1
|
Chiarugi S, Margheriti F, De Lorenzi V, Martino E, Margheritis EG, Moscardini A, Marotta R, Chaves-Sanjuan A, Del Seppia C, Federighi G, Lapi D, Bandiera T, Rapposelli S, Scuri R, Bolognesi M, Garau G. NAPE-PLD is target of thiazide diuretics. Cell Chem Biol 2025; 32:449-462.e5. [PMID: 39999832 DOI: 10.1016/j.chembiol.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/01/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025]
Abstract
Thiazide and thiazide-like diuretics are among the most efficacious and used drugs for the treatment of hypertension, edema, and major cardiovascular outcomes. Despite more then than six decades of clinical use, the molecular target and mechanism of action by which these drugs cure hypertension after long-term use have remained mysterious. Here we report the discovery and validation of a previously unknown renal and extrarenal target of these antihypertensives, the membrane-associated phospholipase N-acylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD) of the endocannabinoid system. Structural and functional insights, together with preclinical studies in hypertensive rats, disclose the molecular and physiological basis by which thiazides cause acute diuresis and, at the same time, the distinctive chronic reduction of vascular resistance. Our results shed light on the mechanism of treatment of hypertension and will be useful for developing more efficacious medications for the management of vascular risk factors, as well as associated leukoencephalopathies and myelin disorders.
Collapse
Affiliation(s)
- Sara Chiarugi
- BioStructures Lab, Istituto Italiano di Tecnologia (IIT@NEST), Piazza San Silvestro 12, 56127 Pisa, Italy; Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Francesco Margheriti
- BioStructures Lab, Istituto Italiano di Tecnologia (IIT@NEST), Piazza San Silvestro 12, 56127 Pisa, Italy; Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Valentina De Lorenzi
- BioStructures Lab, Istituto Italiano di Tecnologia (IIT@NEST), Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Elisa Martino
- BioStructures Lab, Istituto Italiano di Tecnologia (IIT@NEST), Piazza San Silvestro 12, 56127 Pisa, Italy; Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | | | - Aldo Moscardini
- Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Roberto Marotta
- Electron Microscopy Facility, Istituto Italiano di Tecnologia (IIT) Via Morego 30, 16163 Genova, Italy
| | - Antonio Chaves-Sanjuan
- Department of BioSciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; Pediatric Research Center Fondazione R.E. Invernizzi and NOLIMITS Center, Università degli Studi di Milano, Milan, Italy
| | | | - Giuseppe Federighi
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 31, 56126 Pisa, Italy
| | - Dominga Lapi
- Department of Biology, University of Pisa, Via Alessandro Volta 4, 56127 Pisa, Italy
| | - Tiziano Bandiera
- D3 PharmaChemistry, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Rossana Scuri
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 31, 56126 Pisa, Italy
| | - Martino Bolognesi
- Department of BioSciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; Pediatric Research Center Fondazione R.E. Invernizzi and NOLIMITS Center, Università degli Studi di Milano, Milan, Italy
| | - Gianpiero Garau
- BioStructures Lab, Istituto Italiano di Tecnologia (IIT@NEST), Piazza San Silvestro 12, 56127 Pisa, Italy; Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; Laboratori Aliveda, Viale Karol Wojtyla 19, 56042 Crespina Lorenzana, Pisa, Italy.
| |
Collapse
|
2
|
Zhao Y, Schubert H, Blakely A, Forbush B, Smith MD, Rinehart J, Cao E. Structural bases for Na +-Cl - cotransporter inhibition by thiazide diuretic drugs and activation by kinases. Nat Commun 2024; 15:7006. [PMID: 39143061 PMCID: PMC11324901 DOI: 10.1038/s41467-024-51381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024] Open
Abstract
The Na+-Cl- cotransporter (NCC) drives salt reabsorption in the kidney and plays a decisive role in balancing electrolytes and blood pressure. Thiazide and thiazide-like diuretics inhibit NCC-mediated renal salt retention and have been cornerstones for treating hypertension and edema since the 1950s. Here we determine NCC co-structures individually complexed with the thiazide drug hydrochlorothiazide, and two thiazide-like drugs chlorthalidone and indapamide, revealing that they fit into an orthosteric site and occlude the NCC ion translocation pathway. Aberrant NCC activation by the WNKs-SPAK kinase cascade underlies Familial Hyperkalemic Hypertension, but it remains unknown whether/how phosphorylation transforms the NCC structure to accelerate ion translocation. We show that an intracellular amino-terminal motif of NCC, once phosphorylated, associates with the carboxyl-terminal domain, and together, they interact with the transmembrane domain. These interactions suggest a phosphorylation-dependent allosteric network that directly influences NCC ion translocation.
Collapse
Affiliation(s)
- Yongxiang Zhao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Heidi Schubert
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alan Blakely
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Biff Forbush
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Micholas Dean Smith
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Jesse Rinehart
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Systems Biology Institute, Yale University, New Haven, CT, USA
| | - Erhu Cao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
3
|
Rioux AV, Nsimba-Batomene TR, Slimani S, Bergeron NAD, Gravel MAM, Schreiber SV, Fiola MJ, Haydock L, Garneau AP, Isenring P. Navigating the multifaceted intricacies of the Na +-Cl - cotransporter, a highly regulated key effector in the control of hydromineral homeostasis. Physiol Rev 2024; 104:1147-1204. [PMID: 38329422 PMCID: PMC11381001 DOI: 10.1152/physrev.00027.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/01/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024] Open
Abstract
The Na+-Cl- cotransporter (NCC; SLC12A3) is a highly regulated integral membrane protein that is known to exist as three splice variants in primates. Its primary role in the kidney is to mediate the cosymport of Na+ and Cl- across the apical membrane of the distal convoluted tubule. Through this role and the involvement of other ion transport systems, NCC allows the systemic circulation to reclaim a fraction of the ultrafiltered Na+, K+, Cl-, and Mg+ loads in exchange for Ca2+ and [Formula: see text]. The physiological relevance of the Na+-Cl- cotransport mechanism in humans is illustrated by several abnormalities that result from NCC inactivation through the administration of thiazides or in the setting of hereditary disorders. The purpose of the present review is to discuss the molecular mechanisms and overall roles of Na+-Cl- cotransport as the main topics of interest. On reading the narrative proposed, one will realize that the knowledge gained in regard to these themes will continue to progress unrelentingly no matter how refined it has now become.
Collapse
Affiliation(s)
- A V Rioux
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - T R Nsimba-Batomene
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S Slimani
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - N A D Bergeron
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M A M Gravel
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S V Schreiber
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M J Fiola
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - L Haydock
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - A P Garneau
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - P Isenring
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
4
|
Bargagli M, Anderegg MA, Fuster DG. Effects of thiazides and new findings on kidney stones and dysglycemic side effects. Acta Physiol (Oxf) 2024; 240:e14155. [PMID: 38698738 DOI: 10.1111/apha.14155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/08/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
Thiazide and thiazide-like diuretics (thiazides) belong to the most frequently prescribed drugs worldwide. By virtue of their natriuretic and vasodilating properties, thiazides effectively lower blood pressure and prevent adverse cardiovascular outcomes. In addition, through their unique characteristic of reducing urine calcium, thiazides are also widely employed for the prevention of kidney stone recurrence and reduction of bone fracture risk. Since their introduction into clinical medicine in the early 1960s, thiazides have been recognized for their association with metabolic side effects, particularly impaired glucose tolerance, and new-onset diabetes mellitus. Numerous hypotheses have been advanced to explain thiazide-induced glucose intolerance, yet underlying mechanisms remain poorly defined. Regrettably, the lack of understanding and unpredictability of these side effects has prompted numerous physicians to refrain from prescribing these effective, inexpensive, and widely accessible drugs. In this review, we outline the pharmacology and mechanism of action of thiazides, highlight recent advances in the understanding of thiazide-induced glucose intolerance, and provide an up-to-date discussion on the role of thiazides in kidney stone prevention.
Collapse
Affiliation(s)
- Matteo Bargagli
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Swiss National Centre of Competence in Research (NCCR) Kidney.CH, University of Zürich, Zürich, Switzerland
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Manuel A Anderegg
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Swiss National Centre of Competence in Research (NCCR) Kidney.CH, University of Zürich, Zürich, Switzerland
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Daniel G Fuster
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Swiss National Centre of Competence in Research (NCCR) Kidney.CH, University of Zürich, Zürich, Switzerland
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Gamba G. Thirty years of the NaCl cotransporter: from cloning to physiology and structure. Am J Physiol Renal Physiol 2023; 325:F479-F490. [PMID: 37560773 PMCID: PMC10639029 DOI: 10.1152/ajprenal.00114.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023] Open
Abstract
The primary structure of the thiazide-sensitive NaCl cotransporter (NCC) was resolved 30 years ago by the molecular identification of the cDNA encoding this cotransporter, from the winter's flounder urinary bladder, following a functional expression strategy. This review outlines some aspects of how the knowledge about thiazide diuretics and NCC evolved, the history of the cloning process, and the expansion of the SLC12 family of electroneutral cotransporters. The diseases associated with activation or inactivation of NCC are discussed, as well as the molecular model by which the activity of NCC is regulated. The controversies in the field are discussed as well as recent publication of the three-dimensional model of NCC obtained by cryo-electron microscopy, revealing not only the amino acid residues critical for Na+ and Cl- translocation but also the residues critical for polythiazide binding to the transporter, opening the possibility for a new era in thiazide diuretic therapy.
