1
|
Storer JM, Walker JA, Rewerts LC, Brown MA, Beckstrom TO, Herke SW, Roos C, Batzer MA. Owl Monkey Alu Insertion Polymorphisms and Aotus Phylogenetics. Genes (Basel) 2022; 13:2069. [PMID: 36360306 PMCID: PMC9691001 DOI: 10.3390/genes13112069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 07/30/2023] Open
Abstract
Owl monkeys (genus Aotus), or "night monkeys" are platyrrhine primates in the Aotidae family. Early taxonomy only recognized one species, Aotus trivirgatus, until 1983, when Hershkovitz proposed nine unique species designations, classified into red-necked and gray-necked species groups based predominately on pelage coloration. Recent studies questioned this conventional separation of the genus and proposed designations based on the geographical location of wild populations. Alu retrotransposons are a class of mobile element insertion (MEI) widely used to study primate phylogenetics. A scaffold-level genome assembly for one Aotus species, Aotus nancymaae [Anan_2.0], facilitated large-scale ascertainment of nearly 2000 young lineage-specific Alu insertions. This study provides candidate oligonucleotides for locus-specific PCR assays for over 1350 of these elements. For 314 Alu elements across four taxa with multiple specimens, PCR analyses identified 159 insertion polymorphisms, including 21 grouping A. nancymaae and Aotus azarae (red-necked species) as sister taxa, with Aotus vociferans and A. trivirgatus (gray-necked) being more basal. DNA sequencing identified five novel Alu elements from three different taxa. The Alu datasets reported in this study will assist in species identification and provide a valuable resource for Aotus phylogenetics, population genetics and conservation strategies when applied to wild populations.
Collapse
Affiliation(s)
- Jessica M. Storer
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Jerilyn A. Walker
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Lydia C. Rewerts
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Morgan A. Brown
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Thomas O. Beckstrom
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
- Department of Oral and Maxillofacial Surgery, University of Washington, 1959 NE Pacific Street, Health Sciences Building B-241, Seattle, WA 98195, USA
| | - Scott W. Herke
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Mark A. Batzer
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| |
Collapse
|
2
|
Pourrajab F, Hekmatimoghaddam S. Transposable elements, contributors in the evolution of organisms (from an arms race to a source of raw materials). Heliyon 2021; 7:e06029. [PMID: 33532648 PMCID: PMC7829209 DOI: 10.1016/j.heliyon.2021.e06029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/08/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
There is a concept proposing that the primitive lineages of prokaryotes, eukaryotes, and viruses emerged from the primordial pool of primitive genetic elements. In this genetic pool, transposable elements (TEs) became a source of raw material for primitive genomes, tools of genetic innovation, and ancestors of modern genes (e.g. ncRNAs, tRNAs, and rRNAs). TEs contributed directly to the genome evolution of three forms of life on the earth. TEs now appear as tools that were used to giving rise to sexual dimorphism and sex determination, lineage-specific expression of genes and tissue differentiation and finally genome stability and lifespan determination.
Collapse
Affiliation(s)
- Fatemeh Pourrajab
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedhossein Hekmatimoghaddam
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
3
|
Xu JH, Cheng C, Tsuchimoto S, Ohtsubo H, Ohtsubo E. Phylogenetic analysis of Oryza rufipogon strains and their relations to Oryza sativa strains by insertion polymorphism of rice SINEs. Genes Genet Syst 2007; 82:217-29. [PMID: 17660692 DOI: 10.1266/ggs.82.217] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Oryza rufipogon, the progenitor of the cultivated rice species Oryza sativa, is known by its wide intraspecific variation. In this study, we performed phylogenetic analyses of O. rufipogon strains and their relationships to O. sativa strains by using 26 newly identified p-SINE1 members from O. rufipogon strains, in addition to 23 members previously identified from O. sativa strains. A total of 103 strains of O. rufipogon and O. sativa were examined for the presence and absence of each of the p-SINE1 members at respective loci by PCR with a pair of primers that hybridize to the regions flanking each p-SINE1 member. A phylogenetic tree constructed on the basis of the insertion polymorphism of p-SINE1 members showed that O. rufipogon and O. sativa strains are classified into three groups. The first group consisted of O. rufipogon perennial strains mostly from China and O. sativa ssp. japonica strains, which included javanica strains forming a distinct subgroup. The second group consisted of almost all the O. rufipogon annual strains, a few O. rufipogon perennial strains and O. sativa ssp. indica strains. These groupings, in addition to other results, support the previous notion that annual O. rufipogon originated in the O. rufipogon perennial population, and that O. sativa originated polyphyletically in the O. rufipogon populations. The third group consisted of the other perennial strains and intermediate-type strains of O. rufipogon, in which the intermediate-type strains are most closely related to a hypothetical ancestor with no p-SINE1 members at the respective loci and to those belonging to the other rice species with the AA genome. This suggests that O. rufipogon perennial strains are likely to have originated from the O. rufipogon intermediate-ecotype population.
