1
|
Palko L, Bass HW, Beyrouthy MJ, Hurt MM. The Yin Yang-1 (YY1) protein undergoes a DNA-replication-associated switch in localization from the cytoplasm to the nucleus at the onset of S phase. J Cell Sci 2004; 117:465-76. [PMID: 14702388 DOI: 10.1242/jcs.00870] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The essential Yin Yang-1 gene (YY1) encodes a ubiquitous, conserved, multifunctional zinc-finger transcription factor in animals. The YY1 protein regulates initiation, activation, or repression of transcription from a variety of genes required for cell growth, development, differentiation, or tumor suppression, as well as from genes in some retroviruses and DNA viruses. Among the specific functions attributed to YY1 is a role in cell-cycle-specific upregulation of the replication-dependent histone genes. The YY1 protein binds to the histone alpha element, a regulatory sequence found in all replication-dependent histone genes. We therefore examined the abundance, DNA-binding activity and localization of the YY1 protein throughout the cell cycle in unperturbed, shake-off-synchronized Chinese hamster ovary and HeLa cells. We found that, whereas the DNA-binding activity of YY1 increased dramatically early in S phase, the YY1 mRNA and protein levels did not. YY1 changed subcellular distribution patterns during the cell cycle, from mainly cytoplasmic at G1 to mainly nuclear at early and middle S phase, then back to primarily cytoplasmic later in S phase. Nuclear accumulation of YY1 near the G1/S boundary coincided with both an increase in YY1 DNA-binding activity and the coordinate up-regulation of the replication-dependent histone genes. The DNA synthesis inhibitor aphidicolin caused a nearly complete loss of nuclear YY1, whereas addition of caffeine or 2-aminopurine to aphidicolin-treated cells restored both DNA synthesis and YY1 localization in the nucleus. These findings reveal a mechanism by which YY1 localization is coupled to DNA synthesis and responsive to cell-cycle signaling pathways. Taken together, our results provide insight into how YY1 might participate in the cell-cycle control over a variety of nuclear events required for cell division and proliferation.
Collapse
Affiliation(s)
- Linda Palko
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4370, USA
| | | | | | | |
Collapse
|
2
|
Masi T, Johnson AD. Read-through histone transcripts containing 3' adenylate tails are zygotically expressed in Xenopus embryos and undergo processing to mature transcripts when introduced into oocyte nuclei. Biochem Biophys Res Commun 2003; 304:612-8. [PMID: 12727197 DOI: 10.1016/s0006-291x(03)00639-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Messages encoding replication-dependent histone genes generally terminate with a stem-loop structure and lack polyadenylate tails. Adenylated histone transcripts were identified in Xenopus oocytes, though the role of the adenylate tracts is unknown. We report isolation of cDNAs from Xenopus embryos encoding histone mRNAs with 3' adenylate tracts. They also contain targets for stem-loop binding protein and U7 snRNA, which are required for histone RNA processing. One sequence is a read-through transcript containing a complete version of the downstream gene from the anti-parallel strand, similar to the RNAs from lampbrush loops of Notophthalmus oocytes. We injected read-through transcripts into Xenopus oocyte nuclei and they were processed to mature histone RNAs. Our results suggest that addition of 3' adenylate sequences might be a normal part of histone RNA synthesis. Also, these results shed light on the enigma of the developmental regulation of adenylated histone transcripts in Xenopus oocytes.
Collapse
Affiliation(s)
- Thomas Masi
- Department of Pathology, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996-4500, USA
| | | |
Collapse
|
3
|
Horvath GC, Dasgupta A, Kistler MK, Kistler WS. The rat histone H1d gene has intragenic activating sequences that are absent from the testis-specific variant H1t. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1625:165-72. [PMID: 12531475 DOI: 10.1016/s0167-4781(02)00604-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In some cases core histone genes in the mouse depend on intragenic sequence elements for high level expression [Gene 176 (1996) 1]. Here we report that the highly expressed gene for rat linker histone H1d also contains an intragenic activating region (IAR). Using transient transfection assays in mouse fibroblast NIH3T3 cells, we showed that rat H1d contains a downstream region (+21 to +116) that imparts a two- to threefold up-regulation of fused reporters. This region also activated expression when moved to the promoter region, though the effect was dependent on its distance from other promoter elements. The IAR contains sequence homologies to the core alpha and Omega elements identified as functional protein binding sites within the mouse H3.2 coding region activating sequence (CRAS). A pair of Omega elements (+32 and +66) accounts for the activating effect of the H1d intragenic region as shown by targeted mutations as well as stepwise deletions. The H1d and H3.2 Omega sequences bound similar and perhaps identical proteins by gel shift analysis. The H1d alpha-like sequence at +56 overlaps the translational start codon and was therefore not mutated. Like the mouse H3.2 alpha element, it bound transcription factor YY1 in gel shift assays. H1t, the gene for the testis-specific linker histone, did not demonstrate an IAR. While H1t has a similar alpha sequence and did bind YY1, it lacks the Omega homologies of H1d. Sequence comparison shows that the YY1/alpha site as well as the adjacent Omega site are likely present in genes for other standard H1 variants, but that the +32 Omega site in the 5' untranslated region (UTR) of H1d is unique. We conclude that the +32 and +66 Omega sequences of the rat H1d gene contribute significantly to its high-level expression.
