1
|
Kumar H, Finer-Moore JS, Kaback HR, Stroud RM. Structure of LacY with an α-substituted galactoside: Connecting the binding site to the protonation site. Proc Natl Acad Sci U S A 2015; 112:9004-9. [PMID: 26157133 PMCID: PMC4517220 DOI: 10.1073/pnas.1509854112] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The X-ray crystal structure of a conformationally constrained mutant of the Escherichia coli lactose permease (the LacY double-Trp mutant Gly-46→Trp/Gly-262→Trp) with bound p-nitrophenyl-α-d-galactopyranoside (α-NPG), a high-affinity lactose analog, is described. With the exception of Glu-126 (helix IV), side chains Trp-151 (helix V), Glu-269 (helix VIII), Arg-144 (helix V), His-322 (helix X), and Asn-272 (helix VIII) interact directly with the galactopyranosyl ring of α-NPG to provide specificity, as indicated by biochemical studies and shown directly by X-ray crystallography. In contrast, Phe-20, Met-23, and Phe-27 (helix I) are within van der Waals distance of the benzyl moiety of the analog and thereby increase binding affinity nonspecifically. Thus, the specificity of LacY for sugar is determined solely by side-chain interactions with the galactopyranosyl ring, whereas affinity is increased by nonspecific hydrophobic interactions with the anomeric substituent.
Collapse
Affiliation(s)
- Hemant Kumar
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| | - Janet S Finer-Moore
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| | - H Ronald Kaback
- Department of Physiology and Department of Microbiology, Immunology, and Molecular Genetics, and Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158;
| |
Collapse
|
2
|
The Life and Times of Lac Permease: Crystals Ain’t Everything, but They Certainly Do Help. SPRINGER SERIES IN BIOPHYSICS 2014. [DOI: 10.1007/978-3-642-53839-1_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Abstract
One fundamentally important problem for understanding the mechanism of coupling between substrate and H(+) translocation with secondary active transport proteins is the identification and physical localization of residues involved in substrate and H(+) binding. This information is exceptionally difficult to obtain with the Major Facilitator Superfamily (MFS) because of the broad sequence diversity of the members. The MFS is the largest and most diverse group of transporters, many of which are clinically important, and includes members from all kingdoms of life. A wide range of substrates is transported, in many instances against a concentration gradient by transduction of the energy stored in an H(+) electrochemical gradient using symport mechanisms, which are discussed herein. Crystallographic structures of MFS members indicate that a deep central hydrophilic cavity surrounded by 12 mostly irregular transmembrane helices represents a common structural feature. An inverted triple-helix structural symmetry motif within the N- and C-terminal six-helix bundles suggests that the proteins may have arisen by intragenic multiplication. In the work presented here, the triple-helix motifs are aligned in combinatorial fashion so as to detect functionally homologous positions with known atomic structures of MFS members. Substrate and H(+)-binding sites in symporters that transport substrates, ranging from simple ions like phosphate to more complex peptides or disaccharides, are found to be in similar locations. It also appears likely that there is a homologous ordered kinetic mechanism for the H(+)-coupled MFS symporters.
Collapse
|
4
|
Naftalin RJ, Green N, Cunningham P. Lactose permease H+-lactose symporter: mechanical switch or Brownian ratchet? Biophys J 2007; 92:3474-91. [PMID: 17325012 PMCID: PMC1853157 DOI: 10.1529/biophysj.106.100669] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lactose permease structure is deemed consistent with a mechanical switch device for H(+)-coupled symport. Because the crystallography-assigned docking position of thiodigalactoside (TDG) does not make close contact with several amino acids essential for symport; the switch model requires allosteric interactions between the proton and sugar binding sites. The docking program, Autodock 3 reveals other lactose-docking sites. An alternative cotransport mechanism is proposed where His-322 imidazolium, positioned in the central pore equidistant (5-7 A) between six charged amino acids, Arg-302 and Lys-319 opposing Glu-269, Glu-325, Asp-237, and Asp-240, transfers a proton transiently to an H-bonded lactose hydroxyl group. Protonated lactose and its dissociation product H(3)O+ are repelled by reprotonated His-322 and drift in the electrostatic field toward the cytosol. This Brownian ratchet model, unlike the conventional carrier model, accounts for diminished symport by H322N mutant; how H322 mutants become uniporters; why exchanging Lys-319 with Asp-240 paradoxically inactivates symport; how some multiple mutants become revertant transporters; the raised export rate and affinity toward lactose of uncoupled mutants; the altered specificity toward lactose, melibiose, and galactose of some mutants, and the proton dissociation rate of H322 being 100-fold faster than the symport turnover rate.
