel DNA sequence in the A+T-rich segment of gamma-ori. This binding site is at or near the site from which synthesis of the leading strand begins.
Collapse
Affiliation(s)
- M Filutowicz
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706,
| | | |
Collapse
|
14
|
Urh M, Wu J, Wu J, Forest K, Inman RB, Filutowicz M. Assemblies of replication initiator protein on symmetric and asymmetric DNA sequences depend on multiple protein oligomerization surfaces. J Mol Biol 1998; 283:619-31. [PMID: 9784371 DOI: 10.1006/jmbi.1998.2120] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pi35.0 protein of plasmid R6K regulates transcription and replication by binding a DNA sequence motif (TGAGR) arranged either asymmetrically into 22 bp direct repeats (DRs) in the gamma origin, or symmetrically into inverted half-repeats (IRs) in the operator of its own gene, pir. The binding patterns of the two natural forms of the pi protein and their heterodimers revealed that the predominant species, pi35.0 (35.0 kDa), can bind to a single copy of the DR as either a monomer or a dimer while pi30.5 (30.5 kDa) binds only as a dimer. We demonstrate that only one subunit of a pi35.0 dimer makes specific contact with DNA. Electron microscopic (EM) analysis of the nucleoprotein complexes formed by pi35.0 and DNA fragments containing all seven DRs revealed coupled ("hand-cuffed") DNA molecules that are aligned in a parallel orientation. Antiparallel orientations of the DNA were not observed. Thus, hand-cuffing depends on a highly ordered oligomerization of pi35.0 in such structures. The pi protein (pi35.0, pi30.5) binds to an IR as a dimer or heterodimer but not as a monomer. Moreover, a single amino acid residue substitution, F200S (pir200), introduced into pi30.5 severely destabilizes dimers of this protein in solution and concomitantly prevents binding of this protein to the IR. This mutation also changes the stability of pi35.0 dimers but it does not change the ability of pi35.0 to bind IRs. To explain these observations we propose that the diverse interactions of pi variants with DNA are controlled by multiple surfaces for protein oligomerization.
Collapse
Affiliation(s)
- M Urh
- Department of Bacteriology, University of Wisconsis, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Cooperative protein-DNA interactions play critical roles in gene regulation in all organisms. Among the best-studied cooperative interactions is that of phage lambda repressor, which binds cooperatively to two adjacent operators. Similar cooperative interactions are also shown by several other lambdoid phage repressors, including HK022 CI repressor, which we study here. This protein has a much higher degree of cooperativity than seen with lambda repressor, and previous evidence has suggested that cooperativity may play roles in HK022 gene regulation that have no parallel in lambda. We have isolated several cooperativity or Coop- mutations in HK022 cI. These mutant proteins were partially defective in vivo for binding to two adjacent operators, but normal or nearly so for binding to a single operator. Two mutations showed mutual suppression, in that the double mutation had wild-type behavior. Analysis of several purified mutant proteins showed that they were also defective for cooperative binding in vitro. Unexpectedly, the mutant proteins showed an altered pattern of in vitro binding to DNA at non-operator sites. Several of them also increased the rate of specific repressor cleavage. We propose a conformational model in which the various functions of the wild-type protein are carried out by differing conformations; these conformations are normally in balance, and the mutations perturb this balance.
Collapse
Affiliation(s)
- C Mao
- Department of Biochemistry, University of Arizona, Tucson 85721, USA
| | | |
Collapse
|
16
|
Vulić M, Dionisio F, Taddei F, Radman M. Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc Natl Acad Sci U S A 1997; 94:9763-7. [PMID: 9275198 PMCID: PMC23264 DOI: 10.1073/pnas.94.18.9763] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Speciation involves the establishment of genetic barriers between closely related organisms. The extent of genetic recombination is a key determinant and a measure of genetic isolation. The results reported here reveal that genetic barriers can be established, eliminated, or modified by manipulating two systems which control genetic recombination, SOS and mismatch repair. The extent of genetic isolation between enterobacteria is a simple mathematical function of DNA sequence divergence. The function does not depend on hybrid DNA stability, but rather on the number of blocks of sequences identical in the two mating partners and sufficiently large to allow the initiation of recombination. Further, there is no obvious discontinuity in the function that could be used to define a level of divergence for distinguishing species.
Collapse
Affiliation(s)
- M Vulić
- Laboratoire de Mutagenèse, Institut Jacques Monod, 2 Place Jussieu, 75251 Paris Cedex 05, France.
| | | | | | | |
Collapse
|
17
|
Relan NK, Jenuwine ES, Gumbs OH, Shaner SL. Preferential interactions of the Escherichia coli LexA repressor with anions and protons are coupled to binding the recA operator. Biochemistry 1997; 36:1077-84. [PMID: 9033397 DOI: 10.1021/bi9618427] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The binding of Escherichia coli LexA repressor to the recA operator was examined as a function of the concentration of NaCl, KCl, NaF, and MgCl2 at pH 7.5, 21 degrees C. The effects of pH at 100 mM NaCl were also examined. Changes both in the qualitative appearance of the binding isotherms and in the magnitude of the apparent binding affinity with changes in solution conditions suggest that binding of anions and protons by LexA repressor is linked to oligomerization and/or operator binding. Binding of LexA repressor to the recA operator in the presence of NaCl ranging from 25 to 400 mM at picomolar DNA concentration showed a broad, apparently noncooperative, binding isotherm. Binding of LexA repressor in NaF at the same [DNA] yielded binding isotherms with a narrow transition, reflecting an apparently cooperative binding process. Also, the apparent binding affinity was weaker in NaF than in NaCl. Furthermore, the binding affinity and also the apparent binding mode, cooperative vs noncooperative, were pH dependent. The binding affinity of LexA repressor for operator was greatest near neutral pH. The apparent binding mode was noncooperative at pH 7-9 but was cooperative at pH 6 or 9.3. These observations suggest that the specific cation and anion composition and concentrations must be considered in understanding the details of regulation of the SOS system.