Collapse
Affiliation(s)
- Gary C Horvath
- Department of Chemistry and Biochemistry, University of South Carolina, GSRC, 631 Sumter St., Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
4
|
Eliassen KA, Baldwin A, Sikorski EM, Hurt MM. Role for a YY1-binding element in replication-dependent mouse histone gene expression. Mol Cell Biol 1998; 18:7106-18. [PMID: 9819397 PMCID: PMC109292 DOI: 10.1128/mcb.18.12.7106] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the highly conserved replication-dependent histone gene family increases dramatically as a cell enters the S phase of the eukaryotic cell cycle. Requirements for normal histone gene expression in vivo include an element, designated alpha, located within the protein-encoding sequence of nucleosomal histone genes. Mutation of 5 of 7 nucleotides of the mouse H3.2 alpha element to yield the sequence found in an H3.3 replication-independent variant abolishes the DNA-protein interaction in vitro and reduces expression fourfold in vivo. A yeast one-hybrid screen of a HeLa cell cDNA library identified the protein responsible for recognition of the histone H3.2 alpha sequence as the transcription factor Yin Yang 1 (YY1). YY1 is a ubiquitous and highly conserved transcription factor reported to be involved in both activation and repression of gene expression. Here we report that the in vitro histone alpha DNA-protein interaction depends on YY1 and that mutation of the nucleotides required for the in vitro histone alpha DNA-YY1 interaction alters the cell cycle phase-specific up-regulation of the mouse H3.2 gene in vivo. Because all mutations or deletions of the histone alpha sequence both abolish interactions in vitro and cause an in vivo decrease in histone gene expression, the recognition of the histone alpha element by YY1 is implicated in the correct temporal regulation of replication-dependent histone gene expression in vivo.
Collapse
Affiliation(s)
- K A Eliassen
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4370, USA
| | | | | | | |
Collapse
|
5
|
Neznanov N, Umezawa A, Oshima RG. A regulatory element within a coding exon modulates keratin 18 gene expression in transgenic mice. J Biol Chem 1997; 272:27549-57. [PMID: 9346889 DOI: 10.1074/jbc.272.44.27549] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Multiple tissue-specific, DNase-hypersensitive sites are correlated with known or potential regulatory regions of the human keratin 18 (K18) gene. One of these sites is found within exon 6, close to a potential AP-1 binding site. Footprint analysis confirmed that this site is capable of binding c-Jun and c-Fos in vitro. However, exon 6 can stimulate expression of a reporter gene driven by the K18 proximal promoter independent of AP-1 in F9 cells and additionally modulates AP-1 responsiveness when in combination with an intron enhancer. Analysis in transgenic mice and by transient transfections of mutant forms of the K18 gene showed that exon 6 contributes to the expression of the K18 gene. However, substitution of part of exon 6 with the corresponding part of the keratin 19 gene which lacks an AP-1 site decreased but did not destroy the regulatory activity of the exon. Furthermore, this mutation did not alter either the tissue specificity or the position-independent and copy number-dependent behavior of the K18 gene. In contrast, a frameshift mutation within exon 6 dramatically decreased the expression of the gene. K18 RNA expression from the frameshift mutation was less than 10% of the wild type K18 transgene. This decline in expression was the result of a combination of decreased stability of mutant K18 RNA and the creation of a negative regulatory element that can interact with the first intron regulatory elements and actively suppress K18 expression. These results demonstrate that a protein-coding portion of the K18 gene also has a regulatory function.