Collapse
Affiliation(s)
- Richard J Naftalin
- King's College London, Physiology Division, Franklin-Wilkins Building, London, United Kingdom.
| | | | | |
Collapse
|
5
|
Abstract
An X-ray structure of the lactose permease of Escherichia coli (LacY) in an inward-facing conformation has been solved. LacY contains N- and C-terminal domains, each with six transmembrane helices, positioned pseudosymmetrically. Ligand is bound at the apex of a hydrophilic cavity in the approximate middle of the molecule. Residues involved in substrate binding and H+ translocation are aligned parallel to the membrane at the same level and may be exposed to a water-filled cavity in both the inward- and outward-facing conformations, thereby allowing both sugar and H+ release directly into either cavity. These structural features may explain why LacY catalyzes galactoside/H+ symport in both directions utilizing the same residues. A working model for the mechanism is presented that involves alternating access of both the sugar- and H+-binding sites to either side of the membrane.
Collapse
Affiliation(s)
- Lan Guan
- Department of Physiology, University of California, Los Angeles, California 90095-1662
| | - H. Ronald Kaback
- Department of Physiology, University of California, Los Angeles, California 90095-1662
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, California 90095-1662
- Department of Molecular Biology Institute, University of California, Los Angeles, California 90095-1662
| |
Collapse
|
6
|
Kim MH, Lu M, Kelly M, Hersh LB. Mutational analysis of basic residues in the rat vesicular acetylcholine transporter. Identification of a transmembrane ion pair and evidence that histidine is not involved in proton translocation. J Biol Chem 2000; 275:6175-80. [PMID: 10692409 DOI: 10.1074/jbc.275.9.6175] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The function of positively charged residues and the interaction of positively and negatively charged residues of the rat vesicular acetylcholine transporter (rVAChT) were studied. Changing Lys-131 in transmembrane domain helix 2 (TM2) to Ala or Leu eliminated transport activity, with no effect on vesamicol binding. However, replacement by His or Arg retained transport activity, suggesting a positive charge in this position is critical. Mutation of His-444 in TM12 or His-413 in the cytoplasmic loop between TM10 and TM11 was without effect on ACh transport, but vesamicol binding was reduced with His-413 mutants. Changing His-338 in TM8 to Ala or Lys did not effect ACh transport, however replacement with Cys or Arg abolished activity. Mutation of both of the transmembrane histidines or all three of the luminal loop histidines showed no change in acetylcholine transport. The mutant H338A/D398N between oppositely charged residues in transmembrane domains showed no vesamicol binding, however the charge reversal mutant H338D/D398H restored binding. This suggests that His-338 forms an ion pair with Asp-398. The charge neutralizing mutant K131A/D425N or the charge exchanged mutant K131D/D425K did not restore ACh transport. Taken together these results provide new insights into the tertiary structure in VAChT.
Collapse
Affiliation(s)
- M H Kim
- Department of Biochemistry, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | | | | | |
Collapse
|
7
|
Abstract
The passage of molecules and information across cell membranes is mediated largely by membrane-spanning proteins acting as channels, pumps, receptors and enzymes. These proteins perform many tasks: they control electrochemical gradients across the membrane, receive signals from the environment or from other cells, convert light energy into chemical signals, transport small molecules into and out of cells, and harness proton gradients to generate the energy consumed in metabolism. Indeed, of the estimated 50000–100000 genes in the human genome, fully 20–40 % are thought to encode integral membrane proteins. If one also includes membrane-associated proteins, which are attached to the membrane surface through fatty acyl chains or electrostatic interactions, this percentage is likely to be much higher.