Collapse
Affiliation(s)
- N K Relan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | |
Collapse
|
18
|
Miller MC, Resnick JB, Smith BT, Lovett CM. The Bacillus subtilis dinR Gene Codes for the Analogue of Escherichia coli LexA. J Biol Chem 1996. [DOI: 10.1074/jbc.271.52.33502] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
19
|
Porte D, Oertel-Buchheit P, Granger-Schnarr M, Schnarr M. Fos leucine zipper variants with increased association capacity. J Biol Chem 1995; 270:22721-30. [PMID: 7559397 DOI: 10.1074/jbc.270.39.22721] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Fos wild-type leucine zipper is unable to support homodimerization. This finding is generally explained by the negative net charge of the Fos zipper leading to the electrostatic repulsion of two monomers. Using a LexA-dependent in vivo assay in Escherichia coli, we show here that additional antideterminants for Fos zipper association are the residues in position a within the Fos zipper interface. If the wild-type Fos zipper is fused to the DNA binding domain of the LexA repressor (LexA-DBD), no excess repression is observed as compared with the LexA-DBD alone, in agreement with the incapacity of the wild-type Fos zipper to promote homodimerization. If hydrophobic amino acids (Ile, Leu, Val, Phe, Met) are inserted into the five a positions of a LexA-Fos zipper fusion protein, substantial transcriptional repression is recovered showing that Fos zipper homodimerization is not only limited by the repulsion of negatively charged residues but also by the nonhydrophobic nature of the a positions. The most efficient variants (harboring Ile or Leu in the five a positions) show an about 80-fold increase in transcriptional repression as compared with the wild-type Fos zipper fusion protein. In the case of multiple identical substitutions, the overall improvement is correlated with the hydrophobicity of the inserted side chains, i.e. Ile Leu > Val > Phe > Met. However at least for Val, Phe, and Met the impact of a given residue type on the association efficiency depends strongly on the heptad, i.e. on the local environment of the a residue. This is particularly striking for the second heptad of the Fos zipper, where Val is less well tolerated than Phe and Met. Most likely the a1 residue modulates the interhelical repulsion between two glutamic acid side chains in positions g1 and e2. Most of the hydrophobic Fos zipper variants are also improved in heteroassociation with a Jun leucine zipper, such that roughly half of the additional free energy of homodimerization is imported into the heterodimer. A few candidates (including the Fos wild-type zipper) deviate from this correlation, showing considerable excess heteroassociation.
Collapse
Affiliation(s)
- D Porte
- Institut de Biologie Moléculaire et Cellulaire du CNRS, UPR 9002, Strasbourg, France
| | | | | | | |
Collapse
|
20
|
Legendre D, Rommelaere J. Targeting of promoters for trans activation by a carboxy-terminal domain of the NS-1 protein of the parvovirus minute virus of mice. J Virol 1994; 68:7974-85. [PMID: 7966588 PMCID: PMC237260 DOI: 10.1128/jvi.68.12.7974-7985.1994] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The NS-1 gene of the parvovirus minute virus of mice (MVM) (prototype strain, MVMp) was fused in phase with the sequence coding for the DNA-binding domain of the bacterial LexA repressor. The resulting chimeric protein, LexNS-1, was tested for its transcriptional activity by using various target promoters in which multiple LexA operator sequences had been introduced. Under these conditions, NS-1 was shown to stimulate gene expression driven by the modified long terminal repeat promoters (from the retroviruses mouse mammary tumor virus and Rous sarcoma virus) and P38 promoter (from MVMp), indicating that the NS-1 protein is a potent transcriptional activator. It is noteworthy that in the absence of LexA operator-mediated targeting, the genuine mouse mammary tumor virus and Rous sarcoma virus promoters were inhibited by NS-1. Together these data strongly suggest that NS-1 contains an activating region able to induce promoters with which this protein interacts but also to repress transcription from nonrecognized promoters by a squelching mechanism similar to that described for other activators. Deletion mutant analysis led to the identification of an NS-1 domain that exhibited an activating potential comparable to that of the whole polypeptide when fused to the DNA-binding region of LexA. This domain is localized in the carboxy-terminal part of NS-1 and corresponds to one of the two regions previously found to be responsible for toxicity. These results argue for the involvement of the regulatory functions of NS-1 in the cytopathic effect of this parvovirus product.
Collapse
Affiliation(s)
- D Legendre
- Département de Biologie Moléculaire, Université Libre de Bruxelles, Rhode St Genèse, Belgium
| | | |
Collapse
|
21
|
Abstract
Lysogens of the temperate lambdoid phage HK022 are immune to superinfection by HK022. Superinfection immunity is conferred in part by the action of the HK022 CI repressor at the O.R operators. In this work, we have identified an additional regulatory element involved in immunity. This site, termed OFR (operator far right), is located just downstream of the cro gene, more than 250 nucleotides distant from OR. The behavior of phage containing a mutation in OFR suggests that the wild-type site functions as an antivirulence element. HK022 OFR- mutants were able to form turbid plaques indistinguishable from those of the wild type. However, they gave rise to virulent derivatives at a far higher frequency than the wild type (approximately 10(-5) for OFR- versus about 10(-9) for the wild type). This frequency was so high that cultures of HK022 OFR- lysogens were rapidly overgrown by virulent derivatives. Whereas virulent mutants arising from a wild-type OFR+ background contained mutations in both OR1 and OR2, virulent derivatives of the OFR- mutant phage contained a single mutation in either OR1 or OR2. We conclude that the wild-type OFR site functions to prevent single mutations in OR from conferring virulence. The mechanism by which OFR acts is not yet clear. Both CI and Cro bound to OFR and repressed a very weak rightward promoter (PFR). It is unlikely that repression of PFR by CI or Cro binding to OFR can account in full for the antivirulence phenotype conferred by this element, since PFR is such a weak promoter. Other models for the possible action of OFR are discussed.
Collapse
Affiliation(s)
- N G Carlson
- Department of Biochemistry, University of Arizona, Tucson 85721
| | | |
Collapse
|
22
|
Abstract
The AraC protein, which regulates the L-arabinose operons in Escherichia coli, was dissected into two domains that function in chimeric proteins. One provides a dimerization capability and binds the ligand arabinose, and the other provides a site-specific DNA-binding capability and activates transcription. In vivo and in vitro experiments showed that a fusion protein consisting of the N-terminal half of the AraC protein and the DNA-binding domain of the LexA repressor dimerizes, binds well to a LexA operator, and represses expression of a LexA operator-beta-galactosidase fusion gene in an arabinose-responsive manner. In vivo and in vitro experiments also showed that a fusion protein consisting of the C-terminal half of the AraC protein and the leucine zipper dimerization domain from the C/EBP transcriptional activator binds to araI and activates transcription from a PBAD promoter-beta-galactosidase fusion gene. Dimerization was necessary for occupancy and activation of the wild-type AraC binding site.