Collapse
Affiliation(s)
- N Neznanov
- Burnham Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
6
|
Huang Y, Carmichael GG. The mouse histone H2a gene contains a small element that facilitates cytoplasmic accumulation of intronless gene transcripts and of unspliced HIV-1-related mRNAs. Proc Natl Acad Sci U S A 1997; 94:10104-9. [PMID: 9294170 PMCID: PMC23318 DOI: 10.1073/pnas.94.19.10104] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Histone mRNAs are naturally intronless and accumulate efficiently in the cytoplasm. To learn whether there are cis-acting sequences within histone genes that allow efficient cytoplasmic accumulation of RNAs, we made recombinant constructs in which sequences from the mouse H2a gene were cloned into a human beta-globin cDNA. By using transient transfection and RNase protection analysis, we demonstrate here that a 100-bp sequence within the H2a coding region permits efficient cytoplasmic accumulation of the globin cDNA transcripts. We also show that this sequence appears to suppress splicing and can functionally replace Rev and the Rev-responsive element in the cytoplasmic accumulation of unspliced HIV-1-related mRNAs. Like the Rev-responsive element, this sequence acts in an orientation-dependent manner. We thus propose that the sequence identified here may be a member of the cis-acting elements that facilitate the cytoplasmic accumulation of naturally intronless gene transcripts.
Collapse
Affiliation(s)
- Y Huang
- Department of Microbiology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | | |
Collapse
|
7
|
Kaludov NK, Pabón-Peña L, Seavy M, Robinson G, Hurt MM. A mouse histone H1 variant, H1b, binds preferentially to a regulatory sequence within a mouse H3.2 replication-dependent histone gene. J Biol Chem 1997; 272:15120-7. [PMID: 9182532 DOI: 10.1074/jbc.272.24.15120] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
H1 histones, found in all multicellular eukaryotes, associate with linker DNA between adjacent nucleosomes, presumably to keep the chromatin in a compact, helical state. The identification of multiple histone H1 subtypes in vertebrates suggests these proteins have specialized roles in chromatin organization and thus influence the regulation of gene expression in the multicellular organism. The mechanism by which the association of H1 with nucleosomal DNA is regulated is not completely understood, but affinity for different DNA sequences may play a role. Here we report that a specific H1 subtype in the mouse, namely H1b, selectively binds to a regulatory element within the protein-encoding sequence of a replication-dependent mouse H3.2 gene. We have previously shown that this coding region element, Omega, is the target of very specific interactions in vitro with another nuclear factor called the Omega factor. This element is required for normal gene expression in stably transfected rodent cells. The mouse H1b protein interacts poorly (100-fold lower affinity) with the comparable "Omega" sequence of a replication-independent mouse H3.3 gene. This H3.3 sequence differs at only 4 out of 22 nucleotide positions from the H3.2 sequence. Our findings raise the possibility that this H1b protein plays a specific role in regulation of expression of the replication-dependent histone gene family.
Collapse
Affiliation(s)
- N K Kaludov
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-3050, USA
| | | | | | | | | |
Collapse
|
8
|
Ficzycz A, Kaludov NK, Lele Z, Hurt MM, Ovsenek N. A conserved element in the protein-coding sequence is required for normal expression of replication-dependent histone genes in developing Xenopus embryos. Dev Biol 1997; 182:21-32. [PMID: 9073440 DOI: 10.1006/dbio.1996.8459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Replication-dependent histone genes in the mouse and Xenopus share a common regulatory element within the protein-encoding sequence called the CRAS alpha element (coding region activating sequence alpha) which has been shown to mediate normal expression in vivo and to interact with nuclear factors in vitro in a cell cycle-dependent manner. Thus far, the alpha element has only been studied in rodent cells in culture, and its effect on histone gene expression during development has not been determined. Here we examine the role of the alpha element in histone gene expression during Xenopus development which features a switch in histone gene expression from a replication-independent mode in oocytes to a replication-dependent mode in embryos after midblastula stage. In vivo expression experiments involving wild-type or alpha-mutant mouse H3.2 genes show that mutation of the CRAS alpha element results in a fourfold decline of expression in embryos, but does not affect expression in oocytes. Two distinct alpha sequence-specific binding activities were detected in both oocyte and embryonic extracts. A slowly migrating DNA-binding complex was present at relatively constant levels throughout development from the earliest stages of oogenesis through larval stages. In contrast, levels of a rapidly migrating complex were high in stage I and II oocytes, declined in stage II-VI oocytes, remained low in unfertilized eggs and cleavage stage embryos, and rose dramatically after the midblastula transition. The molecular masses of the factors forming the slow and rapidly migrating complexes were estimated to be approximately 110 and 85 kDa, respectively. DNA-binding activity of the 85 kDa alpha-binding factor was affected by phosphorylation, binding with higher affinity in the dephosphorylated state. The abrupt increase in DNA-binding activity of the 85-kDa alpha-binding factor at late blastula coincides with the switch to the replication-dependent mode of histone gene expression. We propose that the conserved alpha element present in the coding sequence of mouse and Xenopus core histone genes is required for normal replication-dependent histone expression in the developing Xenopus embryo.