Collapse
Affiliation(s)
- S O Smith
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | |
Collapse
|
8
|
Chapter 10 The lactose permease of Escherichia coli: Past, present and future. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1383-8121(96)80051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
9
|
Tamura S, Nelson H, Tamura A, Nelson N. Short external loops as potential substrate binding site of gamma-aminobutyric acid transporters. J Biol Chem 1995; 270:28712-5. [PMID: 7499392 DOI: 10.1074/jbc.270.48.28712] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
While the gamma-aminobutyric acid (GABA) transporter GAT1 exclusively transports GABA, GAT2, -3, and -4 also transport beta-alanine. Cross-mutations in the external loops IV, V, and VI among the various GABA transporters were performed by site-directed mutagenesis. The affinity of GABA transport as well as inhibitor sensitivity of the modified transporters was analyzed. Kinetic analysis revealed that a cross-mutation in which loop IV of GAT1 was modified to resemble GAT4 resulted in increased affinity to GABA from Km = 8.7 to 2.0 microM without changing the Vmax. A cross-mutation in loop VI, which swapped the amino acid sequence of GAT2 for GAT1, decreased the affinity to GABA (Km, 35 microM). These results suggest that loops IV and VI contribute to the binding affinity of GABA transporters. A substitution of three amino acids in loop V of GAT1 by the corresponding sequence of GAT3 resulted in beta-alanine sensitivity of its GABA uptake activity. These three amino acids in loop V seem to participate in the beta-alanine binding domain of GAT3. It is suggested that those three external loops (IV, V, and VI) form a pocket in which the substrate binds to the GABA transporters.
Collapse
Affiliation(s)
- S Tamura
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110, USA
| | | | | | | |
Collapse
|
10
|
Wu J, Frillingos S, Kaback HR. Dynamics of lactose permease of Escherichia coli determined by site-directed chemical labeling and fluorescence spectroscopy. Biochemistry 1995; 34:8257-63. [PMID: 7599118 DOI: 10.1021/bi00026a007] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mutants with a single Cys residue in place of Phe27, Pro28, Phe29, Phe30, or Pro31 at the periplasmic end of putative transmembrane helix I were used to study the interaction of lactose permease with ligand by site-directed chemical modification or fluorescence spectroscopy. With permease embedded in the native membrane, mutant Phe27-->Cys or Phe28-->Cys is readily labeled with [14C]-N-ethylmaleimide (NEM), while mutant Phe29-->Cys, Phe30-->Cys, or Phe31-->Cys reacts less effectively. beta,D-Galactopyranosyl 1-thio-beta,D-galactopyranoside (TDG) has little or no effect on the reactivity of Phe27-->Cys, Phe29-->Cys, or Phe30-->Cys permease. Remarkably, however, Pro31-->Cys permease which is essentially unreactive in the absence of ligand becomes highly reactive in the presence of TDG. Ligand also enhances the NEM reactivity of the mutant with Cys in place of Pro28 which is presumably on the same face of helix I as position 31. The five single-Cys mutants which also contain a biotin acceptor domain in the middle cytoplasmic loop were purified by monomeric avidin-affinity chromatography in dodecyl beta,D-maltoside and subjected to site-directed fluorescence spectroscopy. Mutants Phe27-->Cys, Phe29-->Cys, and Phe30-->Cys react rapidly with 2-(4'-maleimidylanilino)naphthalene-6-sulfonic acid (MIANS), and reactivity is not altered in the presence of TDG. In striking contrast, mutants Pro28-->Cys and Pro31-->Cys react extremely slowly with MIANS in the absent of ligand, and TDG dramatically enhances reactivity.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J Wu
- Howard Hughes Medical Institute, Department of Physiology and Microbiology, University of California, Los Angeles 90095-1662, USA
| | | | | |
Collapse
|
11
|
Sahin-Tóth M, Frillingos S, Bibi E, Gonzalez A, Kaback HR. The role of transmembrane domain III in the lactose permease of Escherichia coli. Protein Sci 1994; 3:2302-10. [PMID: 7756986 PMCID: PMC2142773 DOI: 10.1002/pro.5560031215] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Deletion of putative transmembrane helix III from the lactose permease of Escherichia coli results in complete loss of transport activity. Similarly, replacement of this region en bloc with 23 contiguous Ala, Leu, or Phe residues abolishes active lactose transport. The observations suggest that helix III may contain functionally important residues; therefore, this region was subjected to Cys-scanning mutagenesis. Using a functional mutant devoid of Cys residues (C-less permease) each residue from Tyr 75 to Leu 99 was individually replaced with Cys. Twenty-one of the 25 mutants accumulate lactose to > 70% of the steady-state exhibited by C-less permease, and an additional 3 mutants transport to lower, but significant levels (40-60% of C-less). Cys replacement for Leu 76 results in low transport activity (18% of C-less). However, when placed in the wild-type background, mutant Leu 76-->Cys exhibits highly significant rates of transport (55% of wild type) and steady-state levels of lactose accumulation (65% of wild type). Immunoblots reveal that the mutants are inserted into the membrane at concentrations comparable to wild type. Studies with N-ethylmaleimide show that mutant Gly 96-->Cys is rapidly inactivated, whereas the other single-Cys mutants are not altered significantly by the alkylating agent. Moreover, the rate of inactivation of Gly 96-->Cys permease is enhanced at least 2-fold in the presence of beta-galactopyranosyl 1-thio-beta, D-galactopyranoside. The observations demonstrate that although no residue per se appears to be essential, structural properties of helix III are important for active lactose transport.