Collapse
Affiliation(s)
- S A Bustos
- Biology Department, Johns Hopkins University, Baltimore, MD 21218
| | | |
Collapse
|
23
|
Dumoulin P, Oertel-Buchheit P, Granger-Schnarr M, Schnarr M. Orientation of the LexA DNA-binding motif on operator DNA as inferred from cysteine-mediated phenyl azide crosslinking. Proc Natl Acad Sci U S A 1993; 90:2030-4. [PMID: 8446625 PMCID: PMC46014 DOI: 10.1073/pnas.90.5.2030] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
To address the question how the recognition helix of the LexA repressor is positioned within the major groove of operator DNA we have applied a site-specific photocrosslinking approach using a LexA mutant repressor (LexA-C52) that harbors a single cysteine side chain in position 52, close to the COOH terminus of helix 3. The LexA-C52 mutant repressor has been purified and modified site-specifically with the photoreactive azido compound 4-azidophenacyl bromide, giving rise to LexA-C52*. Here we show that LexA-C52* may be selectively photocrosslinked with two adjacent bases within each operator half-site. The crosslinked bases are located, respectively, 10 and 11 base pairs from the dyad axis of the operator. The crosslinking data imply that the LexA recognition helix is oriented opposite to what is generally observed for helix-turn-helix proteins and that this helix should form a steeper angle with respect to the plane of the base pairs than is observed for standard helix-turn-helix proteins.
Collapse
Affiliation(s)
- P Dumoulin
- Institut de Biologie Moléculaire et Cellulaire, UPR 9005 du Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | |
Collapse
|
24
|
Schnarr M, Granger-Schnarr M. LexA, the Self-Cleaving Transcriptional Repressor of the SOS System. NUCLEIC ACIDS AND MOLECULAR BIOLOGY 1993. [DOI: 10.1007/978-3-642-77950-3_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Abstract
Many studies of transcription activation employ fusions of activation domains to DNA binding domains derived from the bacterial repressor LexA and the yeast activator GAL4. Such studies often implicitly assume that DNA binding by the chimeric proteins is equivalent to that of the protein donating the DNA binding moiety. To directly investigate this issue, we compared operator binding by a series of LexA-derivative proteins to operator binding by native LexA, by using both in vivo and in vitro assays. We show that operator binding by many proteins such as LexA-Myc, LexA-Fos, and LexA-Bicoid is severely impaired, while binding of other LexA-derivative proteins, such as those that carry bacterially encoded acidic sequences ("acid blobs"), is not. Our results also show that DNA binding by LexA derivatives that contain the LexA carboxy-terminal dimerization domain (amino acids 88 to 202) is considerably stronger than binding by fusions that lack it and that heterologous dimerization motifs cannot substitute for the LexA88-202 function. These results suggest the need to reevaluate some previous studies of activation that employed LexA derivatives and modifications to recent experimental approaches that use LexA and GAL4 derivatives to detect and study protein-protein interactions.
Collapse
|
26
|
Christopherson KS, Mark MR, Bajaj V, Godowski PJ. Ecdysteroid-dependent regulation of genes in mammalian cells by a Drosophila ecdysone receptor and chimeric transactivators. Proc Natl Acad Sci U S A 1992; 89:6314-8. [PMID: 1631124 PMCID: PMC49491 DOI: 10.1073/pnas.89.14.6314] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Steroid receptors are members of a large family of transcription factors whose activity is tightly regulated by the binding of their cognate steroid ligand. Mammalian steroid hormone receptors have been exploited to obtain the regulated expression of heterologous genes in mammalian cells. However, the utility of these systems in cultured cells and transgenic animals is limited by the presence of endogenous steroids and their receptors. We show that a Drosophila ecdysone receptor can function in cultured mammalian cells as an ecdysteroid-dependent transcription factor. The activity of the ecdysone receptor was not induced by any of the mammalian steroid hormones tested. The DNA-binding and transactivation activities of viral, mammalian, or bacterial proteins were rendered ecdysteroid-dependent when fused to the ligand-binding domain of the ecdysone receptor. The ecdysone receptor may prove useful in selectively regulating the expression of endogenous or heterologous genes in mammalian cells.
Collapse
Affiliation(s)
- K S Christopherson
- Department of Cell Genetics, Genentech, Inc., South San Francisco, CA 94080
| | | | | | | |
Collapse
|
27
|
Abstract
Many studies of transcription activation employ fusions of activation domains to DNA binding domains derived from the bacterial repressor LexA and the yeast activator GAL4. Such studies often implicitly assume that DNA binding by the chimeric proteins is equivalent to that of the protein donating the DNA binding moiety. To directly investigate this issue, we compared operator binding by a series of LexA-derivative proteins to operator binding by native LexA, by using both in vivo and in vitro assays. We show that operator binding by many proteins such as LexA-Myc, LexA-Fos, and LexA-Bicoid is severely impaired, while binding of other LexA-derivative proteins, such as those that carry bacterially encoded acidic sequences ("acid blobs"), is not. Our results also show that DNA binding by LexA derivatives that contain the LexA carboxy-terminal dimerization domain (amino acids 88 to 202) is considerably stronger than binding by fusions that lack it and that heterologous dimerization motifs cannot substitute for the LexA88-202 function. These results suggest the need to reevaluate some previous studies of activation that employed LexA derivatives and modifications to recent experimental approaches that use LexA and GAL4 derivatives to detect and study protein-protein interactions.
Collapse
Affiliation(s)
- E A Golemis
- Department of Molecular Biology, Massachusetts General Hospital, Boston 02114
| | | |
Collapse
|
28
|
Thliveris AT, Mount DW. Genetic identification of the DNA binding domain of Escherichia coli LexA protein. Proc Natl Acad Sci U S A 1992; 89:4500-4. [PMID: 1584782 PMCID: PMC49110 DOI: 10.1073/pnas.89.10.4500] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Two genetic approaches were taken to define the DNA binding domain of LexA protein, the repressor of the Escherichia coli SOS regulon. First, several dominant negative lexA mutants defective in DNA binding were isolated. The mutations altered amino acids in a region similar to the helix-turn-helix, a DNA binding domain of other repressors and DNA binding proteins. Second, the region encoding the predicted DNA recognition helix was subjected to oligonucleotide-directed mutagenesis and mutant LexA proteins with altered or relaxed specificity for several recA operator positions were isolated. By examining the effects of a series of amino acid substitutions on repressor specificity, it was shown that a glutamic acid residue at position 45 in LexA protein is important for recognition of the first base pair (G.C) in the recA operator.