Collapse
Affiliation(s)
- A Ficzycz
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | |
Collapse
|
9
|
Wang ZF, Krasikov T, Frey MR, Wang J, Matera AG, Marzluff WF. Characterization of the mouse histone gene cluster on chromosome 13: 45 histone genes in three patches spread over 1Mb. Genome Res 1996; 6:688-701. [PMID: 8858344 DOI: 10.1101/gr.6.8.688] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The histone gene cluster on mouse chromosome 13 has been isolated and characterized. Using overlapping YAC clones containing histone genes from chromosome 13, a contig of approximately 2 Mb has been defined. It contains 45 histone genes, organized in three patches containing tightly clustered genes. An 80-kb patch (patch III) containing 12 histone genes is near one end of the contig, and a similar-sized patch (patch I) containing 15 histone genes is near the other end of the contig, located at least 500 kb from the central patch (patch II) of histone genes. The entire cluster contains six histone H1 genes, including the testis-specific histone H1t gene that maps to the middle of the cluster. All nine histone H3 genes in this cluster have been sequenced, and their level of expression determined. Each histone H3 gene is distinct, with five genes encoding the H3.2 protein subtype and four genes encoding the H3.1 protein. They are all expressed, with each histone H3 gene accounting for a small proportion of the total histone H3 mRNA.
Collapse
Affiliation(s)
- Z F Wang
- Department of Biology, University of North Carolina at Chapel Hill 27599-7100, USA
| | | | | | | | | | | |
Collapse
|
10
|
Kaludov NK, Bowman TL, Sikorski EM, Hurt MM. Cell cycle-regulated binding of nuclear proteins to elements within a mouse H3.2 histone gene. Proc Natl Acad Sci U S A 1996; 93:4465-70. [PMID: 8633091 PMCID: PMC39561 DOI: 10.1073/pnas.93.9.4465] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The histone gene family in mammals consists of 15-20 genes for each class of nucleosomal histone protein. These genes are classified as either replication-dependent or -independent in regard to their expression in the cell cycle. The expression of the replication-dependent histone genes increases dramatically as the cell prepares to enter S phase. Using mouse histone genes, we previously identified a coding region activating sequence (CRAS) involved in the upregulation of at least two (H2a and H3) and possibly all nucleosomal replication-dependent histone genes. Mutation of two seven-nucleotide elements, alpha and omega, within the H3 CRAS causes a decrease in expression in stably transfected Chinese hamster ovary cells comparable with the effect seen upon deletion of the entire CRAS. Further, nuclear proteins interact in a highly specific manner with nucleotides within these sequences. Mutation of these elements abolishes DNA/protein interactions in vitro. Here we report that the interactions of nuclear factors with these elements are differentially regulated in the cell cycle and that protein interactions with these elements are dependent on the phosphorylation/dephosphorylation state of the nuclear factors.
Collapse
Affiliation(s)
- N K Kaludov
- Department of Biological Science, Florida State University, Tallahassee 32306-3050, USA
| | | | | | | |
Collapse
|
11
|
Kaludov NK, Pabón-Peña L, Hurt MM. Identification of a second conserved element within the coding sequence of a mouse H3 histone gene that interacts with nuclear factors and is necessary for normal expression. Nucleic Acids Res 1996; 24:523-31. [PMID: 8602367 PMCID: PMC145646 DOI: 10.1093/nar/24.3.523] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Replication-dependent histone genes of all four nucleosomal classes are coordinately up-regulated at the beginning of S phase of the eukaryotic cell cycle. The universality and importance of this process in eukaryotic cells suggest that common regulatory mechanisms are involved in controlling the high level of expression of these histone genes. We have previously identified the alpha element within mouse H2a.2 and H3.2 coding region activating sequences (CRAS), which is involved in regulation of these two replication-dependent genes. Here we report the identification of a second element within the mouse histone CRAS, the omega element. This element interacts with nuclear proteins and we present in vivo evidence that this sequence is required for normal expression. Omega nucleotides involved in interaction with nuclear proteins have been precisely mapped by menas of DNase I footprinting and methylation interference assays. A naturally occurring mutation in the omega sequence is found in a replication-independent H3.3 gene. Mutation of the H3.2 omega element to that of the H3.3 sequence (3 nt changes) caused a 4-fold drop in in vivo expression of the H3.2 gene in stably transfected CHO cells, equally the effect of mutation of all 7 nt of the element. By UV cross-linking we have determined the approximate molecular weight of the omega binding protein to be 45 kDa. Finally, we identify putative omega sequences in the coding region of mouse H2B and H4 histone genes.