Collapse
Affiliation(s)
- Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
6
|
Fan M, Zhang J, Lee CL, Zhang J, Feng L. Structure and thiazide inhibition mechanism of the human Na-Cl cotransporter. Nature 2023; 614:788-793. [PMID: 36792826 PMCID: PMC10030352 DOI: 10.1038/s41586-023-05718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/09/2023] [Indexed: 02/17/2023]
Abstract
The sodium-chloride cotransporter (NCC) is critical for kidney physiology1. The NCC has a major role in salt reabsorption in the distal convoluted tubule of the nephron2,3, and mutations in the NCC cause the salt-wasting disease Gitelman syndrome4. As a key player in salt handling, the NCC regulates blood pressure and is the target of thiazide diuretics, which have been widely prescribed as first-line medications to treat hypertension for more than 60 years5-7. Here we determined the structures of human NCC alone and in complex with a commonly used thiazide diuretic using cryo-electron microscopy. These structures, together with functional studies, reveal major conformational states of the NCC and an intriguing regulatory mechanism. They also illuminate how thiazide diuretics specifically interact with the NCC and inhibit its transport function. Our results provide critical insights for understanding the Na-Cl cotransport mechanism of the NCC, and they establish a framework for future drug design and for interpreting disease-related mutations.
Collapse
Affiliation(s)
- Minrui Fan
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jianxiu Zhang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Chien-Ling Lee
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jinru Zhang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Liang Feng
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
7
|
Edwards C, Hundemer GL, Petrcich W, Canney M, Knoll G, Burns K, Bugeja A, Sood MM. Comparison of Clinical Outcomes and Safety Associated With Chlorthalidone vs Hydrochlorothiazide in Older Adults With Varying Levels of Kidney Function. JAMA Netw Open 2021; 4:e2123365. [PMID: 34524440 PMCID: PMC8444030 DOI: 10.1001/jamanetworkopen.2021.23365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE Thiazide diuretics are commonly prescribed for the treatment of hypertension, a disease highly prevalent among older individuals and in those with chronic kidney disease. How specific thiazide diuretics compare in regard to safety and clinical outcomes in these populations remains unknown. OBJECTIVE To compare safety and clinical outcomes associated with chlorthalidone or hydrochlorothiazide use among older adults with varying levels of kidney function. DESIGN, SETTING, AND PARTICIPANTS This population-based retrospective cohort study was conducted in Ontario, Canada, from 2007 to 2015. Participants included adults aged 66 years or older who initiated chlorthalidone or hydrochlorothiazide during this period. Data were analyzed from December 2019 through September 2020. EXPOSURES New chlorthalidone users were matched 1:4 with new hydrochlorothiazide users by a high-dimensional propensity score. Time-to-event models accounting for competing risks examined the associations between chlorthalidone vs hydrochlorothiazide use and the outcomes of interest overall and within estimated glomerular filtration rate (eGFR) categories (≥60, 45-59, and <45 mL/min/1.73 m2). MAIN OUTCOMES AND MEASURES The outcomes of interest were adverse kidney events (ie, eGFR decline ≥30%, dialysis, or kidney transplantation), cardiovascular events (composite of myocardial infarction, coronary revascularization, heart failure, or atrial fibrillation), all-cause mortality, and electrolyte anomalies (ie, sodium or potassium levels outside reference ranges). RESULTS After propensity score matching, the study cohort included 12 722 adults (mean [SD] age, 74 [7] years; 7063 [56%] women; 5659 [44%] men; mean [SD] eGFR, 69 [19] mL/min/1.73 m2), including 2936 who received chlorthalidone and 9786 who received hydrochlorothiazide. Chlorthalidone use was associated with a higher risk of eGFR decline of 30% or greater (hazard ratio [HR], 1.24 [95% CI, 1.13-1.36]) and cardiovascular events (HR, 1.12 [95% CI, 1.04-1.22]) across all eGFR categories compared with hydrochlorothiazide use. Chlorthalidone use was also associated with a higher risk of hypokalemia compared with hydrochlorothiazide use, which was more pronounced among those with higher eGFR (eGFR ≥60 mL/min/1.73 m2: HR, 1.86 [95% CI, 1.67-2.08]; eGFR 45-59 mL/min/1.73 m2: HR, 1.57 [95% CI, 1.25-1.96]; eGFR <45 mL/min/1.73 m2: HR, 1.10 [95% CI, 0.84-1.45]; P for interaction = .001). No significant differences were observed between chlorthalidone and hydrochlorothiazide for dialysis or kidney transplantation (HR, 1.44 [95% CI, 0.88-2.36]), all-cause mortality (HR, 1.10 [95% CI, 0.93-1.29]), hyperkalemia (HR, 1.05 [95% CI, 0.79-1.39]), or hyponatremia (HR, 1.14 [95% CI, CI 0.98-1.32]). CONCLUSIONS AND RELEVANCE This cohort study found that among older adults, chlorthalidone use was associated with a higher risk of eGFR decline, cardiovascular events, and hypokalemia compared with hydrochlorothiazide use. The excess risk of hypokalemia with chlorthalidone was attenuated in participants with reduced kidney function. Placed in context with prior observational studies comparing the safety and clinical outcomes associated with thiazide diuretics, these results suggest that there is no evidence to prefer chlorthalidone over hydrochlorothiazide.
Collapse
Affiliation(s)
- Cedric Edwards
- Ottawa Hospital Research Institute, Division of Nephrology, Department of Medicine, University of Ottawa, Ottawa, Canada
| | - Gregory L. Hundemer
- Ottawa Hospital Research Institute, Division of Nephrology, Department of Medicine, University of Ottawa, Ottawa, Canada
| | | | - Mark Canney
- Ottawa Hospital Research Institute, Division of Nephrology, Department of Medicine, University of Ottawa, Ottawa, Canada
| | - Greg Knoll
- Ottawa Hospital Research Institute, Division of Nephrology, Department of Medicine, University of Ottawa, Ottawa, Canada
| | - Kevin Burns
- Ottawa Hospital Research Institute, Division of Nephrology, Department of Medicine, University of Ottawa, Ottawa, Canada
| | - Ann Bugeja
- Ottawa Hospital Research Institute, Division of Nephrology, Department of Medicine, University of Ottawa, Ottawa, Canada
| | - Manish M. Sood
- Ottawa Hospital Research Institute, Division of Nephrology, Department of Medicine, University of Ottawa, Ottawa, Canada
- Institute for Clinical Evaluative Sciences, Ottawa, Canada
| |
Collapse
|
8
|
Orlova YA, Kurlykina NV, Seredenina EM. [Thiazide and Thiazide-Like Diuretics in Therapy of Arterial Hypertension]. KARDIOLOGIIA 2019; 59:84-94. [PMID: 31849303 DOI: 10.18087/cardio.2019.11.2653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
The review presents results of clinical studies of efficacy and safety of thiazide and thiazide-like diuretics in the treatment of patients with arterial hypertension. In this work we have compared the role of diuretics in modern clinical recommendation on control of arterial pressure, and assessed in comparative aspect metabolic effects of thiazide-like diuretics.
Collapse
|
9
|
Rapoport RM, Soleimani M. Mechanism of Thiazide Diuretic Arterial Pressure Reduction: The Search Continues. Front Pharmacol 2019; 10:815. [PMID: 31543812 PMCID: PMC6730501 DOI: 10.3389/fphar.2019.00815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
Thiazide diuretic (TZD)-mediated chronic reduction of arterial pressure is thought to occur through decreased total peripheral vascular resistance. Further, the decreased peripheral vascular resistance is accomplished through TZD activation of an extrarenal target, resulting in inhibition of vascular constriction. However, despite greater than five decades of investigation, little progress has been made into the identification of the TZD extrarenal target. Proposed mechanisms range from direct inhibition of constrictor and activation of relaxant signaling pathways in the vascular smooth muscle to indirect inhibition through decreased neurogenic and hormonal regulatory pathways. Surprisingly, particularly in view of this lack of progress, comprehensive reviews of the subject are absent. Moreover, even though it is well recognized that 1) several types of hypertension are insensitive to TZD reduction of arterial pressure and, further, TZD fail to reduce arterial pressure in normotensive subjects and animals, and 2) different mechanisms underlie acute and chronic TZD, findings derived from these models and parameters remain largely undifferentiated. This review 1) comprehensively describes findings associated with TZD reduction of arterial pressure; 2) differentiates between observations in TZD-sensitive and TZD-insensitive hypertension, normotensive subjects/animals, and acute and chronic effects of TZD; 3) critically evaluates proposed TZD extrarenal targets; 4) proposes guiding parameters for relevant investigations into extrarenal TZD target identification; and 5) proposes a working model for TZD chronic reduction of arterial pressure through vascular dilation.