Collapse
Affiliation(s)
- M Sahin-Tóth
- Howard Hughes Medical Institute, Department of Physiology, University of California, Los Angeles 90024-1662, USA
| | | | | | | | | |
Collapse
|
12
|
Ujwal ML, Sahin-Tóth M, Persson B, Kaback HR. Role of glutamate-269 in the lactose permease of Escherichia coli. Mol Membr Biol 1994; 11:9-16. [PMID: 7912610 DOI: 10.3109/09687689409161024] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glu-269, which is located on the hydrophilic face of putative helix VIII in the lactose permease of Escherichia coli, has been replaced with Asp, Gln or Cys by oligonucleotide-directed, site specific mutagenesis. Cells expressing Asp-269 permease exhibit no lactose accumulation or lactose-induced H+ translocation, but retain some ability to mediate lactose influx down a concentration gradient at high substrate concentrations. Furthermore, right-side-out membrane vesicles containing Asp-269 permease do not catalyse active lactose transport, facilitated lactose efflux or equilibrium exchange. Remarkably, however, Asp-269 permease accumulates beta, D-galactopyranosyl 1-thio-beta,D-galactopyranoside in a partially uncoupled fashion, whereas no transport of methyl-beta,D-thiogalactopyranoside, sucrose or maltose is detectable. Mutant permeases containing neutral replacements (Gln or Cys) or Glu-269 are completely devoid of activity, although the proteins are present in the membrane at concentrations comparable with wild-type or Asp-269 permease. The observations demonstrate that a carboxylate at position 269 is essential for transport activity, and Glu-269 is important for substrate binding and/or recognition.
Collapse
Affiliation(s)
- M L Ujwal
- Howard Hughes Medical Institute, Department of Physiology, University of California at Los Angeles 90024
| | | | | | | |
Collapse
|
13
|
Kaback HR, Jung K, Jung H, Wu J, Privé GG, Zen K. What's new with lactose permease. J Bioenerg Biomembr 1993; 25:627-36. [PMID: 8144491 DOI: 10.1007/bf00770250] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The lactose permease of Escherichia coli is a paradigm for polytopic membrane transport proteins that transduce free energy stored in an electrochemical ion gradient into work in the form of a concentration gradient. Although the permease consists of 12 hydrophobic transmembrane domains in probable alpha-helical conformation that traverse the membrane in zigzag fashion connected by hydrophilic "loops", little information is available regarding the folded tertiary structure of the molecule. In a recent approach site-directed fluorescence labeling is being used to study proximity relationships in lactose permease. The experiments are based upon site-directed pyrene labeling of combinations of paired Cys replacements in a mutant devoid of Cys residues. Since pyrene exhibits excimer fluorescence if two molecules are within about 3.5A, the proximity between paired labeled residues can be determined. The results demonstrate that putative helices VIII and IX are close to helix X. Taken together with other findings indicating that helix VII is close to helices X and XI, the data lead to a model that describes the packing of helices VII to XI.