Collapse
Affiliation(s)
- A T Thliveris
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721
| | | |
Collapse
|
29
|
Granger-Schnarr M, Benusiglio E, Schnarr M, Sassone-Corsi P. Transformation and transactivation suppressor activity of the c-Jun leucine zipper fused to a bacterial repressor. Proc Natl Acad Sci U S A 1992; 89:4236-9. [PMID: 1584758 PMCID: PMC49056 DOI: 10.1073/pnas.89.10.4236] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Transcription factor c-Jun appears to be a nuclear target of the Ras-induced signal transduction pathway. In fact, some experiments show that transforming forms of the Ras protein cooperate with Jun in transcriptional activation mediated by an AP-1 site and others indicate that the two oncoproteins cooperate in cellular transformation. Although it is likely that intracellular signaling systems activated by Ras might act directly on c-Jun by inducing specific phosphorylation, it is unclear how c-Jun participates in the transformation process. Here, we present results obtained with a LexA-Jun zipper fusion that lacks both the transcriptional activation domains and the basic region of the DNA-binding domain of c-Jun and contains only the intact leucine-zipper domain. This fusion product has a dominant negative effect on the transcriptional activation elicited by phorbol esters, c-Jun, c-Fos, Ras and E1A on an AP-1-responsive site. An analogous LexA-Fos zipper fusion has similar effects on transcriptional induction. The LexA-Jun zipper fusion acts further as a transformation suppressor, since it causes the generation of nontransformed revertants of ras-transformed cells. This effect is likely to be elicited by the dimerization potential of the Jun leucine zipper trapping cellular Jun and/or Fos in a protein complex unable to bind to DNA. These data implicate further that Ras-mediated transformation involves functional transcription factor AP-1 and that it is possible to interfere with cell transformation by interfering simply with the dimerization of transcription factors involved in the transformation process.
Collapse
Affiliation(s)
- M Granger-Schnarr
- Institut de Biologie Moléculaire et Cellulaire du Centre Nationale de la Recherche Scientifique, Strasbourg, France
| | | | | | | |
Collapse
|
30
|
Abstract
Many specific DNA-binding proteins bind to sites with dyad symmetry, and the bound form of the protein is a dimer. For some proteins, dimers form in solution and bind to DNA. LexA repressor of Escherichia coli has been used to test an alternative binding model in which two monomers bind sequentially. This model predicts that a repressor monomer should bind with high specificity to an isolated operator half-site. Monomer binding to a half-site was observed. A second monomer bound to an intact operator far more tightly than the first monomer; this cooperativity arose from protein-protein contacts.
Collapse
Affiliation(s)
- B Kim
- Department of Biochemistry, University of Arizona, Tucson 85721
| | | |
Collapse
|
31
|
Raymond-Denise A, Guillen N. Identification of dinR, a DNA damage-inducible regulator gene of Bacillus subtilis. J Bacteriol 1991; 173:7084-91. [PMID: 1657879 PMCID: PMC209213 DOI: 10.1128/jb.173.22.7084-7091.1991] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A Bacillus subtilis strain deficient in homologous recombination was isolated from a library of Tn917lac insertion mutants. The interrupted locus consists of an open reading frame encoding a 22,823-dalton polypeptide. Analysis of the deduced amino acid sequence revealed 34% identity and 47.3% similarity with the LexA protein from Escherichia coli. The gene was designated dinR. It is located between the recA and thyA genetic markers, at 162 degrees on the B. subtilis chromosome. The dinR gene was shown to be expressed during the entire B. subtilis cellular cycle with at least a threefold increase when cells develop competence. In addition, the use of a merodiploid strain, in which a copy of the wild-type dinR gene coexists with a dinR-lacZ transcriptional fusion, demonstrated that dinR is an SOS gene and that the SOS-induced expression of dinR occurred only when a wild-type copy of dinR was present. In addition, DinR seems to regulate the expression of dinC, another SOS gene.