Collapse
Affiliation(s)
- Robert M Rapoport
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Manoocher Soleimani
- Research Service, Veterans Affairs Medical Center, Cincinnati, OH, United States.,Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW To determine usefulness and versatility of hydrochlorothiazide (HCTZ) relative to other thiazide diuretics in the treatment of hypertension. RECENT FINDINGS HCTZ was found to be less potent in lowering blood pressure (BP) than other thiazide diuretics, including chlorthalidone (CTD) and bendroflumethiazide. A recent meta-analysis also suggested HCTZ (12.5-25 mg daily) to be less potent than antihypertensive agents from several other classes, including angiotensin-converting enzyme inhibitors, angiotensin-receptor blockers, and calcium antagonists. The risk of hyponatremia, hypokalemia, and hyperuricemia associated with HCTZ was lower than with CTD, while the risk of gouty arthritis was similar. Despite lower risks of metabolic side-effects, meta-analysis of clinical trials showed that, for any given difference in achieved clinic SBP, HCTZ therapy was associated with 18% higher adverse cardiovascular events when compared with CTD. SUMMARY Increasing evidence suggests inferiority of HCTZ in lowering BP and cardiovascular outcomes in hypertensive patients when compared with other drugs in the same class, particularly CTD and indapamide. Thus, HCTZ is neither more useful nor more versatile than other thiazide diuretics. CTD and indapamide should be preferred over HCTZ in most hypertensive patients when diuretics are required for treatment of hypertension.
Collapse
|
11
|
Eladari D, Chambrey R, Picard N, Hadchouel J. Electroneutral absorption of NaCl by the aldosterone-sensitive distal nephron: implication for normal electrolytes homeostasis and blood pressure regulation. Cell Mol Life Sci 2014; 71:2879-95. [PMID: 24556999 PMCID: PMC11113337 DOI: 10.1007/s00018-014-1585-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/28/2014] [Accepted: 02/05/2014] [Indexed: 01/10/2023]
Abstract
Sodium absorption by the distal part of the nephron, i.e., the distal convoluted tubule, the connecting tubule, and the collecting duct, plays a major role in the control of homeostasis by the kidney. In this part of the nephron, sodium transport can either be electroneutral or electrogenic. The study of electrogenic Na(+) absorption, which is mediated by the epithelial sodium channel (ENaC), has been the focus of considerable interest because of its implication in sodium, potassium, and acid-base homeostasis. However, recent studies have highlighted the crucial role played by electroneutral NaCl absorption in the regulation of the body content of sodium chloride, which in turn controls extracellular fluid volume and blood pressure. Here, we review the identification and characterization of the NaCl cotransporter (NCC), the molecule accounting for the main part of electroneutral NaCl absorption in the distal nephron, and its regulators. We also discuss recent work describing the identification of a novel "NCC-like" transport system mediated by pendrin and the sodium-driven chloride/bicarbonate exchanger (NDCBE) in the β-intercalated cells of the collecting system.
Collapse
Affiliation(s)
- Dominique Eladari
- Department of Physiology, Hopital Européen Georges Pompidou, AP-HP, 56 rue Leblanc, 75015, Paris, France,
| | | | | | | |
Collapse
|
12
|
Gamba G. Regulation of the renal Na+-Cl- cotransporter by phosphorylation and ubiquitylation. Am J Physiol Renal Physiol 2012; 303:F1573-83. [PMID: 23034942 DOI: 10.1152/ajprenal.00508.2012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The activity of the renal thiazide-sensitive NaCl cotransporter (NCC) in the distal convoluted tubule plays a key role in defining arterial blood pressure levels. Increased or decreased activity of the NCC is associated with arterial hypertension or hypotension, respectively. Thus it is of major interest to understand the activity of NCC using in vivo models. Phosphorylation of certain residues of the amino-terminal domain of NCC has been shown to be associated with its activation. The development of phospho-specific antibodies against these sites provides a powerful tool that is helping to increase our understanding of the molecular physiology of NCC. Additionally, NCC expression in the plasma membrane is modulated by ubiquitylation, which represents another major mechanism for regulating protein activity. This work presents a review of our current knowledge of the regulation of NCC activity by phosphorylation and ubiquitylation.
Collapse
Affiliation(s)
- Gerardo Gamba
- Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutriciòn Salvador Zubirán, Mexico.
| |
Collapse
|
13
|
POSTER COMMUNICATIONS. Br J Pharmacol 2012. [DOI: 10.1111/j.1476-5381.1992.tb16283.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
14
|
Abstract
Diuretics, in one form or another, have been around for centuries and this review sets out to chart their development and clinical use. Starting with the physiology of the kidney, it progresses to explain how diuretics actually work, via symports on the inside of the renal tubules. The different classes of diuretics are characterized, along with their mode of action. The clinical use of diuretics in conditions like congestive cardiac failure and hypertension, as well as some rarer, but clinically important, conditions is then examined. An account is given of the adverse effects of diuretics and how they come about. Common adverse effects like hypokalaemia and hyponatraemia are examined in some detail, and other electrolyte disturbances like hypomagnesaemia also gain a mention. Diuretic use in chronic kidney disease is examined and new guidelines that have been introduced are presented. A section on diuretic abuse is included as this is becoming an all too common clinical scenario, and the sometimes tragic consequences of this abuse are emphasized. Diuretics also find a role in the diagnosis of forms of renal tubular acidosis and this role is explored. Finally, a selection of some of the newer approaches to diuretic therapy are presented, often the consequence of the increasing development of molecular biology, and some of the novel compounds – which may be in drug formularies of the future – are revealed.
Collapse
Affiliation(s)
- David Wile
- Department of Clinical Biochemistry, University Hospital, Aintree, Longmoor Lane, Liverpool L9 7AL, UK
| |
Collapse
|
15
|
Weir MR, Agarwal R. Thiazide and Thiazide-Like Diuretics. Hypertension 2012; 59:1089-90. [DOI: 10.1161/hypertensionaha.112.192153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Matthew R. Weir
- From the Division of Nephrology (M.R.W.), Department of Medicine, University of Maryland School of Medicine, Baltimore, MD; Division of Nephrology (R.A.), Department of Medicine, Indiana University School of Medicine and Veterans Affairs Medical Center, Indianapolis, IN
| | - Rajiv Agarwal
- From the Division of Nephrology (M.R.W.), Department of Medicine, University of Maryland School of Medicine, Baltimore, MD; Division of Nephrology (R.A.), Department of Medicine, Indiana University School of Medicine and Veterans Affairs Medical Center, Indianapolis, IN
| |
Collapse
|
16
|
Peterzan MA, Hardy R, Chaturvedi N, Hughes AD. Meta-analysis of dose-response relationships for hydrochlorothiazide, chlorthalidone, and bendroflumethiazide on blood pressure, serum potassium, and urate. Hypertension 2012; 59:1104-9. [PMID: 22547443 DOI: 10.1161/hypertensionaha.111.190637] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thiazide and thiazide-like diuretics are widely used in the management of hypertension, but recently the equivalence of hydrochlorothiazide and chlorthalidone for blood pressure (BP) lowering and prevention of cardiovascular disease has been questioned. We performed a meta-analysis to characterize the dose-response relationships for 3 commonly prescribed thiazide diuretics, hydrochlorothiazide, chlorthalidone, and bendroflumethiazide, on BP, serum potassium, and urate. Randomized, double-blind, parallel placebo-controlled trials meeting the following criteria, ≥ 2 different monotherapy dose arms, follow-up duration ≥ 4 weeks, and baseline washout of medication ≥ 2 weeks, were identified using Embase (1980-2010 week 50), Medline (1950-2010 November week 3), metaRegister of Controlled Trials, and Cochrane Central. A total of 26 trials examined hydrochlorothiazide, 3 examined chlorthalidone, and 1 examined bendroflumethiazide. Studies included a total of 4683 subjects in >53 comparison arms. Meta-regression of the effect of thiazides on systolic BP showed a log-linear relationship with a potency series: bendroflumethiazide>chlorthalidone>hydrochlorothiazide. The estimated dose of each drug predicted to reduce systolic BP by 10 mm Hg was 1.4, 8.6, and 26.4 mg, respectively, and there was no evidence of a difference in maximum reduction of systolic BP by high doses of different thiazides. Potency series for diastolic BP, serum potassium, and urate were similar to those seen for systolic BP. Hydrochlorothiazide, chlorthalidone, and bendroflumethiazide have markedly different potency. This may account for differences in the antihypertensive effect between hydrochlorothiazide and chlorthalidone using standard dose ranges.