Collapse
Affiliation(s)
- H R Kaback
- Howard Hughes Medical Institute, Department of Physiology, University of California Los Angeles 90024-1662
| | | | | | | | | | | |
Collapse
|
14
|
Jung K, Jung H, Wu J, Privé GG, Kaback HR. Use of site-directed fluorescence labeling to study proximity relationships in the lactose permease of Escherichia coli. Biochemistry 1993; 32:12273-8. [PMID: 8241112 DOI: 10.1021/bi00097a001] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The lactose permease of Escherichia coli is a paradigm for polytopic membrane transport proteins that transduce free energy stored in an electrochemical ion gradient into work in the form of a concentration gradient. Although the permease consists of 12 hydrophobic transmembrane domains in probable alpha-helical conformation that traverse the membrane in zigzag fashion connected by hydrophilic "loops", little information is available regarding the folded tertiary structure of the molecule. In this paper, we describe an approach to studying proximity relationships in lactose permease that is based upon site-directed pyrene labeling of combinations of paired Cys replacements in a mutant devoid of Cys residues. Since pyrene exhibits excimer fluorescence if two molecules are within about 3.5 A, the proximity between paired labeled residues can be determined. The results demonstrate that putative helices VIII and IX are close to helix X. Taken together with other findings indicating that helix VII is close to helices X and XI, the data lead to a model that describes the packing of helices VII-XI.
Collapse
Affiliation(s)
- K Jung
- Howard Hughes Medical Institute, Department of Physiology, University of California, Los Angeles 90024-1662
| | | | | | | | | |
Collapse
|
15
|
Sahin-Tóth M, Kaback HR. Cysteine scanning mutagenesis of putative transmembrane helices IX and X in the lactose permease of Escherichia coli. Protein Sci 1993; 2:1024-33. [PMID: 8318887 PMCID: PMC2142399 DOI: 10.1002/pro.5560020615] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Using a functional lactose permease mutant devoid of Cys residues (C-less permease), each amino-acid residue in putative transmembrane helices IX and X and the short intervening loop was systematically replaced with Cys (from Asn-290 to Lys-335). Thirty-four of 46 mutants accumulate lactose to high levels (70-100% or more of C-less), and an additional 7 mutants exhibit lower but highly significant lactose accumulation. As expected (see Kaback, H.R., 1992, Int. Rev. Cytol. 137A, 97-125), Cys substitution for Arg-302, His-322, or Glu-325 results in inactive permease molecules. Although Cys replacement for Lys-319 or Phe-334 also inactivates lactose accumulation, Lys-319 is not essential for active lactose transport (Sahin-Tóth, M., Dunten, R.L., Gonzalez, A., & Kaback, H.R., 1992, Proc. Natl. Acad. Sci. USA 89, 10547-10551), and replacement of Phe-334 with leucine yields permease with considerable activity. All single-Cys mutants except Gly-296 --> Cys are present in the membrane in amounts comparable to C-less permease, as judged by immunological techniques. In contrast, mutant Gly-296 --> Cys is hardly detectable when expressed at a relatively low rate from the lac promoter/operator but present in the membrane in stable form when expressed at a high rate from T7 promoter. Finally, studies with N-ethylmaleimide (NEM) show that only a few mutants are inactivated significantly. Remarkably, the rate of inactivation of Val-315 --> Cys permease is enhanced at least 10-fold in the presence of beta-galactopyranosyl 1-thio-beta-D-galactopyranoside (TDG) or an H+ electrochemical gradient (delta mu-H+). The results demonstrate that only three residues in this region of the permease -Arg-302, His-322, and Glu-325-are essential for active lactose transport. Furthermore, the enhanced reactivity of the Val-315 --> Cys mutant toward NEM in the presence of TDG or delta mu-H+ probably reflects a conformational alteration induced by either substrate binding or delta mu-H+.