Collapse
Affiliation(s)
- Jian-Hong Xu
- Institute of Molecular and Cellular Biosciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
4
|
Casarin A, Martella M, Polli R, Leonardi E, Anesi L, Murgia A. Molecular characterization of large deletions in the von Hippel-Lindau (VHL) gene by quantitative real-time PCR: the hypothesis of an alu-mediated mechanism underlying VHL gene rearrangements. Mol Diagn Ther 2006; 10:243-9. [PMID: 16884328 DOI: 10.1007/bf03256463] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Mutations of the von Hippel-Lindau (VHL) gene are responsible for VHL disease. This is a familial autosomal-dominant syndrome, predisposing to the development of benign and malignant tumors, including CNS and retinal hemangioblastomas, pheochromocytomas, and clear cell renal carcinomas. At least 30% of the disease-causing mutations in the VHL gene involve large alterations. Identification of these mutations is not possible using PCR-based mutational scanning methods. Quantitative Southern blot analysis has been traditionally employed for the detection of complete or partial deletions and more complex rearrangements of the gene. METHODS An alternative quantitative method was developed using a combination of quantitative Southern blot analysis and real-time PCR. With this approach, we studied 24 large VHL gene alterations to determine the exact nature of the mutations and to possibly characterize the boundaries of the deleted regions. RESULTS This combined molecular approach showed that all the VHL alterations studied were due to deletions, from which the position in the gene could be more precisely mapped. One of the samples that was completely characterized was found to carry an intragenic 2.2kb deletion with both 5' and 3' breakpoints located within Alu-repeat sequences. CONCLUSION This is the first report on the molecular analysis of large VHL alterations. The results of our study and the complete characterization of a large deletion lead to the hypothesis that an Alu-mediated mechanism may be responsible for the common occurrence of large alterations in the VHL gene.
Collapse
|
5
|
Abstract
Elucidation of complete nucleotide sequence of the human has revealed that coding sequences that store the information needed to synthesize functional proteins, occupy only 2% of the genomic region. The remaining 98%, barring few regulatory sequences, has been referred to as non-functional or junk DNA and consists of many kinds of repeat elements. In fact, human genome is the most repeat rich genome sequenced so far, in which more than half of the region is occupied by such sequences. Determination of significance of these repeats in the human genome has become the focus of many studies all over the world, especially after genome sequencing did not reveal any significant difference in coding regions between lower eukaryotes and human. In this article, we have focused on Alu repeats that are primate specific elements with many interesting biological properties. Moreover, these are the repeats with highest copy number in the human genome. We have highlighted different facets of their interaction with the genome and changing paradigms regarding their role in genome organization.