Collapse
Affiliation(s)
- Mark A Peterzan
- International Centre for Circulatory Health, National Heart and Lung Institute, Faculty of Medicine, Imperial College London and Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | | | | | | |
Collapse
|
17
|
Chlorthalidone Decreases Platelet Aggregation and Vascular Permeability and Promotes Angiogenesis. Hypertension 2010; 56:463-70. [DOI: 10.1161/hypertensionaha.110.154476] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Variations in diuretic-mediated inhibition of carbonic anhydrase-dependent chloride transport in platelets and vascular smooth muscle could account for the contrasting efficacy of the thiazide and thiazide-like diuretics in reducing cardiovascular morbidity in patients with hypertension. We assessed platelet carbonic anhydrase activity and catecholamine-induced platelet aggregation in the presence of a thiazide and a “thiazide-like” inhibitor of the sodium-chloride cotransporter. Individual variation in platelet carbonic anhydrase activity correlated with contrasting sensitivity to epinephrine-mediated platelet aggregation. Both chlorthalidone, which potently inhibits platelet carbonic anhydrase, and bendroflumethiazide, which has much less effect on this enzyme, increased the amount of epinephrine needed to induce platelet aggregation when compared with the absence of a diuretic. However, chlorthalidone was significantly more effective than bendroflumethiazide in reducing epinephrine-mediated platelet aggregation. Chlorthalidone also induced marked changes in the number of gene transcripts for two proteins that mediate angiogenesis and vascular permeability, vascular endothelial growth factor C and transforming growth factor-β3; chlorthalidone and bendroflumethiazide had contrasting effects on the expression of vascular endothelial growth factor C. Chlorthalidone and bendroflumethiazide reduced vascular permeability to albumin, but only chlorthalidone increased angiogenesis. Thiazides and thiazide-like diuretics can comparably reduce blood pressure, but the drugs in this class are not all alike. It can be suggested from our findings that thiazide and thiazide-like diuretics vary in their pleiotropic effects on platelets and in the vasculature, and these differences could explain the contrasting ability of these drugs to reduce cardiovascular morbidity despite comparable reduction in blood pressure.
Collapse
|
18
|
Castañeda-Bueno M, Vázquez N, Bustos-Jaimes I, Hernández D, Rodríguez-Lobato E, Pacheco-Alvarez D, Cariño-Cortés R, Moreno E, Bobadilla NA, Gamba G. A single residue in transmembrane domain 11 defines the different affinity for thiazides between the mammalian and flounder NaCl transporters. Am J Physiol Renal Physiol 2010; 299:F1111-9. [PMID: 20719978 DOI: 10.1152/ajprenal.00412.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Little is known about the residues that control the binding and affinity of thiazide-type diuretics for their protein target, the renal Na(+)-Cl(-) cotransporter (NCC). Previous studies from our group have shown that affinity for thiazides is higher in rat (rNCC) than in flounder (flNCC) and that the transmembrane region (TM) 8-12 contains the residues that produce this difference. Here, an alignment analysis of TM 8-12 revealed that there are only six nonconservative variations between flNCC and mammalian NCC. Two are located in TM9, three in TM11, and one in TM12. We used site-directed mutagenesis to generate rNCC containing flNCC residues, and thiazide affinity was assessed using Xenopus laevis oocytes. Wild-type or mutant NCC activity was measured using (22)Na(+) uptake in the presence of increasing concentrations of metolazone. Mutations in TM11 conferred rNCC an flNCC-like affinity, which was caused mostly by the substitution of a single residue, S575C. Supporting this observation, the substitution C576S conferred to flNCC an rNCC-like affinity. Interestingly, the S575C mutation also rendered rNCC more active. Substitution of S575 in rNCC for other residues, such as alanine, aspartate, and lysine, did not alter metolazone affinity, suggesting that reduced affinity in flNCC is due specifically to the presence of a cysteine. We conclude that the difference in metolazone affinity between rat and flounder NCC is caused mainly by a single residue and that this position in the protein is important for determining its functional properties.
Collapse
Affiliation(s)
- María Castañeda-Bueno
- Molecular Physiology Unit, Vasco de Quiroga No. 15, Tlalpan 14000, Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gamba G. The thiazide-sensitive Na+-Cl- cotransporter: molecular biology, functional properties, and regulation by WNKs. Am J Physiol Renal Physiol 2009; 297:F838-48. [PMID: 19474192 DOI: 10.1152/ajprenal.00159.2009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The thiazide-sensitive Na+-Cl(-) cotransporter is the major salt reabsorption pathway in the distal convoluted tubule, which is located just after the macula densa at the beginning of the aldosterone-sensitive nephron. This cotransporter was identified at the molecular level in the early 1990s by the pioneering work of Steven C. Hebert and coworkers, opening the molecular area, not only for the Na+-Cl(-) cotransporter but also for the family of electroneutral cation-coupled chloride cotransporters that includes the loop diuretic-sensitive Na+-K+-2Cl(-) cotransporter of the thick ascending limb of Henle's loop. This work honoring the memory of Steve Hebert presents a brief review of our current knowledge about salt and water homeostasis generated as a consequence of cloning the cotransporter, with particular emphasis on the molecular biology, physiological properties, human disease due to decreased or increased activity of the cotransporter, and regulation of the cotransporter by a family of serine/threonine kinases known as WNK. Thus one of the legacies of Steve Hebert is a better understanding of salt and water homeostasis.
Collapse
Affiliation(s)
- Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, and Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico.
| |
Collapse
|
20
|
Singh SK, Yamashita A, Gouaux E. Antidepressant binding site in a bacterial homologue of neurotransmitter transporters. Nature 2007; 448:952-6. [PMID: 17687333 DOI: 10.1038/nature06038] [Citation(s) in RCA: 346] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 06/21/2007] [Indexed: 01/11/2023]
Abstract
Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 A above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the rational design of new inhibitors.
Collapse
Affiliation(s)
- Satinder K Singh
- The Vollum Institute, Oregon Health and Science University, 3181 S.W. Sam Jackson Road, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
21
|
Andrianopoulos C, Stephanou G, Demopoulos NA. Genotoxicity of hydrochlorothiazide in cultured human lymphocytes. I. Evaluation of chromosome delay and chromosome breakage. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2006; 47:169-78. [PMID: 16304670 DOI: 10.1002/em.20180] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Hypertension is often treated with diuretics, like hydrochlorothiazide (HCTZ). Previous results on the in vitro genotoxicity of HCTZ are equivocal. In the present study, we have evaluated the genotoxicity of HCTZ in cultured human lymphocytes using the Cytokinesis Blocked Micronucleus (CBMN) assay. In addition, micronucleus (MN) induction was analyzed by Fluorescence In Situ Hybridization (FISH) with an alpha-satellite DNA centromeric probe to distinguish between clastogenic and aneugenic effects. Lymphocyte cultures from 32 healthy adults were exposed to 5 and 40 microg/ml HCTZ. Age, gender, and smoking were evaluated as factors affecting the MN analysis. We found that HCTZ increased MN frequencies. FISH analysis revealed that HCTZ exerts its genotoxicity more strongly at the 40 microg/ml concentration, and principally through chromosome delay (aneugenicity). Multiregression analysis of our results confirmed the known effect of age and gender on MN induction in human lymphocytes. Smoking was also a confounding factor for MN induction, especially for centromere-negative MN frequencies. Under the experimental conditions used, only age had a clear positive effect on the response of lymphocytes to HCTZ. These data indicate that HCTZ produces micronuclei in cultured human lymphocytes by a mechanism that involves chromosome delay and to a lesser extent through chromosome breakage.