Collapse
Affiliation(s)
- M Sahin-Tóth
- Howard Hughes Medical Institute, Department of Physiology, University of California, Los Angeles 90024-1574
| | | |
Collapse
|
16
|
Affiliation(s)
- H R Kaback
- Howard Hughes Medical Institute, Department of Physiology and Microbiology, University of California, Los Angeles 90024
| |
Collapse
|
17
|
Metal-tetracycline/H+ antiporter of Escherichia coli encoded by a transposon Tn10. Histidine 257 plays an essential role in H+ translocation. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)38081-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
18
|
King SC, Wilson TH. Towards an understanding of the structural basis of 'forbidden' transport pathways in the Escherichia coli lactose carrier: mutations probing the energy barriers to uncoupled transport. Mol Microbiol 1990; 4:1433-8. [PMID: 2287270 DOI: 10.1111/j.1365-2958.1990.tb02053.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent progress in the analysis of mutants of the Escherichia coli lactose carrier function is reviewed, with special emphasis on the structural basis for energy barriers which prevent 'forbidden' conformational changes. Mutations which break down the barriers to forbidden isomerizations involving the binary carrier:sugar (CS) and carrier:proton (CH) complexes have been obtained in several laboratories. These mutants allow uncoupled transport of H+ or galactoside in the lactose carrier which normally couples cation and sugar movement in a 1:1 stoichiometry. These uncoupled mutants appear to be associated with changes in both sugar and cation recognition, suggesting that the physical interactions forming the basis for co-substrate recognition and uncoupling are not independently variable. By postulating that translocation involves transformation of the stable intermediate of the co-transport cycle to unstable transition state conformations of the carrier, it is possible to consider the consequences of mutagenesis in terms of transition state theory. Consistent with several experimental observations, the analysis predicts in each mutant the occurrence of more than one abnormality in the transport cycle (such as changes in sugar recognition, cation recognition or the coupling reaction). We have called the general phenomenon a 'mutational double-effect' because any mutation which alters the Gibbs free energy change of one reaction in the transport cycle must affect the free energy change of at least one other reaction in this cycle.
Collapse
Affiliation(s)
- S C King
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
19
|
Yamato I, Ohsawa M, Anraku Y. Defective cation-coupling mutants of Escherichia coli Na+/proline symport carrier. Characterization and localization of mutations. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39820-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
20
|
Histidine-94 is the only important histidine residue in the melibiose permease of Escherichia coli. Proc Natl Acad Sci U S A 1990; 87:468-72. [PMID: 2404282 PMCID: PMC53285 DOI: 10.1073/pnas.87.1.468] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oligonucleotide-directed, site-specific mutagenesis has been utilized to modify the melB gene of Escherichia coli such that each of the seven His residues in the melibiose permease has been replaced with Arg. Replacement of His-213, His-442, or His-456 has no significant effect on permease activity, while permease with Arg in place of His-198, His-318, or His-357 retains more than 70% of wild-type activity. In striking contrast, replacement of His-94 with Arg causes a complete loss of sugar binding and transport, although the cells contain a normal complement of permease molecules. Thus, as shown previously with lac permease, only a single His residue is important for activity, but, in the case of mel permease, the critical His residue is present in the 3rd putative transmembrane helix rather than the 10th.
Collapse
|
21
|
Aslanidis C, Schmid K, Schmitt R. Nucleotide sequences and operon structure of plasmid-borne genes mediating uptake and utilization of raffinose in Escherichia coli. J Bacteriol 1989; 171:6753-63. [PMID: 2556373 PMCID: PMC210573 DOI: 10.1128/jb.171.12.6753-6763.1989] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The plasmid-borne raf operon encodes functions required for inducible uptake and utilization of raffinose by Escherichia coli. Raf functions include active transport (Raf permease), alpha-galactosidase, and sucrose hydrolase, which are negatively controlled by the Raf repressor. We have defined the order and extent of the three structural genes, rafA, rafB, and rafD; these are contained in a 5,284-base-pair nucleotide sequence. By comparisons of derived primary structures with known subunit molecular weights and an N-terminal peptide sequence, rafA was assigned to alpha-galactosidase (708 amino acids), rafB was assigned to Raf permease (425 amino acids), and rafD was assigned to sucrose hydrolase (476 amino acids). Transcription was shown to initiate 13 nucleotides upstream of rafA; a putative promoter, a ribosome-binding site, and a transcription termination signal were identified. Striking similarities between Raf permease and lacY-encoded lactose permease, revealed by high sequence conservation (76%), overlapping substrate specificities, and similar transport kinetics, suggest a common origin of these transport systems. alpha-Galactosidase and sucrose hydrolase are not related to host enzymes but have their counterparts in other species. We propose a modular origin of the raf operon and discuss selective forces that favored the given gene organization also found in the E. coli lac operon.