Collapse
Affiliation(s)
- Deepak Grover
- Functional Genomics Unit, Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | | | | | | |
Collapse
|
6
|
|
7
|
The association of Alu repeats with the generation of potential AU-rich elements (ARE) at 3' untranslated regions. BMC Genomics 2004; 5:97. [PMID: 15610565 PMCID: PMC544599 DOI: 10.1186/1471-2164-5-97] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Accepted: 12/21/2004] [Indexed: 11/10/2022] Open
Abstract
Background A significant portion (about 8% in the human genome) of mammalian mRNA sequences contains AU (Adenine and Uracil) rich elements or AREs at their 3' untranslated regions (UTR). These mRNA sequences are usually stable. However, an increasing number of observations have been made of unstable species, possibly depending on certain elements such as Alu repeats. ARE motifs are repeats of the tetramer AUUU and a monomer A at the end of the repeats ((AUUU)nA). The importance of AREs in biology is that they make certain mRNA unstable. Proto-oncogene, such as c-fos, c-myc, and c-jun in humans, are associated with AREs. Although it has been known that the increased number of ARE motifs caused the decrease of the half-life of mRNA containing ARE repeats, the exact mechanism is as of yet unknown. We analyzed the occurrences of AREs and Alu and propose a possible mechanism for how human mRNA could acquire and keep AREs at its 3' UTR originating from Alu repeats. Results Interspersed in the human genome, Alu repeats occupy 5% of the 3' UTR of mRNA sequences. Alu has poly-adenine (poly-A) regions at its end, which lead to poly-thymine (poly-T) regions at the end of its complementary Alu. It has been found that AREs are present at the poly-T regions. From the 3' UTR of the NCBI's reference mRNA sequence database, we found nearly 40% (38.5%) of ARE (Class I) were associated with Alu sequences (Table 1) within one mismatch allowance in ARE sequences. Other ARE classes had statistically significant associations as well. This is far from a random occurrence given their limited quantity. At each ARE class, random distribution was simulated 1,000 times, and it was shown that there is a special relationship between ARE patterns and the Alu repeats. Conclusion AREs are mediating sequence elements affecting the stabilization or degradation of mRNA at the 3' untranslated regions. However, AREs' mechanism and origins are unknown. We report that Alu is a source of ARE. We found that half of the longest AREs were derived from the poly-T regions of the complementary Alu.
Collapse
|
8
|
Characterization of the human polymeric immunoglobulin receptor(PIGR) 3'UTR and differential expression ofPIGR mRNA during colon tumorigenesis. J Biomed Sci 2003. [DOI: 10.1007/bf02256332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
9
|
Cheng C, Motohashi R, Tsuchimoto S, Fukuta Y, Ohtsubo H, Ohtsubo E. Polyphyletic origin of cultivated rice: based on the interspersion pattern of SINEs. Mol Biol Evol 2003; 20:67-75. [PMID: 12519908 DOI: 10.1093/molbev/msg004] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The wild rice species Oryza rufipogon with wide intraspecific variation is thought to be the progenitor of the cultivated rice species Oryza sativa with two ecotypes, japonica and indica. To determine the origin of cultivated rice, subfamily members of the rice retroposon p-SINE1, which show insertion polymorphism in the O. sativa -O. rufipogon population, were identified and used to "bar code" each of 101 cultivated and wild rice strains based on the presence or absence of the p-SINE1 members at the respective loci. A phylogenetic tree constructed based on the bar codes given to the rice strains showed that O. sativa strains were classified into two groups corresponding to japonica and indica, whereas O. rufipogon strains were in four groups, in which annual O. rufipogon strains formed a single group, differing from the perennial O. rufipogon strains of the other three groups. Japonica strains were closely related to the O. rufipogon perennial strains of one group, and the indica strains were closely related to the O. rufipogon annual strains, indicating that O. sativa has been derived polyphyletically from O. rufipogon. The subfamily members of p-SINE1 constitute a powerful tool for studying the classification and relationship of rice strains, even when one has limited knowledge of morphology, taxonomy, physiology, and biochemistry of rice strains.