Collapse
Affiliation(s)
- Constantinos Andrianopoulos
- Cell and Developmental Biology, Division of Genetics, Department of Biology, University of Patras, Patras 26500, Greece
| | | | | |
Collapse
|
22
|
Abstract
OBJECTIVE We hypothesized that aldosteronism is accompanied by hypercalciuria and hypermagnesuria that lead to bone loss, which could be rescued by hydrochlorothiazide and spironolactone. METHODS We monitored 24-hour urinary Ca and Mg excretion; plasma ionized [Ca]o and [Mg]o and plasma K; and bone mineral density of the femur. The following groups (n=5 in each group) were studied: age- and gender-matched, untreated controls; controls + 4 weeks hydrochlorothiazide; 4 weeks aldosterone/salt treatment (ALDOST, 0.75 mug/h and dietary 1% NaCl/0.4% KCl); 4 weeks ALDOST+hydrochlorothiazide (50 mg/kg in prepared food); and 4 weeks ALDOST+hydrochlorothiazide+spironolactone (200 mg/kg day in divided doses by twice-daily gavage). RESULTS ALDOST increased (P<0.05) urinary Ca and Mg excretion four- and twofold, respectively; hydrochlorothiazide co-treatment attenuated (P<0.05) Ca excretion in controls and during ALDOST without affecting augmented Mg excretion whereas hydrochlorothiazide+spironolactone normalized Ca and reduced Mg excretion (P<0.05). Compared with controls, plasma [Ca]o at 4 weeks of ALDOST was reduced (0.89+/-0.02 versus 0.83+/-0.03 mmol/L; P<0.05) but remained no different from levels in controls with hydrochlorothiazide and hydrochlorothiazide+spironolactone (0.88+/-0.04 and 0.97+/-0.03 mmol/L, respectively). Plasma [Mg]o fell (P<0.05) with ALDOST+hydrochlorothiazide (0.23+/-0.01 versus 0.34+/-0.01 mmol/L) and was prevented with spironolactone co-treatment (0.33+/-0.01 mmol/ dL). Hypokalemia (2.9+/-0.2 mmol/L) occurred in rats with ALDOST+hydrochlorothiazide but not with spironolactone co-treatment. At 4 weeks of ALDOST, plasma parathyroid hormone was increased (30+/-4 versus 11+/-3 pg/mL; P<0.05) and bone mineral density was reduced (0.153+/-0.006 versus 0.170+/-0.002 g/cm; P<0.05). Co-treatments with either hydrochlorothiazide or hydrochlorothiazide+spironolactone each prevented bone loss. CONCLUSIONS Hypercalciuria and hypermagnesuria accompany aldosteronism and account for a decline in their plasma ionized concentrations and secondary hyperparathyroidism with bone resorption. Attenuation of bone loss in aldosteronism can be achieved with hydrochlorothiazide; however, mono- and divalent cation homeostasis, together with bone integrity, are each preserved with the combination hydrochlorothiazide+spironolactone.
Collapse
Affiliation(s)
- Aliye L Runyan
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | |
Collapse
|
23
|
Gamba G. Molecular Physiology and Pathophysiology of Electroneutral Cation-Chloride Cotransporters. Physiol Rev 2005; 85:423-93. [PMID: 15788703 DOI: 10.1152/physrev.00011.2004] [Citation(s) in RCA: 592] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Electroneutral cation-Cl−cotransporters compose a family of solute carriers in which cation (Na+or K+) movement through the plasma membrane is always accompanied by Cl−in a 1:1 stoichiometry. Seven well-characterized members include one gene encoding the thiazide-sensitive Na+−Cl−cotransporter, two genes encoding loop diuretic-sensitive Na+−K+−2Cl−cotransporters, and four genes encoding K+−Cl−cotransporters. These membrane proteins are involved in several physiological activities including transepithelial ion absorption and secretion, cell volume regulation, and setting intracellular Cl−concentration below or above its electrochemical potential equilibrium. In addition, members of this family play an important role in cardiovascular and neuronal pharmacology and pathophysiology. Some of these cotransporters serve as targets for loop diuretics and thiazide-type diuretics, which are among the most commonly prescribed drugs in the world, and inactivating mutations of three members of the family cause inherited diseases such as Bartter's, Gitelman's, and Anderman's diseases. Major advances have been made in the past decade as consequences of molecular identification of all members in this family. This work is a comprehensive review of the knowledge that has evolved in this area and includes molecular biology of each gene, functional properties of identified cotransporters, structure-function relationships, and physiological and pathophysiological roles of each cotransporter.
Collapse
Affiliation(s)
- Gerardo Gamba
- Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
24
|
Knepper MA, Kleyman T, Gamba G. Diuretics: Mechanisms of Action. Hypertension 2005. [DOI: 10.1016/b978-0-7216-0258-5.50152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Hebert SC, Mount DB, Gamba G. Molecular physiology of cation-coupled Cl- cotransport: the SLC12 family. Pflugers Arch 2004; 447:580-93. [PMID: 12739168 DOI: 10.1007/s00424-003-1066-3] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2003] [Accepted: 03/27/2003] [Indexed: 01/12/2023]
Abstract
The electroneutral cation-chloride-coupled cotransporter gene family ( SLC12) was identified initially at the molecular level in fish and then in mammals. This nine-member gene family encompasses two major branches, one including two bumetanide-sensitive Na(+)-K(+)-2Cl(-) cotransporters and the thiazide-sensitive Na(+):Cl(-) cotransporter. Two of the genes in this branch ( SLC12A1 and SLC12A3), exhibit kidney-specific expression and function in renal salt reabsorption, whereas the third gene ( SLC12A2) is expressed ubiquitously and plays a key role in epithelial salt secretion and cell volume regulation. The functional characterization of both alternatively-spliced mammalian Na(+)-K(+)-2Cl(-) cotransporter isoforms and orthologs from distantly related species has generated important structure-function data. The second branch includes four genes ( SLC12A4- 7) encoding electroneutral K(+)-Cl(-) cotransporters. The relative expression level of the neuron-specific SLC12A5 and the Na(+)-K(+)-2Cl(-) cotransporter SLC12A2 appears to determine whether neurons respond to GABA with a depolarizing, excitatory response or with a hyperpolarizing, inhibitory response. The four K(+)-Cl(-) cotransporter genes are co-expressed to varying degrees in most tissues, with further roles in cell volume regulation, transepithelial salt transport, hearing, and function of the peripheral nervous system. The transported substrates of the remaining two SLC12 family members, SLC12A8 and SLC12A9, are as yet unknown. Inactivating mutations in three members of the SLC12 gene family result in Mendelian disease; Bartter syndrome type I in the case of SLC12A1, Gitelman syndrome for SLC12A3, and peripheral neuropathy in the case of SLC12A6. In addition, knockout mice for many members of this family have generated important new information regarding their respective physiological roles.
Collapse
Affiliation(s)
- Steven C Hebert
- Department of Cellular and Molecular Physiology, Yale University Medical School, 333 Cedar Street, P.O. Box 208026, SHM B147, New Haven, CT 06520-8026, USA.
| | | | | |
Collapse
|
26
|
Loffing J, Kaissling B. Sodium and calcium transport pathways along the mammalian distal nephron: from rabbit to human. Am J Physiol Renal Physiol 2003; 284:F628-43. [PMID: 12620920 DOI: 10.1152/ajprenal.00217.2002] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The final adjustment of renal sodium and calcium excretion is achieved by the distal nephron, in which transepithelial ion transport is under control of various hormones, tubular fluid composition, and flow rate. Acquired or inherited diseases leading to deranged renal sodium and calcium balance have been linked to dysfunction of the distal nephron. Diuretic drugs elicit their effects on sodium balance by specifically inhibiting sodium transport proteins in the apical plasma membrane of distal nephron segments. The identification of the major apical sodium transport proteins allows study of their precise distribution pattern along the distal nephron and helps address their cellular and molecular regulation under various physiological and pathophysiological settings. This review focuses on the topological arrangement of sodium and calcium transport proteins along the cortical distal nephron and on some aspects of their functional regulation. The availability of data on the distribution of transporters in various species points to the strengths, as well as to the limitations, of animal models for the extrapolation to humans.
Collapse
Affiliation(s)
- Johannes Loffing
- Institute of Anatomy, University of Zurich, CH-8057 Zurich, Switzerland.
| | | |
Collapse
|
27
|
Monroy A, Plata C, Hebert SC, Gamba G. Characterization of the thiazide-sensitive Na(+)-Cl(-) cotransporter: a new model for ions and diuretics interaction. Am J Physiol Renal Physiol 2000; 279:F161-9. [PMID: 10894798 DOI: 10.1152/ajprenal.2000.279.1.f161] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The thiazide-sensitive Na(+)-Cl(-) cotransporter (TSC) is the major pathway for salt reabsorption in the apical membrane of the mammalian distal convoluted tubule. When expressed in Xenopus laevis oocytes, rat TSC exhibits high affinity for both cotransported ions, with the Michaelis-Menten constant (K(m)) for Na(+) of 7.6 +/- 1.6 mM and for Cl(-) of 6.3 +/- 1.1 mM, and Hill coefficients for Na(+) and Cl(-) consistent with electroneutrality. The affinities of both Na(+) and Cl(-) were increased by increasing concentration of the counterion. The IC(50) values for thiazides were affected by both extracellular Na(+) and Cl(-). The higher the Na(+) or Cl(-) concentration, the lower the inhibitory effect of thiazides. Finally, rTSC function is affected by extracellular osmolarity. We propose a transport model featuring a random order of binding in which the binding of each ion facilitates the binding of the counterion. Both ion binding sites alter thiazide-mediated inhibition of transport, indicating that the thiazide-binding site is either shared or modified by both Na(+) and Cl(-).