Collapse
Affiliation(s)
- A Raymond-Denise
- Unité de Pathogénie Microbienne Moléculaire, U199 Institut National de la Santé et de la Recherche Médicale, Institut Pasteur, Paris, France
| | | |
Collapse
|
32
|
Schmidt-Dörr T, Oertel-Buchheit P, Pernelle C, Bracco L, Schnarr M, Granger-Schnarr M. Construction, purification, and characterization of a hybrid protein comprising the DNA binding domain of the LexA repressor and the Jun leucine zipper: a circular dichroism and mutagenesis study. Biochemistry 1991; 30:9657-64. [PMID: 1911752 DOI: 10.1021/bi00104a013] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An increasing number of eukaryotic transcription factors interacting specifically with DNA comprise a dimerization motif called the "leucine zipper". These leucine zipper proteins form homodimers and/or heterodimers with another protein containing a leucine zipper motif. The leucine zipper of the oncoprotein Jun is particular in that Jun may form homodimers as well as heterodimers with the oncoprotein Fos, which are however more stable than the Jun-Jun homodimers. Leucine zipper dimerization is thought to occur through a coiled-coil arrangement of parallel alpha-helices, but the rules governing the specificity of homo- and/or heterodimerization are still largely unknown. To address this question in the case of the Jun leucine zipper, we constructed a fusion protein containing the amino-terminal DNA binding domain of the LexA repressor from Escherichia coli fused to the Jun leucine zipper. This hybrid protein (LexA-JunZip) is stable in E. coli and confers much tighter repression in vivo than the DNA binding domain of LexA alone. DNA binding competition experiments with synthetic Jun and Fos leucine zipper peptides in vitro showed that the leucine zipper mediated dimerization of LexA-JunZip is essential for DNA binding of the fusion protein. The purified LexA-JunZip protein dimerizes in vitro with a dimerization constant of 2 x 10(7) M-1 at 5 degrees C. Dimerization is very sensitive to temperature, since the dimerization constant drops at 20 degrees C to 2 x 10(6) M-1 and at 30 degrees C to only 3 x 10(5) M-1.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T Schmidt-Dörr
- Institut de Biologie Moléculaire et Cellulaire, CNRS-UPR 6201, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
33
|
Characterization of Neurospora CPC1, a bZIP DNA-binding protein that does not require aligned heptad leucines for dimerization. Mol Cell Biol 1991. [PMID: 1824960 DOI: 10.1128/mcb.11.2.935] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CPC1 is the transcriptional activator of amino acid biosynthetic genes of Neurospora crassa. CPC1 function in vivo was abolished upon deletion of segments of cpc-1 corresponding to the presumed transcription activation domain, the DNA-binding and dimerization domains, or a 52-residue connector segment of CPC1. A truncated CPC1 polypeptide containing only the carboxy-terminal 57-residue segment of CPC1 was sufficient to form homodimers that bound DNA. However, deletion of the segment of cpc-1 corresponding to the connector segment in the full-length CPC1 polypeptide abolished DNA binding. Removal of a segment of cpc-1 corresponding to the GIn-rich region of CPC1 reduced in vivo function only slightly. The homologous transcription activator of Saccharomyces cerevisiae, GCN4, did not substitute for CPC1 in N. crassa. Chimeric CPC1-GCN4 polypeptides that contained the GCN4 transcriptional activation domain or the domain of GCN4 that corresponds to the essential 52-residue connector segment of CPC1, functioned with reduced efficiency. However, a chimeric polypeptide containing the GCN4 DNA-binding and dimerization domains in place of those of CPC1 functioned essentially as well as wild-type CPC1. The basic and dimerization domains of CPC1 were characterized by introducing deletions or site-directed amino acid replacements. The basic region was required for DNA binding but not for dimerization. CPC1 has a short dimerization domain containing heptad residues Leu-1, Leu-2, Trp-3, and His-4. When Val was substituted for Leu-1 or Leu-2, CPC1 was fully active, but when Val replaced Trp-3, dimerization and DNA binding were prevented. DNA band shift analyses with CPC1 heterodimers demonstrated that CPC1 does not require aligned heptad leucine residues for dimerization. Replacement of two charged residues located between Leu-1 and Leu-2 of CPC1 abolished dimerization and DNA binding.
Collapse
|
34
|
Interaction of a regulatory protein with a DNA target containing two overlapping binding sites. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)52244-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
35
|
Paluh JL, Yanofsky C. Characterization of Neurospora CPC1, a bZIP DNA-binding protein that does not require aligned heptad leucines for dimerization. Mol Cell Biol 1991; 11:935-44. [PMID: 1824960 PMCID: PMC359753 DOI: 10.1128/mcb.11.2.935-944.1991] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
CPC1 is the transcriptional activator of amino acid biosynthetic genes of Neurospora crassa. CPC1 function in vivo was abolished upon deletion of segments of cpc-1 corresponding to the presumed transcription activation domain, the DNA-binding and dimerization domains, or a 52-residue connector segment of CPC1. A truncated CPC1 polypeptide containing only the carboxy-terminal 57-residue segment of CPC1 was sufficient to form homodimers that bound DNA. However, deletion of the segment of cpc-1 corresponding to the connector segment in the full-length CPC1 polypeptide abolished DNA binding. Removal of a segment of cpc-1 corresponding to the GIn-rich region of CPC1 reduced in vivo function only slightly. The homologous transcription activator of Saccharomyces cerevisiae, GCN4, did not substitute for CPC1 in N. crassa. Chimeric CPC1-GCN4 polypeptides that contained the GCN4 transcriptional activation domain or the domain of GCN4 that corresponds to the essential 52-residue connector segment of CPC1, functioned with reduced efficiency. However, a chimeric polypeptide containing the GCN4 DNA-binding and dimerization domains in place of those of CPC1 functioned essentially as well as wild-type CPC1. The basic and dimerization domains of CPC1 were characterized by introducing deletions or site-directed amino acid replacements. The basic region was required for DNA binding but not for dimerization. CPC1 has a short dimerization domain containing heptad residues Leu-1, Leu-2, Trp-3, and His-4. When Val was substituted for Leu-1 or Leu-2, CPC1 was fully active, but when Val replaced Trp-3, dimerization and DNA binding were prevented. DNA band shift analyses with CPC1 heterodimers demonstrated that CPC1 does not require aligned heptad leucine residues for dimerization. Replacement of two charged residues located between Leu-1 and Leu-2 of CPC1 abolished dimerization and DNA binding.
Collapse
Affiliation(s)
- J L Paluh
- Department of Biological Sciences, Stanford University, California 94305
| | | |
Collapse
|
36
|
Slilaty SN, Ouellet M, Fung M, Shen SH. Independent folding of individual components in hybrid proteins. Evidence that the carboxy-terminal 135 residues of the LexA repressor constitute a single autonomous domain. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 194:103-8. [PMID: 2123789 DOI: 10.1111/j.1432-1033.1990.tb19433.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Inactivation of the Escherichia coli repressor protein, LexA, takes place through a cleavage reaction which hydrolyzes the Ala84-Gly85 peptide bond near the center of the molecule. The mechanism of cleavage has previously been shown to be an intramolecular reaction stimulated in vitro by elevated pH or by the addition of activated RecA protein. The entire self-cleavage activity of LexA has been found to lie within a 135-residue tryptic fragment extending from Leu68 to the end of the protein at Leu202. Since the activity of self-cleavage is dependent on the proper three-dimensional structure of the protein, we have used it as a probe to investigate the extend of folding autonomy and functional independence of this 135-residue carboxy-terminal domain of LexA by applying a protein fusion approach. A series of twelve different hybrid proteins, containing LexA sequences in a variety of predefined primary structural arrangements, were constructed and evaluated for whether or not self-cleavage activity has been retained. The results revealed that retention or loss of activity is independent of the nature or size of the foreign protein used. Loss of self-cleavage was found to be a function of amino- or carboxy-terminal deletions in the self-cleaving LexA component of the fusion proteins. The present findings, together with the observations of other artificial fusions proteins and the naturally occurring bifunctional and multifunctional proteins, along with the data on helix packing, provide further support for the notion of modular architecture of proteins and suggest that when these autonomous units are fused, they retain their tendency to fold independently of the remainder of the polypeptide to generate physically linked active domains, rather than to fold dependently and yield scrambled structures.