Collapse
Affiliation(s)
- Chaoyang Cheng
- Institute of Molecular and Cellular Biosciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Cheng C, Tsuchimoto S, Ohtsubo H, Ohtsubo E. Evolutionary relationships among rice species with AA genome based on SINE insertion analysis. Genes Genet Syst 2002; 77:323-34. [PMID: 12441643 DOI: 10.1266/ggs.77.323] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Previous studies based on morphological and molecular markers indicated that there are two cultivated and five wild rice species within the Oryza genus with the AA genome. In the cultivated rice species, Oryza sativa, a retroposon named p-SINE1 has been identified. Some of the p-SINE1 members characterized previously showed interspecific insertion polymorphisms in the species with the AA genome. In this study, we identified new p-SINE1 members showing interspecific insertion polymorphisms from representative strains of four wild rice species with the AA genome: O. barthii, O. glumaepatula, O. longistaminata, and O. meridionalis. Some of these members were present only in strains of one species, whereas the others were present in strains of two or more species. The p-SINE1 insertion patterns in the strains of the Asian and African cultivated rice species O. sativa and O. glaberrima were very similar to those of the Asian and African wild rice species O. rufipogon and O. barthii, respectively. This is consistent with the previous hypothesis that O. sativa and O. glaberrima are derived from specific wild rice species. Phylogenetic analysis based on the p-SINE1 insertion patterns showed that the strains of each of the five wild rice species formed a cluster. The strains of O. longistaminata appear to be distantly related to those of O. meridionalis. The strains of these two species appear to be distantly related to those of three other species, O. rufipogon, O. barthii and O. glumaepatula. The latter three species are closely related to one another with O. barthii and O. glumaepatula being most closely related. A phylogenetic tree including a hypothetical ancestor with all loci empty for p-SINE1 insertion showed that the strains of O. longistaminata are related most closely to the hypothetical ancestor. This indicates that O. longistaminata and O. meridionalis diverged early on, whereas the other species diverged relatively recently, and suggests that the Oryza genus with AA genome might have originated in Africa, rather than in Asia.
Collapse
Affiliation(s)
- Chaoyang Cheng
- Institute of Molecular and Cellular Biosciences, the University of Tokyo, Japan
| | | | | | | |
Collapse
|
11
|
Martinez J, Dugaiczyk LJ, Zielinski R, Dugaiczyk A. Human genetic disorders, a phylogenetic perspective. J Mol Biol 2001; 308:587-96. [PMID: 11350162 DOI: 10.1006/jmbi.2001.4755] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When viewed from the perspective of time, human genetic disorders give new insights into their etiology and evolution. Here, we have correlated a specific set of Alu repetitive DNA elements, known to be the basis of certain genetic defects, with their phylogenetic roots in primate evolution. From a differential distribution of Alu repeats among primate species, we identify the phylogenetic roots of three human genetic diseases involving the LPL, ApoB, and HPRT genes. The different phylogenetic age of these genetic disorders could explain the different susceptibility of various primate species to genetic diseases. Our results show that LPL deficiency is the oldest and should affect humans, apes, and monkeys. ApoB deficiency should affect humans and great apes, while a disorder in the HPRT gene (leading to the Lesch-Nyhan syndrome) is unique to human, chimpanzee, and gorilla. Similar results can be obtained for cancer. We submit that de novo transpositions of Alu elements, and saltatory appearances of Alu-mediated genetic disorders, represent singularities, places where behavior changes suddenly. Alus' propensity to spread, not only increased the regulatory and developmental complexity of the primate genome, it also increased its instability and susceptibility to genetic defects and cancer. The dynamic spread not only provided markers of primate phylogeny, it must have actively shaped the course of that phylogeny.
Collapse
Affiliation(s)
- J Martinez
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
12
|
Nishio H, Hamdi HK, Dugaiczyk A. Genomic expansion across the albumin gene family on human chromosome 4q is directional. Biol Chem 1999; 380:1431-4. [PMID: 10661870 DOI: 10.1515/bc.1999.183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The albumin gene family arose in a series of duplication events which gave rise to symmetry in its structure. The four genes are tandemly linked on human chromosome 4q in the order: 5'ALB-5'AFP-5'ALF-5'DBP-centromere, and their introns display a symmetrical and repetitive pattern that is shared by members of the gene family. These repetitive motifs provide an internal reference, allowing observations of evolutionary changes within a single line (human) of evolutionary descent. The four genes and three intergenic regions between them increase in size as they get closer to the centromere. An invasion by multiple repetitive DNA elements may account, in part, for this expansion.