Collapse
Affiliation(s)
- A Monroy
- Molecular Physiology Unit, Instituto Nacional de la Nutrición Salvador Zubirán and Instituto de Investigaciones Biomédicas, National University of Mexico, Tlalpan 14000 Mexico City, Mexico
| | | | | | | |
Collapse
|
28
|
Affiliation(s)
- G Gamba
- Instituto de Investigaciones Biomédicas of the Universidad Nacional Autónoma de México at the Instituto Nacional de la Nutritión Salvador Zubirán, Mexico City
| |
Collapse
|
29
|
Chang H, Fujita T. A kinetic model of the thiazide-sensitive Na-Cl cotransporter. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:F952-9. [PMID: 10362783 DOI: 10.1152/ajprenal.1999.276.6.f952] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to construct a numerical model of the thiazide-sensitive Na-Cl cotransporter (TSC) that can predict kinetics of thiazide binding and substrate transport of TSC. We hypothesized that the mechanisms underlying these kinetic properties can be approximated by a state diagram in which the transporter has two binding sites, one for sodium and another for chloride and thiazide. On the basis of the state diagram, a system of linear equations that should be satisfied in the steady state was postulated. Numerical solution of these equations yielded model prediction of kinetics of thiazide binding and substrate transport. Rate constants, which determine transitional rates between states, were systematically adjusted to minimize a penalty function that was devised to quantitatively estimate the difference between model predictions and experimental results. With the resultant rate constants, the model could simulate the following experimental results: 1) dissociation constant of thiazide in the absence of sodium and chloride; 2) inhibitory effect of chloride on thiazide binding; 3) stimulatory effect of sodium on thiazide binding; 4) combined effects of sodium and chloride on thiazide binding; 5) dependence of sodium influx on extracellular sodium and chloride; and 6) inhibition of sodium influx by extracellular thiazide. We conclude that known kinetic properties of TSC can be predicted by a model which is based on a state diagram.
Collapse
Affiliation(s)
- H Chang
- Health Service Center, University of Tokyo, Tokyo 153-8902, Japan
| | | |
Collapse
|
30
|
Fanestil DD, Hyde RH, Blakely P, Vaughn DA. Dietary magnesium, not calcium, regulates renal thiazide receptor. J Am Soc Nephrol 1999; 10:458-63. [PMID: 10073595 DOI: 10.1681/asn.v103458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
This study reports for the first time a relationship between dietary Mg and the renal thiazide-sensitive Na-Cl cotransporter (TZR, measured by saturation binding with 3H-metolazone). Ion-selective electrodes measured plasma ionized magnesium (PMg++), calcium (PCa++), and potassium (PK+). Restricting dietary Mg for 1 wk decreased PMg++ 18%, TZR 25%, and renal excretion of magnesium (UMg) and calcium (UCa) more than 50% without changing PCa++, PK+, or plasma aldosterone. A low Mg diet for 1 d significantly decreased PMg++, TZR, UMg and UCa. Return of dietary Mg after 5 d of Mg restriction restored PMg++ and TZR toward normal. In the control, Mg-deficient, and Mg-repleting animals, TZR correlated with PMg++ (r = 0.86) and with UMg (r = 0.87) but not UCa (r = 0.09). Increasing oral intake of Mg for 1 wk increased PMg++ 14%, TZR 32%, UMg 74%, and UCa more than fourfold without changing PCa++ or PK+. In contrast, increasing dietary Ca content from 0.02% to 1.91% did not change TZR, but increased UCa fivefold without changing PCa++. Hormonal mediators (if any) involved in the relationship between dietary Mg and TZR remain to be elucidated, as does the relationship between TZR and tubular reabsorption of Mg.
Collapse
Affiliation(s)
- D D Fanestil
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla 92093-0623, USA.
| | | | | | | |
Collapse
|
31
|
Fanestil DD, Vaughn DA, Hyde RH, Blakely P. Genetic control of renal thiazide receptor response to dietary NaCl and hypertension. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:R901-4. [PMID: 10070153 DOI: 10.1152/ajpregu.1999.276.3.r901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Excess NaCl increases blood pressure in some strains of animals but not others. An 8% NaCl diet did not change renal thiazide receptor (TZR) density in two salt-resistant normotensive rat strains (Wistar-Kyoto and Sprague-Dawley) [Fanestil, D. D., D. A. Vaughn, and P. Blakely. Am. J. Physiol. 273 (Regulatory Integrative Comp. Physiol. 42): R1241-R1245, 1997]. However, the renal response to salt differs in normal and hypertensive kidneys [Rettig, R., N. Bandelow, O. Patschan, B. Kuttler, B. Frey, and A. Uber. J. Hum. Hypertens. 10: 641-644, 1996]. Therefore, we examined two strains with salt-aggravated hypertension. Renal TZR did not change when Dahl-S (salt sensitive) animals became hypertensive with 8% dietary NaCl. In contrast, renal TZR decreased 34%, whereas blood pressure increased further, in SHR with 8% dietary NaCl. Blood pressure increased after NG-nitro-L-arginine in SHR, but renal TZR did not change, indicating the salt-induced decrease in TZR in SHR cannot be attributed nonspecifically to elevated arterial pressure. We conclude that the renal response to NaCl-induced increases in blood pressure can be genetically modulated independently of the genes that mediate either the primary hypertension or the salt sensitivity of the hypertension. This finding may be of use in future studies directed at identifying genotypes associated with salt-dependent hypertension.
Collapse
Affiliation(s)
- D D Fanestil
- Division of Nephrology/Hypertension, Department of Medicine, University of California San Diego, La Jolla, California 92093-0623, USA.
| | | | | | | |
Collapse
|
32
|
Velázquez H, Náray-Fejes-Tóth A, Silva T, Andújar E, Reilly RF, Desir GV, Ellison DH. Rabbit distal convoluted tubule coexpresses NaCl cotransporter and 11 beta-hydroxysteroid dehydrogenase II mRNA. Kidney Int 1998; 54:464-72. [PMID: 9690213 DOI: 10.1046/j.1523-1755.1998.00036.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Although the renal cortical collecting duct (CCD) is a principal target for aldosterone, recent evidence suggests that salt transport by other nephron segments may also be regulated by aldosterone. Electroneutral and thiazide-sensitive NaCl cotransport by the distal convoluted tubule (DCT) of the rat is increased in animals deprived of dietary NaCl. We tested the hypothesis that the DCT of the rabbit is an aldosterone target tissue. METHODS The single-nephron reverse-transcriptase/polymerase chain reaction (RT-PCR) technique was used to determine mRNA expression of NaCl cotransporter and 11 beta-HSD 2 in dissected nephron segments. The rabbit NaCl cotransporter was first cloned and rabbit-specific primers selected. A micro-assay was developed to assess 11 beta-HSD 2 enzyme activity in 0.5 mm samples of the same nephron segments. RESULTS NaCl cotransporter was expressed in 0 of 6 proximal tubule (PT), 6 of 6 DCT and 3 of 6 CCD samples, while 11 beta-HSD was found in 0 of 7 PT, 7 of 7 DCT and 9 of 9 CCD samples. Corticosterone was converted to 11-dehydrocorticosterone at a high rate and to a similar extent by both the DCT and CCD, but not the PT. CONCLUSIONS We conclude that the DCT is a target tissue for the action of aldosterone. Axial heterogeneity of electroneutral (in DCT) and electrogenic (in CCD) Na transporters along the distal nephron may improve sodium recovery in low salt and volume states.
Collapse
Affiliation(s)
- H Velázquez
- VA Connecticut Healthcare System West Haven 06516, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Fanestil DD, Vaughn DA, Blakely P. Dietary NaCl and KCl do not regulate renal density of the thiazide diuretic receptor. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:R1241-5. [PMID: 9362286 DOI: 10.1152/ajpregu.1997.273.4.r1241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We tested the postulate that the renal density of the thiazide-inhibitable Na-Cl cotransporter or thiazide receptor (TZR) is modulated as part of the renal homeostatic response to changes in dietary intake of NaCl or KCl. Renal excretion of NaCl or KCl varied > 10-fold in response to alterations in oral intake. Renal TZR density was quantitated by binding of [3H]metolazone to renal membranes. Renal TZR density was not altered by sodium deficit (with increased plasma aldosterone concentration), by sodium surfeit (8% NaCl content of diet), by potassium deficit (with hypokalemia), or by potassium surfeit (drinking 1% KCl solution). Unexpectedly, we conclude that regulation of the renal density of TZR is not part of the renal homeostatic responses that adjust excretion of NaCl and KCl to changes in dietary intake of NaCl or KCl.