Collapse
Affiliation(s)
- S N Slilaty
- Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec
| | | | | | | |
Collapse
|
37
|
Oertel-Buchheit P, Lamerichs RM, Schnarr M, Granger-Schnarr M. Genetic analysis of the LexA repressor: isolation and characterization of LexA(Def) mutant proteins. MOLECULAR & GENERAL GENETICS : MGG 1990; 223:40-8. [PMID: 2259342 DOI: 10.1007/bf00315795] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report the isolation of LexA mutant proteins with impaired repressor function. These mutant proteins were obtained by transforming a LexA-deficient recA-lacZ indicator strain with a randomly mutagenized plasmid harbouring the lexA gene and subsequent selection on MacConkey-lactose indicator plates. A total of 24 different lexA(Def) missense mutations were identified. All except three mutant proteins are produced in near-normal amounts suggesting that they are fairly resistant to intracellular proteases. All lexA(Def) missense mutations are situated within the first 67 amino acids of the amino-terminal DNA binding domain. The properties of an intragenic deletion mutant suggest that the part of the amino-terminal domain important for DNA recognition or domain folding should extent at least to amino acids 69 or 70. A recent 2D-NMR study (Lamerichs et al. 1989) has identified three alpha helices in the DNA binding domain of LexA. The relative orientation of two of them (helices 2 and 3) is reminiscent of, but not identical to, the canonical helix-turn-helix motif suggesting nevertheless that helix 3 might be involved in DNA recognition. The distribution of the lexA(Def) missense mutations along the first 67 amino-terminal amino acids indeed shows some clustering within helix 3, since 8 out of the 24 different missense mutations are found in this helix. However one mutation in front of helix 1 and five mutations between amino acids 61 and 67 suggest that elements other than helices 2 and 3 may be important for DNA binding.
Collapse
Affiliation(s)
- P Oertel-Buchheit
- Institut de Biologie Moléculaire et Cellulaire, CNRS-LP 6201, INSERM, Strasbourg, France
| | | | | | | |
Collapse
|
38
|
Hurstel S, Granger-Schnarr M, Schnarr M. The LexA repressor and its isolated amino-terminal domain interact cooperatively with poly[d(A-T)], a contiguous pseudo-operator, but not with random DNA: a circular dichroism study. Biochemistry 1990; 29:1961-70. [PMID: 2184894 DOI: 10.1021/bi00459a043] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The interaction of the entire LexA repressor and its amino-terminal DNA binding domain with poly[d(A-T)] and random DNA has been studied by circular dichroism. Binding of both protein species induces an about 2-fold increase of the positive circular dichroism band at about 270 nm of both polynucleotides, allowing a precise determination of the principal parameters as a function of mono- and divalent salt concentration and pH. Both proteins interact much more strongly (about 2000-fold) with poly[d(A-T)] than with random DNA as expected from the homology with the specific consensus binding site of LexA (CTGTATATATATACAG). For both LexA and its DNA binding domain we find that the interaction with poly[d(A-T)] is cooperative with a cooperativity factor omega of about 50-70 for both proteins over a wide range of solvent conditions, suggesting that the carboxy-terminal domain of LexA is not involved in this type of cooperativity. On the contrary, no cooperativity could be detected for the interaction of the LexA DNA binding domain with a random DNA fragment. The overall binding constant K omega (or simply K in the case of random DNA) depends strongly on the salt concentration as observed for most protein-DNA interactions, but the behavior of LexA is unusual in that the steepness of this salt dependence (delta log K omega/delta log [NaCl]) is much more pronounced at slightly acidic pH values as compared to that at neutral or slightly alkaline pH. The behavior is not easily understood in terms of the current theories on the electrostatic contribution to protein-DNA interactions on the basis of polyelectrolyte theory. A comparison of the overall binding constant K omega of the entire LexA repressor and its DNA binding domain reveals that LexA binds only 20-50-fold stronger under a wide variety of salt and pH conditions. This result tends to demonstrate further that the additional energy due to the dimerization of LexA via the carboxy-terminal domain should be rather weak as expected from the small dimerization constant of LexA (2 X 10(-4) M-1).
Collapse
Affiliation(s)
- S Hurstel
- Institut de Biologie Moléculaire et Cellulaire, CNRS LP 6201, Strasbourg, France
| | | | | |
Collapse
|
39
|
Sellers JW, Struhl K. Changing fos oncoprotein to a jun-independent DNA binding protein with GCN4 dimerization specificity by swapping "leucine zippers". Nature 1989; 341:74-6. [PMID: 2505087 DOI: 10.1038/341074a0] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A structural motif for DNA-binding proteins, the 'leucine zipper', has been proposed for the jun, fos and myc gene products, the yeast transcriptional activator GCN4, and the C/EBP enhancer-binding protein. These proteins all contain a region with four or five leucine residues spaced exactly seven amino acid residues apart whose sequence is consistent with the formation of an amphipathic alpha-helix. It has been proposed that the leucine zipper consists of two interdigitated alpha-helices, one from each monomer, that constitute the dimerization function necessary for high-affinity binding to DNA; an adjacent region of basic residues is thought to be responsible for specific protein-DNA contacts. In support of this model, substitution of the leucine residues within the motif can abolish dimerization and DNA-binding, and a synthetic peptide corresponding to the GCN4 leucine zipper forms alpha-helical dimers. Despite the conserved leucine residues, however, each protein has a distinct dimerization specificity. Specifically, GCN4 homodimer, Jun homodimer and Fos-Jun heterodimer proteins bind to the same DNA site, whereas Fos is unable to form homodimers, bind DNA, or interact with GCN4 (refs 8-14). Here, we alter the dimerization specificity of Fos by precisely replacing its leucine zipper with that from GCN4. This Fos-GCN4 chimaeric protein is able to bind to the target site in the absence of Jun, and can form DNA-binding heterodimers with GCN4 but not with Jun. These results indicate that the leucine zipper is sufficient to confer dimerization specificity and strongly suggest that Fos contacts DNA directly.