Collapse
Affiliation(s)
- N K Kaludov
- Department of Biological Science, Florida State University, Tallahassee, 32306-3050, USA
| | | | | |
Collapse
|
12
|
Bowman TL, Hurt MM. The coding sequences of mouse H2A and H3 histone genes contains a conserved seven nucleotide element that interacts with nuclear factors and is necessary for normal expression. Nucleic Acids Res 1995; 23:3083-92. [PMID: 7667083 PMCID: PMC307164 DOI: 10.1093/nar/23.16.3083] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Expression of replication-dependent histone genes of all classes is up-regulated coordinately at the onset of DNA synthesis. The cellular signals involved in coordinate regulation of these genes are not known. Here we report identification of an alpha element, present within the mouse histone coding region activating sequence (CRAS). We show evidence that this element is present in histone genes from two classes, H2a and H3, in the mouse. This element has two biological functions in histone gene expression, i.e. the element interacts with nuclear proteins in regulation of gene expression, as well as encoding the amino acids of the histone proteins. We present both in vivo and in vitro evidence that interaction of nuclear proteins with this element is required for normal expression. The binding site for nuclear protein(s) has been precisely defined by means of synthetic oligonucleotides, as well as DNase I protection and methylation interference. It is interesting to note that the histone CRAS alpha element is mutated in a replication-independent H3.3 gene; 5 of 7 nt in the CRAS alpha box are changed in this gene.
Collapse
Affiliation(s)
- T L Bowman
- Department of Biological Science, Florida State University, Tallahassee 32306-3050, USA
| | | |
Collapse
|
13
|
Khokha R, Martin DC, Fata JE. Utilization of transgenic mice in the study of matrix degrading proteinases and their inhibitors. Cancer Metastasis Rev 1995; 14:97-111. [PMID: 7554034 DOI: 10.1007/bf00665794] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The extracellular matrix (ECM) acts as both a structural scaffold and an informational medium. Its dynamic status is determined by cells that secrete its constituent molecules and, in most cases, also secrete enzymes that catalyze degradation of these molecules. A stasis between ECM degrading enzymes and their inhibitors maintains the integrity of the matrix. While controlled ECM remodelling is fundamental to several normal processes, uncontrolled disruption underlies diverse pathological conditions. Transgenic mice with specific modulations or a total lack of expression of certain metalloproteinases, serine proteinases or their inhibitors have been generated to elucidate endogenous expression patterns, identify regulatory elements of these genes, and study the physiological consequences of their deregulated expression. With these models we enhance our understanding of the role of proteinases and their inhibitors in diverse normal processes and pathologies including mammary gland development, hemostasis, emphysema and cancer.
Collapse
Affiliation(s)
- R Khokha
- Department of Oncology, University of Western Ontario, London Regional Cancer Centre, Canada
| | | | | |
Collapse
|
14
|
Frenkel B, Montecino M, Stein JL, Lian JB, Stein GS. A composite intragenic silencer domain exhibits negative and positive transcriptional control of the bone-specific osteocalcin gene: promoter and cell type requirements. Proc Natl Acad Sci U S A 1994; 91:10923-7. [PMID: 7971985 PMCID: PMC45138 DOI: 10.1073/pnas.91.23.10923] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The osteocalcin (OC) silencer is a unique example of exonic sequences contributing to negative transcriptional control of mammalian gene expression. In this paper we demonstrate, using a reporter transfection assay, that multiple elements reside within the OC +24/+151 domain. Thirty-fold repression is mediated by the +49/+104 fragment, experimentally relocated 3' of the poly(A) signal. Deletion of either the +49/+54 protein-coding sequence or the +98/+104 intronic part of this fragment results in loss of repression activity, suggesting a bipartite organization of the +49/+104 silencer. Of particular interest, we have mapped an antisilencer activity to the ACCCTCTCT motif (+40/+48), found in silencers associated with several other genes. Extension of the +49/+104 silencer to include the +24/+48 and/or the +105/+151 sequences results in increased silencer activity up to 170-fold, suggesting the presence of additional silencer elements within these sequences. The activity of the silencer contained within the +24/+151 OC sequence is directed to the basal promoter and is not dependent on 5' distal enhancer elements, including those that mediate responsiveness of OC transcription to vitamin D. The OC silencer represses the heterologous thymidine kinase promoter and is operative in osseous (normal diploid osteoblasts, ROS 17/2.8 osteosarcoma) as well as HeLa cells. Our results, which suggest the presence of at least five regulatory elements downstream of the OC transcription start site, indicate the complexity of sequences that mediate repression of OC promoter activity.