Collapse
Affiliation(s)
- D D Fanestil
- Department of Medicine, University of California San Diego, La Jolla 92093-0623, USA
| | | | | |
Collapse
|
34
|
Abstract
Diuretics have changed the approach to many disease and have turned once fatal conditions into tolerable ones. Treatment of salt and water overload and edema can be quite satisfying for the clinician as long as the patient is closely watched for side effects. Thiazide diuretics have their greatest use in hypertension, loop diuretics in edema and congestive heart failure, CA inhibitors in glaucoma and altitude sickness, potassium-sparing diuretics in hypokalemia induced by other diuretics and ascites, and osmotic diuretics in acute renal failure and dialysis. They are among the most widely prescribed medications in the world today and rightly have a prominent place in the armamentarium against disease.
Collapse
Affiliation(s)
- R T Morrison
- Division of Nephrology, Wright State University School of Medicine, Ohio, USA
| |
Collapse
|
35
|
Fanestil DD, Vaughn DA, Ma L, Hyde RH, Printz MP. Thiazide diuretics normalize urinary calcium in spontaneously hypertensive male rats. Kidney Int 1997; 51:1018-21. [PMID: 9083265 DOI: 10.1038/ki.1997.142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The role of the thiazide-sensitive distal convoluted tubule (DCT) in the hypercalciuria of the spontaneously hypertensive rat (SHR) strain was examined by determining (a) the renal density of the thiazide diuretic receptor with 3H-metolazone, and (b) the renal response to a maximal dose of bendroflumethiazide (BFTZ). We confirm that the renal thiazide receptor density was greater in SHR than WKY (0.936 +/- 0.026 vs. 0.797 +/- 0.045 pmol/mg protein; P = 0.02). Prior to BFTZ the urinary excretion of calcium (0.525 +/- 0.061 vs. 0.274 +/- 0.049 micromol per micromol creatinine, P < 0.01) and sodium (12.6 +/- 1.27 vs. 7.89 +/- 0.926 micromol per micromol creatinine; P < 0.01) were greater in SHR versus WKY. BFTZ decreased the excretion of calcium only in SHR and to a level (0.250 +/- 0.032) not significantly different (P = 0.519) from WKY (0.225 +/- 0.032). Surprisingly, BFTZ increased chloride excretion to a greater extent in WKY than in SHR (P = 0.008). We postulate that hypercalciuria in SHR is a manifestation of incomplete uptake of calcium from the tubule lumen across the apical cell membrane in the DCT of the SHR nephron.
Collapse
Affiliation(s)
- D D Fanestil
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, USA
| | | | | | | | | |
Collapse
|
36
|
Aubin R, Ménard P, Lajeunesse D. Selective effect of thiazides on the human osteoblast-like cell line MG-63. Kidney Int 1996; 50:1476-82. [PMID: 8914012 DOI: 10.1038/ki.1996.461] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Thiazide diuretics have been shown to decrease bone-loss rate and to improve bone mineral density in patients using this medication. However, the exact role of thiazides on bone cells is still debated. In the present work, we studied whether thiazides could affect the normal features of osteoblasts using the human model cell line MG-63. Hydrochlorothiazide (HCTZ) did not affect cell growth nor DNA synthesis in these cells, yet slightly increased alkaline phosphatase activity in these cells at pharmacologically relevant concentrations. Under similar conditions, HCTZ dose-dependently inhibited 1,25(OH)2D3-induced osteocalcin secretion by these cells (maximal effect, -40 to 50%, P < 0.005). However, HCTZ did not inhibit the basal production of osteocalcin in MG-63 cells (without 1,25(OH)2D3 induction), which was very low to undectable. Two different thiazide derivatives, chlorothiazide and cyclothiazide, and two structurally related sulfonamides with selective inhibition of carbonic anhydrase (Acetazolamide) or hyperglycemic effects (Diazoxide) were also tested. Chlorothiazide (1000 microM) inhibited osteocalcin secretion (-42 +/- 12.7%) at doses 10-fold higher than HCTZ (100 microM) while cyclothiazide was effective at doses of 1 microM (-27 +/- 3.6%), and hence 100-fold lower than HCTZ, compatible with the relative natriuretic effect in vivo of these compounds. Acetazolamide (10 microM) poorly affected osteocalcin secretion at doses 100-fold higher than those needed in vivo to inhibit carbonic anhydrase. Likewise, Diazoxide (100 microM) poorly affected osteocalcin secretion at doses known to promote its biological effect. Higher doses of acetazolamide and diazoxide induced cell death. Neither Acetazolamide nor Diazoxide affected alkaline phosphatase, whereas chlorothiazide had a weak positive effect on this enzymatic activity. The production of macrophage colony-stimulating factor (M-CSF) was stimulated in the presence of 1,25(OH)2D3 (50 nM), TNF-alpha (2 ng/ml) or both in MG-63 cells. HCTZ (25 microM, 24 hr of preincubation) did not modify basal M-CSF production and did not reduce the response to 1,25(OH)2D3 alone. In contrast, HCTZ inhibited the response to TNF-alpha alone (P < 0.05), and also reduced the response to a combination of 1,25(OH)2D3 and TNF-alpha (P < 0.01). In conclusion, these results indicate that thiazide diuretics show a selective inhibition of osteocalcin secretion and M-CSF production by MG-63 cells unlike structurally related drugs. Therefore, these features may explain, in part, the positive effect of thiazides on bone mineral density.
Collapse
Affiliation(s)
- R Aubin
- Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | | | | |
Collapse
|
37
|
Cremaschi D, Vallin P, Porta C. Hydrochlorothiazide action on the apical Cl-, Ca2+ and K+ conductances in rabbit gallbladder epithelium. Presence of an apamin-sensitive, Ca(2+)-activated K+ conductance. J Membr Biol 1995; 147:159-71. [PMID: 8568852 DOI: 10.1007/bf00233544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the rabbit gallbladder epithelium, hydrochlorothiazide (HCTZ) was shown to inhibit the transepithelial NaCl transport and the apical Na(+)-Cl- symport, to depolarize the apical membrane potential and to enhance the cell-to-lumen Cl- backflux (radiochemically measured), this increase being SITS-sensitive. To better investigate the causes of the depolarization and the Cl- backflux increase, cells were punctured with conventional microelectrodes on the luminal side (incubation in bicarbonate-free saline at 27 degrees C) and the apical membrane potential (Vm) was studied either with prolonged single impalements or with a set of short multiple impalements. The maximal depolarization was of 3-4 mV and was reached with 2.5 x 10(-4) M HCTZ. It was significantly enhanced by reducing luminal Cl- concentration to 30 mM; it was abolished by SCN-, furosemide, SITS; it was insensitive to DPC. SITS converted the depolarization into a hyperpolarization of about 4 mV; this latter was apamin, nifedipine and verapamil sensitive. It was concluded that HCTZ concomitantly opens apical Cl- and (probably) Ca2+ conductances and, indirectly, a Ca(2+)-sensitive, apamin inhibitable K+ conductance: since the intracellular Cl- activity is maintained above the value predicted at the electrochemical equilibrium, the opening of the apical Cl- conductance depolarizes Vm and enhances Cl- backflux. In the presence of apamin or verapamil, to avoid the hyperpolarizing effects due to HCTZ, the depolarization elicited by this drug was fully developed (7-10 mV) and proved to be Ca2+ insensitive. On this basis and measuring the transepithelial resistance and the apical/basolateral resistance ratio, the Cl- conductance opened by HCTZ has been estimated and the Cl- backflux increase calculate: it proved to be in the order of that observed radiochemically. The importance of this Cl- leak to the lumen in the overall inhibition of the transepithelial NaCl transport by HCTZ has been evaluated.