Collapse
Affiliation(s)
- J W Sellers
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
40
|
Abstract
We report the discovery of a new B-lymphocyte-specific enhancer-binding protein. A series of gel retardation assays using fragments that scan the -2172 to -1180 region of the major histocompatibility complex class II gene E alpha reveal a site (W) that serves as the recognition sequence for two nuclear proteins, one B-cell restricted and the other ubiquitously occurring. Certain characteristics of the NF-W1 and NF-W2 pair recall the OTF-2/NF-A2 and OTF-1/NF-A1 pair that binds to the immunoglobulin octamer, but we demonstrate that the two protein pairs are distinguishable by several criteria. NF-W1 and NF-W2 interact differentially with their common GTTGCATC binding site, display a different affinity for it, and have molecular weights that differ by about 20,000. Yet, proteolysis experiments and cross-linking analyses indicate that the two W complexes show structural relatedness.
Collapse
|
41
|
Sussman R, Alexander HB. Structural analysis of the carboxy terminus of bacteriophage lambda repressor determined by antipeptide antibodies. J Bacteriol 1989; 171:1235-44. [PMID: 2522089 PMCID: PMC209736 DOI: 10.1128/jb.171.3.1235-1244.1989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To analyze lambda repressor function and structure, antibodies were generated with synthetic peptides corresponding to sequences believed to be involved in prophage induction. These site-directed antibodies seemed to recognize preferentially the primary sequence of repressor because they reacted better in competition experiments with the oligopeptide and with the partially denatured forms of repressor than with the native molecules. This information, together with the characteristic ability of the antibodies to immunoprecipitate or react with repressor in immunoblots, allowed us to infer some conformational properties of the specific regions that the antibodies recognized. The antibodies reacted less with some mutant repressors that had a single amino acid substitution within the cognitive sequences. RecA-catalyzed cleavage of repressor was inhibited to different extents in relation to the proportion of repressor that each antipeptide immunoglobulin G (IgG) was able to immunoprecipitate. The antipeptide IgGs did not affect specific binding of repressor to operator DNA, whereas the antirepressor IgG was inhibitory. The three different IgGs competed for binding to repressor in an enzyme-linked immunosorbent assay additivity test, which suggested that the three regions of conserved amino acids are probably located on the same side of the carboxyl domain of repressor and possibly close together in the tertiary structure.
Collapse
Affiliation(s)
- R Sussman
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | | |
Collapse
|
42
|
Abstract
We report the discovery of a new B-lymphocyte-specific enhancer-binding protein. A series of gel retardation assays using fragments that scan the -2172 to -1180 region of the major histocompatibility complex class II gene E alpha reveal a site (W) that serves as the recognition sequence for two nuclear proteins, one B-cell restricted and the other ubiquitously occurring. Certain characteristics of the NF-W1 and NF-W2 pair recall the OTF-2/NF-A2 and OTF-1/NF-A1 pair that binds to the immunoglobulin octamer, but we demonstrate that the two protein pairs are distinguishable by several criteria. NF-W1 and NF-W2 interact differentially with their common GTTGCATC binding site, display a different affinity for it, and have molecular weights that differ by about 20,000. Yet, proteolysis experiments and cross-linking analyses indicate that the two W complexes show structural relatedness.
Collapse
Affiliation(s)
- A Dorn
- Laboratoire de Génétique Moléculaire des Eucaryotes, Centre National de La Recherche Scientifique, Strasbourg, France
| | | | | |
Collapse
|
43
|
Identification and Characterization of a Factor That Binds to Two Human Sarcomeric Actin Promoters. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)85083-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
44
|
Hill SA, Little JW. Allele replacement in Escherichia coli by use of a selectable marker for resistance to spectinomycin: replacement of the lexA gene. J Bacteriol 1988; 170:5913-5. [PMID: 2848016 PMCID: PMC211701 DOI: 10.1128/jb.170.12.5913-5915.1988] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We replaced the Escherichia coli lexA gene by a segment of DNA coding for resistance to spectinomycin and streptomycin. The use of this segment expands the range of selectable markers usable for allele replacement. The availability of this null lexA mutation will facilitate genetic analysis of lexA and the SOS regulon.
Collapse
Affiliation(s)
- S A Hill
- Department of Biochemistry and Molecular Biology, University of Arizona,Tucson 85721
| | | |
Collapse
|
45
|
Godowski PJ, Picard D, Yamamoto KR. Signal transduction and transcriptional regulation by glucocorticoid receptor-LexA fusion proteins. Science 1988; 241:812-6. [PMID: 3043662 DOI: 10.1126/science.3043662] [Citation(s) in RCA: 190] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The glucocorticoid receptor regulates transcriptional initiation upon binding to its cognate hormone. A series of fusion genes was constructed to examine the mechanism of hormone-regulated transcriptional enhancement. The DNA binding domain of the bacterial LexA repressor was fused to receptor derivatives lacking the region that is necessary and sufficient for specific DNA binding and transcriptional enhancement at glucocorticoid response elements (GRE's). The resultant hybrid proteins activated transcription from promoters linked to the lex operator. Enhancement still required hormone binding by the hybrid receptor regardless of the exact positioning of the LexA binding domain within the protein. Thus, the unliganded hormone binding domain of the receptor acts as a strong but reversible inhibitor of receptor activity in a manner that is independent of the means by which the receptor recognizes DNA. The results also show directly that the receptor contains at least one "enhancement domain" other than that overlapping the GRE binding region; the second domain, enh2, occupies a region near the receptor amino terminus.