Collapse
Affiliation(s)
- C Aslanidis
- Lehrstuhl für Genetik, Universität Regensburg, Federal Republic of Germany
| | | | | |
Collapse
|
22
|
Püttner IB, Sarkar HK, Padan E, Lolkema JS, Kaback HR. Characterization of site-directed mutants in the lac permease of Escherichia coli. 1. Replacement of histidine residues. Biochemistry 1989; 28:2525-33. [PMID: 2659072 DOI: 10.1021/bi00432a027] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Wild-type lac permease from Escherichia coli and two site-directed mutant permeases containing Arg in place of His35 and His39 or His322 were purified and reconstituted into proteoliposomes. H35-39R permease is indistinguishable from wild type with regard to all modes of translocation. In contrast, purified, reconstituted permease with Arg in place of His322 is defective in active transport, efflux, equilibrium exchange, and counterflow but catalyzes downhill influx of lactose without concomitant H+ translocation. Although permease with Arg in place of His205 was thought to be devoid of activity [Padan, E., Sarkar, H. K., Viitanen, P. V., Poonian, M. S., & Kaback, H. R. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 6765], sequencing of lac Y in pH205R reveals the presence of two additional mutations in the 5' end of the gene, and replacement of this portion of lac Y with a restriction fragment from the wild-type gene yields permease with normal activity. Permeases with Asn, Gln, or Lys in place of His322, like H322R permease, catalyze downhill influx of lactose without H+ translocation but are unable to catalyze active transport, equilibrium exchange, or counterflow. Unlike H322R permease, however, the latter mutants catalyze efflux at rates comparable to that of wild-type permease, although the reaction does not occur in symport with H+. Finally, as evidenced by flow dialysis and photoaffinity labeling experiments, replacement of His322 appears to cause a marked decrease in the affinity of the permease for substrate. The results confirm and extend the contention that His322 is the only His residue in the permease involved in lactose/H+ symport and that an imidazole moiety at position 322 is obligatory.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- I B Püttner
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110
| | | | | | | | | |
Collapse
|
23
|
Poolman B, Royer TJ, Mainzer SE, Schmidt BF. Lactose transport system of Streptococcus thermophilus: a hybrid protein with homology to the melibiose carrier and enzyme III of phosphoenolpyruvate-dependent phosphotransferase systems. J Bacteriol 1989; 171:244-53. [PMID: 2644191 PMCID: PMC209579 DOI: 10.1128/jb.171.1.244-253.1989] [Citation(s) in RCA: 125] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The gene responsible for the transport of lactose into Streptococcus thermophilus (lacS) was cloned in Escherichia coli as a 4.2-kilobase fragment from an EcoRI library of chromosomal DNA by using the vector pKK223-3. From deletion analysis, the gene for lactose transport mapped to two HindIII fragments with a total size of 2.8 kilobases. The gene was transcribed in E. coli from its own promoter. Functional expression of lactose transport activity was shown by assaying for the uptake and exchange of lactose both in intact cells and in membrane vesicles. The nucleotide sequence of lacS and 200 to 300 bases of 3' and 5' flanking regions were determined. The gene was 1,902 base pairs long, encoding a 69,454-dalton protein with an NH2-terminal hydrophobic region and a COOH-terminal hydrophilic region. The NH2-terminal end was homologous with the melibiose carrier of E. coli (23% similarity overall; greater than 50% similarity for regions with at least 16 amino acids), whereas the COOH-terminal end showed 34 to 41% similarity with the enzyme III (domain) of three different phosphoenolpyruvate-dependent phosphotransferase systems. Among the conserved amino acids were two histidyl residues, of which one has been postulated to be phosphorylated by HPr. Since sugars are not phosphorylated during translocation by the lactose transport system, it is suggested that the enzyme III-like region serves a regulatory function in this protein. The lacS gene also appears similar to the partially sequenced lactose transport gene of Lactobacillus bulgaricus (lacL; greater than 60% similarity). Furthermore, the 3' flanking sequence of the S. thermophilus lactose transport gene showed approximately 50% similarity with the N-terminal portion of the beta-galactosidase gene of L. bulgaricus. In both organisms, the lactose transport gene and the beta-galactosidase appear to be separated by a 3-base-pair intercistronic region.
Collapse
Affiliation(s)
- B Poolman
- GENENCOR, Inc., South San Francisco, California 94080
| | | | | | | |
Collapse
|