Collapse
Affiliation(s)
- B Frenkel
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | | | |
Collapse
|
15
|
Frenkel B, Mijnes J, Aronow MA, Zambetti G, Banerjee C, Stein JL, Lian JB, Stein GS. Position and orientation-selective silencer in protein-coding sequences of the rat osteocalcin gene. Biochemistry 1993; 32:13636-43. [PMID: 7504955 DOI: 10.1021/bi00212a031] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Osteocalcin (OC) is a bone-specific protein which is expressed postproliferatively by osteoblasts during late stages of differentiation. We have found that a silencer element is present within the rat OC gene (between nt +39 and +104), overlapping the OC signal prepropeptide-coding sequence. The presence of this sequence in OC promoter-CAT reporter constructs suppresses promoter activity in transiently transfected proliferating osteoblasts, which do not express OC, by up to 50-fold. This is the first demonstration of contribution from protein-coding sequences to silencing of animal genes. The element appears to be bipartite; silencer activity requires both the protein-coding sequence +39 to +63 and the +93 to +104 exon 1/intron 1 border region. Both of these domains contain sequences highly similar to silencer motifs in several other genes, including chicken lysozyme as well as rat collagen type II, insulin, and growth hormone. OC silencer activity is fully retained when the element is placed outside the RNA-coding region, 3' but not 5' of the OC-CAT fusion gene. Repression activity is orientation independent in the native position but requires the native orientation when located in 3' extragenic positions. The silencer does not inhibit the activity of the heterologous SV40 early promoter. These results suggest interaction between the transcribed silencer and specific OC promoter element(s) residing farther upstream. The OC transcribed silencer may contribute to developmental control of OC expression.
Collapse
Affiliation(s)
- B Frenkel
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Perez-Castro AV, Tran VT, Nguyen-Huu MC. Defective lens fiber differentiation and pancreatic tumorigenesis caused by ectopic expression of the cellular retinoic acid-binding protein I. Development 1993; 119:363-75. [PMID: 8287793 DOI: 10.1242/dev.119.2.363] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
All-trans retinoic acid, a metabolite of retinol, is a possible morphogen in vertebrate development. Two classes of cellular proteins, which specifically bind all-trans retinoic acid, are thought to mediate its action: the nuclear retinoic acid receptors (RAR alpha, beta, gamma), and the cytoplasmic binding proteins known as cellular retinoic acid-binding proteins I and II (CRABP I and II). The function of the retinoic acid receptors is to regulate gene transcription by binding to DNA in conjunction with the nuclear retinoid X receptors (RXR alpha, beta, gamma), which in turn have 9-cis retinoic acid as a ligand. Several lines of evidence suggest that the role of the cellular retinoic acid-binding proteins is to control the concentration of free retinoic acid reaching the nucleus in a given cell. Here, we have addressed the role of the cellular retinoic acid-binding protein I in development by ectopically expressing it in the mouse lens, under the control of the alpha A-crystallin promoter. We show that this ectopic expression interferes with the development of the lens and with the differentiation of the secondary lens fiber cells, causing cataract formation. These results suggest that correct regulation of intracellular retinoic acid concentration is required for normal eye development. In addition, the generated transgenic mice also present expression of the transgene in the pancreas and develop pancreatic carcinomas, suggesting that overexpression of the cellular retinoic acid-binding protein is the cause of the tumors. These results taken together provide evidence for a role of the cellular retinoic acid-binding protein in development and cell differentiation. The relevance of these findings to the possible role of the cellular retinoic acid-binding proteins in the transduction of the retinoic acid signal is discussed.