Collapse
Affiliation(s)
- P J Godowski
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448
| | | | | |
Collapse
|
46
|
Differential protein binding in lymphocytes to a sequence in the enhancer of the mouse retrovirus SL3-3. Mol Cell Biol 1988. [PMID: 2837650 DOI: 10.1128/mcb.8.4.1625] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
An electrophoretic mobility shift assay was used to characterize interactions of nuclear proteins with a DNA segment in the enhancer element of the leukemogenic murine retrovirus SL3-3. Mutation of a DNA sequence of the 5'-TGTGG-3' type decreased transcription in vivo specifically in T-lymphocyte cell lines. Extracts of nuclei from different T-lymphocyte cell lines or cells from lymphoid organs resulted in much higher amounts of complexes in vitro with this DNA sequence than did extracts from other cell lines or organs tested. Differences were also found in the sets of complexes obtained with extracts from the different types of cells. The DNA sequence specificities of the different SL3-3 enhancer factor 1 (SEF1) protein complexes were found to be distinct from those of several other previously identified DNA motifs of the TGTGG type because of differences in several nucleotides critical for binding and because these other DNA motifs could not compete with the identified DNA sequence for binding of SEF1. Limited treatment with several different proteases cleaved the SEF1 proteins such that their DNA-binding domain(s) remained and created complexes with decreased and nondistinguishable electrophoretic mobility shifts and with new properties. These results indicate that the SEF1 proteins have a structure with a flexible and relatively vulnerable hinge region linking a DNA-binding domain(s) to a more variable domain(s) with other functions. We suggest that the binding of SEF1 is an essential factor for the T-cell tropism of SL3-3 and the ability of this virus to cause T-cell lymphomas.
Collapse
|
47
|
Hope IA, Mahadevan S, Struhl K. Structural and functional characterization of the short acidic transcriptional activation region of yeast GCN4 protein. Nature 1988; 333:635-40. [PMID: 3287180 DOI: 10.1038/333635a0] [Citation(s) in RCA: 263] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Derivatives of the yeast GCN4 transcription factor containing acidic regions of 35 to 40 amino acids fused directly to the DNA-binding domain are fully functional in vivo. High resolution deletion analysis and proteolytic mapping suggest that the activation region is a repeated structure composed of small units acting additively. Acidic character is a feature of the structural motif, possibly a dimer of alpha-helices from two GCN4 monomers, that may be important for interactions with the basic transcriptional machinery.
Collapse
Affiliation(s)
- I A Hope
- Department of Biological Chemistry, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
48
|
Lin LL, Little JW. Isolation and characterization of noncleavable (Ind-) mutants of the LexA repressor of Escherichia coli K-12. J Bacteriol 1988; 170:2163-73. [PMID: 2834329 PMCID: PMC211102 DOI: 10.1128/jb.170.5.2163-2173.1988] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The LexA repressor of Escherichia coli represses a set of genes that are expressed in the response to DNA damage. After inducing treatments, the repressor is inactivated in vivo by a specific cleavage reaction which requires an activated form of RecA protein. In vitro, specific cleavage requires activated RecA at neutral pH and proceeds spontaneously at alkaline pH. We have isolated and characterized a set of lexA mutants that are deficient in in vivo RecA-mediated cleavage but retain significant repressor function. Forty-six independent mutants, generated by hydroxylamine and formic acid mutagenesis, were isolated by a screen involving the use of operon fusions. DNA sequence analysis identified 20 different mutations. In a recA mutant, all but four of the mutant proteins functioned as repressor as well as wild-type LexA. In a strain carrying a constitutively active recA allele, recA730, all the mutant proteins repressed a sulA::lacZ fusion more efficiently than the wild-type repressor, presumably because they were cleaved poorly or not at all by the activated RecA protein. These 20 mutations resulted in amino acid substitutions in 12 positions, most of which are conserved between LexA and four other cleavable proteins. All the mutations were located in the hinge region or C-terminal domain of the protein, portions of LexA previously implicated in the specific cleavage reactions. Furthermore, these mutations were clustered in three regions, around the cleavage site (Ala-84-Gly-85) and in blocks of conserved amino acids around two residues, Ser-119 and Lys-156, which are believed essential for the cleavage reactions. These three regions of the protein thus appear to play important roles in the cleavage reaction.
Collapse
Affiliation(s)
- L L Lin
- Department of Biochemistry, University of Arizona, Tucson 85721
| | | |
Collapse
|
49
|
Granger-Schnarr M, Oertel P, Schnarr M. A mutant LexA repressor harboring a cleavage motif cysteine-glycine remains inducible. FEBS Lett 1988; 231:437-9. [PMID: 3129311 DOI: 10.1016/0014-5793(88)80866-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Using site-directed mutagenesis of the lexA gene we have changed the amino acid Ala-84 of the LexA repressor for a cysteine. The reason for this change was the striking homology between LexA and UmuD and the comparable size of the two amino acid side chains. Using an in vivo repression/induction assay it is shown that the LexA-Cys-84 mutant remains inducible by mitomycin C and UV irradiation essentially in the same way as the wild-type repressor.
Collapse
Affiliation(s)
- M Granger-Schnarr
- Institut de Biologie Moléculaire et Cellulaire, CNRS, Strasbourg, France
| | | | | |
Collapse
|
50
|
Thornell A, Hallberg B, Grundström T. Differential protein binding in lymphocytes to a sequence in the enhancer of the mouse retrovirus SL3-3. Mol Cell Biol 1988; 8:1625-37. [PMID: 2837650 PMCID: PMC363322 DOI: 10.1128/mcb.8.4.1625-1637.1988] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
An electrophoretic mobility shift assay was used to characterize interactions of nuclear proteins with a DNA segment in the enhancer element of the leukemogenic murine retrovirus SL3-3. Mutation of a DNA sequence of the 5'-TGTGG-3' type decreased transcription in vivo specifically in T-lymphocyte cell lines. Extracts of nuclei from different T-lymphocyte cell lines or cells from lymphoid organs resulted in much higher amounts of complexes in vitro with this DNA sequence than did extracts from other cell lines or organs tested. Differences were also found in the sets of complexes obtained with extracts from the different types of cells. The DNA sequence specificities of the different SL3-3 enhancer factor 1 (SEF1) protein complexes were found to be distinct from those of several other previously identified DNA motifs of the TGTGG type because of differences in several nucleotides critical for binding and because these other DNA motifs could not compete with the identified DNA sequence for binding of SEF1. Limited treatment with several different proteases cleaved the SEF1 proteins such that their DNA-binding domain(s) remained and created complexes with decreased and nondistinguishable electrophoretic mobility shifts and with new properties. These results indicate that the SEF1 proteins have a structure with a flexible and relatively vulnerable hinge region linking a DNA-binding domain(s) to a more variable domain(s) with other functions. We suggest that the binding of SEF1 is an essential factor for the T-cell tropism of SL3-3 and the ability of this virus to cause T-cell lymphomas.
Collapse
Affiliation(s)
- A Thornell
- Unit for Applied Cell and Molecular Biology, University of Umeå, Sweden
| | | | | |
Collapse
|