Collapse
Affiliation(s)
- D Cremaschi
- Dipartimento di Fisiologia e Biochimeca Generali, Università degli Studi di Milano, Italy
| | | | | |
Collapse
|
38
|
Gamba G, Miyanoshita A, Lombardi M, Lytton J, Lee W, Hediger M, Hebert S. Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium-(potassium)-chloride cotransporter family expressed in kidney. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32499-7] [Citation(s) in RCA: 445] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
39
|
Gamba G, Saltzberg SN, Lombardi M, Miyanoshita A, Lytton J, Hediger MA, Brenner BM, Hebert SC. Primary structure and functional expression of a cDNA encoding the thiazide-sensitive, electroneutral sodium-chloride cotransporter. Proc Natl Acad Sci U S A 1993; 90:2749-53. [PMID: 8464884 PMCID: PMC46173 DOI: 10.1073/pnas.90.7.2749] [Citation(s) in RCA: 257] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Electroneutral Na+:Cl- cotransport systems are involved in a number of important physiological processes including salt absorption and secretion by epithelia and cell volume regulation. One group of Na+:Cl- cotransporters is specifically inhibited by the benzothiadiazine (thiazide) class of diuretic agents and can be distinguished from Na+:K+:2Cl- cotransporters based on a lack of K+ requirement and insensitivity to sulfamoylbenzoic acid diruetics like bumetanide. We report here the isolation of a cDNA encoding a thiazide-sensitive, electroneutral sodium-chloride cotransporter from the winter flounder urinary bladder using an expression cloning strategy. The pharmacological and kinetic characteristics of the cloned cotransporter are consistent with the properties of native thiazide-sensitive sodium-chloride cotransporters in teleost urinary bladder and mammalian renal distal tubule epithelia. The nucleotide sequence predicts a protein of 1023 amino acids (112 kDa) with 12 putative membrane-spanning regions, which is not related to other previously cloned sodium or chloride transporters. Northern hybridization shows two different gene products: a 3.7-kb mRNA localized only to the urinary bladder and a 3.0-kb mRNA present in several non-bladder/kidney tissues.
Collapse
Affiliation(s)
- G Gamba
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Puschett JB, Winaver J. Effects of Diuretics on Renal Function. Compr Physiol 1992. [DOI: 10.1002/cphy.cp080250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Cremaschi D, Porta C, Bottà G, Meyer G. Nature of the neutral Na(+)-Cl- coupled entry at the apical membrane of rabbit gallbladder epithelium: IV. Na+/H+, Cl-/HCO3- double exchange, hydrochlorothiazide-sensitive Na(+)-Cl- symport and Na(+)-K(+)-2Cl- cotransport are all involved. J Membr Biol 1992; 129:221-35. [PMID: 1331468 DOI: 10.1007/bf00232905] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transepithelial fluid transport was measured gravimetrically in rabbit gallbladder (and net Na+ transport was calculated from it), at 27 degrees C, in HCO(3-)-free bathing media containing 10(-4) M acetazolamide. Whereas luminal 10(-4) M bumetanide or 10(-4) M 4-acetamido-4'-iso-thiocyanostilbene-2,2'-disulfonate (SITS) did not affect fluid absorption, 25 mM SCN- abolished it; hydrochlorothiazide (HCTZ) in the luminal medium reduced fluid absorption from 28.3 +/- 1.6 (n = 21) to 8.6 +/- 1.6 microliters cm-2 hr-1 (n = 10), i.e., to about 30%. This maximum effect was already obtained at 10(-3) M concentration; the apparent IC50 was about 2 x 10(-4) M. The residual fluid absorption, again insensitive to SITS, was completely inhibited by SCN- or bumetanide. Cl- influx at the luminal border of the epithelium, measured under the same conditions and corrected for the extracellular space and paracellular influx, proved insensitive to 10(-4) M bumetanide, but was slowly inhibited by 10(-3) M HCTZ, with maximum inhibition (about 54%) reached after a 10-min treatment; it subsequently rose again, in spite of the presence of HCTZ. However, if the epithelium, treated with HCTZ, was exposed to 10(-4) M bumetanide during the measuring time (45 sec), inhibition was completed and the subsequent rise of Cl- influx eliminated. Intracellular Cl- accumulation with respect to the predicted activity value at equilibrium decreased significantly upon exposure to 10(-3) M HCTZ, reached a minimum within 15-30 min of treatment, then rose again significantly at 60 min. Simultaneous exposure to HCTZ and bumetanide decreased the accumulation to a significantly larger extent as compared to HCTZ alone, already in 15 min, and impeded the subsequent rise. Intracellular K+ activity rose significantly within 30 min treatment with HCTZ; the increase proved bumetanide dependent. The results obtained show that Na(+)-Cl- symport, previously detected under control conditions, is the HCTZ-sensitive type; its inhibition elicits bumetanide-sensitive Na(+)-K(+)-2Cl- cotransport. Thus, the three forms of neutral Na(+)-Cl(-)-coupled transport so far evidenced in epithelia, Na+/H+, Cl-/HCO3- double exchange (in the presence of exogenous bicarbonate), HCTZ-sensitive Na(+)-Cl- symport and bumetanide-sensitive Na(+)-K(+)-2Cl- cotransport, are all present in the apical membrane of rabbit gallbladder.
Collapse
Affiliation(s)
- D Cremaschi
- Dipartimento di Fisiologia e Biochimica Generali, Università degli Studi di Milano, Italy
| | | | | | | |
Collapse
|
42
|
Lajeunesse D, Brunette MG. The hypocalciuric effect of thiazides: subcellular localization of the action. Pflugers Arch 1991; 417:454-62. [PMID: 2011469 DOI: 10.1007/bf00370939] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The acute administration of thiazides results in a decrease in the urinary Ca2+/Na+ ratio, whereas chronic administration of these diuretics decreases calciuria. In both situations, Ca2+ transport is enhanced in the early part of the distal tubule. The purpose of our study was to determine whether the hypocalciuric action of thiazides was due to a change in the active transport of Ca2+ through the basolateral membrane of the nephron or to an effect (direct or indirect) on the permeability of the distal tubule luminal membrane to calcium. In order to detect intrinsic differences between membranes of the proximal and distal tubules, the effect of the diuretic was examined in proximal and distal tubule preparations, and in basolateral and luminal membranes from the two segments separately. Preincubation of microdissected distal tubules in hypotonic solution containing 500 microM hydrochlorothiazide (HCTZ) did not influence the Ca2(+)-dependent ATP hydrolysis (Ca2+ = 1 microM) nor the Mg2(+)-dependent ATP hydrolysis (Mg2+ = 100 microM). Similarly 100 microM HCTZ did not change the Ca2+ ATPase activity in intact proximal and distal tubule suspensions, at Ca2+ concentrations ranging from 0.05 microM to 1 microM. ATP-dependent Ca2+ transport was present in basolateral membrane vesicles from proximal and distal tubule suspensions. Preincubation of the membranes with 100 microM HCTZ did not influence this transport. A Na+/Ca2+ exchanger, present in the basolateral membranes from the distal tubule, was also insensitive to HCTZ. In contrast, preincubation of luminal membranes from the distal tubules (but not proximal tubules) with 500 microM HCTZ significantly increased the Ca2+ uptake by these membranes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D Lajeunesse
- Hôpital Maisonneuve-Rosemont, Montreal, Québec, Canada
| | | |
Collapse
|
43
|
Fanestil DD, Chen Z, Tran JM, Vaughn DA, Beaumont K. The Cellular Receptor for Thiazide-Type Diuretics. Nephrology (Carlton) 1991. [DOI: 10.1007/978-3-662-35158-1_110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Martinez-Maldonado M, Cordova HR. Cellular and molecular aspects of the renal effects of diuretic agents. Kidney Int 1990; 38:632-41. [PMID: 2172617 DOI: 10.1038/ki.1990.253] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the past few years, increased knowledge of the nature of transport proteins and their molecular regulation in the translocation of ions across kidney membranes has emerged. We are beginning to better understand the characteristics of the interaction of diuretics with these transport proteins. It is likely that this knowledge will permit further insight into nephron function regulation.
Collapse
|
45
|
Beaumont K, Vaughn DA, Casto R, Printz MP, Fanestil DD. Thiazide diuretic receptors in spontaneously hypertensive rats and 2-kidney 1-clip hypertensive rats. CLINICAL AND EXPERIMENTAL HYPERTENSION. PART A, THEORY AND PRACTICE 1990; 12:215-26. [PMID: 2347095 DOI: 10.3109/10641969009074730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Thiazide diuretic receptor density was assessed in kidneys from spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto (WKY) rats by measuring hydroflumethiazide-displaceable 3H-metolazone binding to renal membranes in vitro. Renal thiazide receptor density was not significantly different in 4 week old SHR and WKY rats, but was significantly increased by 20%-40% in 14-49 week old SHRs compared to WKY rats. Affinity of receptors for 3H-metolazone did not differ between SHRs and WKY rats at any age. In WKY rats with 2 kidney-1 clip (2K-1C) hypertension, thiazide receptor density was not significantly different in either clipped or unclipped kidneys from sham-operated controls. Thus, increased renal thiazide receptor density occurs in SHRs along with the development of hypertension and does not appear to be secondary to increased renal perfusion pressure. This increase may reflect altered hormonal or ionic input to the distal tubule and may contribute to elevated sodium reabsorption in this segment in the SHR.
Collapse
Affiliation(s)
- K Beaumont
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla 92093
| | | | | | | | | |
Collapse
|