Collapse
Affiliation(s)
- A V Perez-Castro
- Department of Microbiology, Columbia University, New York, New York 10032
| | | | | |
Collapse
|
17
|
A common transcriptional activator is located in the coding region of two replication-dependent mouse histone genes. Mol Cell Biol 1991. [PMID: 2038312 DOI: 10.1128/mcb.11.6.2929] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is a region in the mouse histone H3 gene protein-encoding sequence required for high expression. The 110-nucleotide coding region activating sequence (CRAS) from codons 58 to 93 of the H3.2 gene restored expression when placed 520 nucleotides 5' of the start of transcription in the correct orientation. Since identical mRNA molecules are produced by transcription of the original deletion gene and the deletion gene with the CRAS at -520, effects of the deletions on mRNA stability or other posttranscriptional events are completely ruled out. Inversion of the CRAS sequence in its proper position in the H3 gene resulted in only a threefold increase in expression, and placing the CRAS sequence 5' of the deleted gene in the wrong orientation had no effect on expression. In-frame deletions in the coding region of an H2a.2 gene led to identification of a 105-nucleotide sequence in the coding region between amino acids 50 and 85 necessary for high expression of the gene. Additionally, insertion of the H3 CRAS into the deleted region of the H2a.2 gene restored expression of the H2a gene. Thus, the CRAS element has an orientation-dependent, position-independent effect. Gel mobility shift competition studies indicate that the same proteins interact with both the H3 and H2a CRAS elements, suggesting that a common factor is involved in expression of histone genes.
Collapse
|
18
|
Hurt MM, Bowman TL, Marzluff WF. A common transcriptional activator is located in the coding region of two replication-dependent mouse histone genes. Mol Cell Biol 1991; 11:2929-36. [PMID: 2038312 PMCID: PMC360118 DOI: 10.1128/mcb.11.6.2929-2936.1991] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
There is a region in the mouse histone H3 gene protein-encoding sequence required for high expression. The 110-nucleotide coding region activating sequence (CRAS) from codons 58 to 93 of the H3.2 gene restored expression when placed 520 nucleotides 5' of the start of transcription in the correct orientation. Since identical mRNA molecules are produced by transcription of the original deletion gene and the deletion gene with the CRAS at -520, effects of the deletions on mRNA stability or other posttranscriptional events are completely ruled out. Inversion of the CRAS sequence in its proper position in the H3 gene resulted in only a threefold increase in expression, and placing the CRAS sequence 5' of the deleted gene in the wrong orientation had no effect on expression. In-frame deletions in the coding region of an H2a.2 gene led to identification of a 105-nucleotide sequence in the coding region between amino acids 50 and 85 necessary for high expression of the gene. Additionally, insertion of the H3 CRAS into the deleted region of the H2a.2 gene restored expression of the H2a gene. Thus, the CRAS element has an orientation-dependent, position-independent effect. Gel mobility shift competition studies indicate that the same proteins interact with both the H3 and H2a CRAS elements, suggesting that a common factor is involved in expression of histone genes.
Collapse
Affiliation(s)
- M M Hurt
- Program in Medical Sciences, Florida State University, Tallahassee 32306
| | | | | |
Collapse
|
19
|
van Wijnen AJ, Ramsey-Ewing AL, Bortell R, Owen TA, Lian JB, Stein JL, Stein GS. Transcriptional element H4-site II of cell cycle regulated human H4 histone genes is a multipartite protein/DNA interaction site for factors HiNF-D, HiNF-M, and HiNF-P: involvement of phosphorylation. J Cell Biochem 1991; 46:174-89. [PMID: 1655821 DOI: 10.1002/jcb.240460211] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cell cycle regulated gene expression was studied by analyzing protein/DNA interactions occurring at the H4-Site II transcriptional element of H4 histone genes using several approaches. We show that this key proximal promoter element interacts with at least three distinct sequence-specific DNA binding activities, designated HiNF-D, HiNF-M, and HiNF-P. HiNF-D binds to an extended series of nucleotides, whereas HiNF-M and HiNF-P recognize sequences internal to the HiNF-D binding domain. Gel retardation assays show that HiNF-D and HiNF-M each are represented by two distinct protein/DNA complexes involving the same DNA binding activity. These results suggest that these factors are subject to post-translational modifications. Dephosphorylation experiments in vitro suggest that both electrophoretic mobility and DNA binding activities of HiNF-D and HiNF-M are sensitive to phosphatase activity. We deduce that these factors may require a basal level of phosphorylation for sequence specific binding to H4-Site II and may represent phosphoproteins occurring in putative hyper- and hypo-phosphorylated forms. Based on dramatic fluctuations in the ratio of the two distinct HiNF-D species both during hepatic development and the cell cycle in normal diploid cells, we postulate that this modification of HiNF-D is related to the cell cycle. However, in several tumor-derived and transformed cell types the putative hyperphosphorylated form of HiNF-D is constitutively present. These data suggest that deregulation of a phosphatase-sensitive post-translational modification required for HiNF-D binding is a molecular event that reflects abrogation of a mechanism controlling cell proliferation. Thus, phosphorylation and dephosphorylation of histone promoter factors may provide a basis for modulation of protein/DNA interactions and H4 histone gene transcription during the cell cycle and at the onset of quiescence and differentiation.
Collapse
Affiliation(s)
- A J van Wijnen
- Department of Cell Biology, University of Massachusetts Medical School, Worcester 01655
| | | | | | | | | | | | | |
Collapse
|
20
|
Tung L, Lee IJ, Rice HL, Weinberg ES. Positive and negative transcriptional regulatory elements in the early H4 histone gene of the sea urchin, Strongylocentrotus purpuratus. Nucleic Acids Res 1990; 18:7339-48. [PMID: 2259627 PMCID: PMC332871 DOI: 10.1093/nar/18.24.7339] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The early H4 (EH4) histone gene of the sea urchin, Strongylocentrotus purpuratus, is shown to contain at least five positive-responding sequence elements and one negative-responding site which control the level of in vitro transcription in an embryonic nuclear extract. The positive acting elements are: 1) the UHF-1 region, located between -133 and -102 (the site of a strong footprint, due at least in part to the binding of an 85 kD protein factor termed UHF-1); 2) the H4 specific element (H4SE), situated between -62 and -39; 3) a sequence corresponding to a TATA box between -33 and -26 (TAACAATA); 4) the transcriptional initiation site; and 5) an internal sequence element found between +19 and +50. Deletion of, or base changes in, the UHF-1, H4SE, initiation, or internal sequence sites resulted in significant decreases in transcription. Base substitutions in the TATA-like sequence had much less effect, resulting in no more than a 2-fold decrease in transcription, and there was no evidence that alternative initiation sites are utilized in the mutant templates. The negative element (termed the UHF-3 site) is contained within a footprinted region between nucleotides -75 and -56. Base substitutions in this area result in templates that were transcribed at a level 1.2-2.0-fold higher than the wild-type gene. Transcription levels of double UHF-1/H4SE and UHF-1/INR mutants were those expected from additive effects of the individual mutations and there was no suggestion of synergism.
Collapse
Affiliation(s)
- L Tung
- Department of Biology, University of Pennsylvania, Philadelphia 19104
| | | | | | | |
Collapse
|
21
|
Miskin R, Axelrod JH, Griep AE, Lee E, Belin D, Vassalli JD, Westphal H. Human and murine urokinase cDNAs linked to the murine alpha A-crystallin promoter exhibit lens and non-lens expression in transgenic mice. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 190:31-8. [PMID: 2114286 DOI: 10.1111/j.1432-1033.1990.tb15541.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
cDNAs encoding either the human or the murine urokinase-type plasminogen activator (uPA) were fused downstream from the promoter-enhancer element of the murine gene encoding alpha A-crystallin, a protein found exclusively in the ocular lens. The DNAs were microinjected into fertilized mouse eggs as linear fragments free of bacterial sequences, and for each construct one line of transgenic mice was generated. In both lines transgenic uPA activity was detected in the ocular lens, in agreement with previous results reported on transgenic mice bearing genes fused to the same regulatory region. Unexpectedly however relatively high levels of this activity were found also in the retina, and furthermore, human uPA activity was found also in different parts of the brain and in the bone marrow, and to a lesser extent in the spleen, thymus and optic nerve. Transgenic uPA transcript was found in the lens, retina, brain and thymus of mice carrying the murine cDNA. Such a pattern of expression was different from that exhibited by the endogenous murine uPA gene and, excluding the lens, it appeared to be conferred by the cDNAs. The putative regulation by uPA cDNAs is suggested to be mediated through an internal enhancer-like element functioning in combination with the alpha A-crystallin promoter in a fashion independent of the specific nature of the promoter.
Collapse
Affiliation(s)
- R Miskin
- Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|