Collapse
Affiliation(s)
- H Nishio
- Department of Biochemistry, University of California, Riverside 92521, USA
| | | | | |
Collapse
|
13
|
Hsu DW, Lin MJ, Lee TL, Wen SC, Chen X, Shen CK. Two major forms of DNA (cytosine-5) methyltransferase in human somatic tissues. Proc Natl Acad Sci U S A 1999; 96:9751-6. [PMID: 10449766 PMCID: PMC22282 DOI: 10.1073/pnas.96.17.9751] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thus far, only one major form of vertebrate DNA (cytosine-5) methyltransferase (CpG MTase, EC 2.1.1.37) has been identified, cloned, and extensively studied. This enzyme, dnmt1, has been hypothesized to be responsible for most of the maintenance as well as the de novo methylation activities occurring in the somatic cells of vertebrates. We now report the discovery of another abundant species of CpG MTase in various types of human cell lines and somatic tissues. Interestingly, the mRNA encoding this CpG MTase results from alternative splicing of the primary transcript from the Dnmt1 gene, which incorporates in-frame an additional 48 nt between exons 4 and 5. Furthermore, this 48-nt exon sequence is derived from the first, or the most upstream, copy of a set of seven different Alu repeats located in intron 4. The ratios of expression of this mRNA to the expression of the previously known, shorter Dnmt1 mRNA species, as estimated by semiquantitative reverse transcription-PCR analysis, range from two-thirds to three-sevenths. This alternative splicing scheme of the Dnmt1 transcript seems to be conserved in the higher primates. We suggest that the originally described and the recently discovered forms of CpG MTase be named dnmt1-a and dnmt1-b, respectively. The evolutionary and biological implications of this finding are discussed in relation to the cellular functions of the CpG residues and the CpG MTases.
Collapse
Affiliation(s)
- D W Hsu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan 115, Republic of China
| | | | | | | | | | | |
Collapse
|
14
|
Hamdi H, Nishio H, Zielinski R, Dugaiczyk A. Origin and phylogenetic distribution of Alu DNA repeats: irreversible events in the evolution of primates. J Mol Biol 1999; 289:861-71. [PMID: 10369767 DOI: 10.1006/jmbi.1999.2797] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the past 60 million years, or so, approximately one million copies of Alu DNA repeats have accumulated in the genome of primates, in what appears to be an ongoing process. We determined the phylogenetic distribution of specific Alu (and other) DNA repeats in the genome of several primates: human, chimpanzee, gorilla, orangutan, baboon, rhesus, and macaque. At the population level studied, the majority of the repeats was found to be fixed in the primate species. Our data suggest that new Alu elements arise in unique, irreversible events, in a mechanism that seems to preclude precise excision and loss. The same insertions did not arise independently in two species. Once inserted and genetically fixed, the DNA elements are retained in all descendant lineages. The irreversible expansion of Alu s introduces a vector of time into the evolutionary process, and provides realistic (rather than statistical) answers to questions on phylogenies. In contrast to point mutations, the present distribution of individual Alu s is congruent with just one phylogeny. We submit that only irreversible and taxonomically relevant events are at the molecular basis of evolution. Most point mutations do not belong to this category.
Collapse
Affiliation(s)
- H Hamdi
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | | | | | | |
Collapse
|
15
|
Abstract
Mutations, induced by free radicals, provide a rich molecular palette that other evolutionary forces can select for or against. A recent hypothesis proposed that large numbers of free radicals were produced when, millions of years ago, Anthropoidea lost the ability to produce endogenous ascorbate, increasing the frequency of mutations and accelerating the evolution of higher primates. Recognizing that retroviruses have been active throughout the period of primate evolution, we suggest that an endogenous retrovirus or other retroviral-like element may have been involved in mutating the gene coding for gulonolactone oxidase (GLO), the terminal step in ascorbate synthesis, approximately 45 million years ago. This possibility is supported by the presence of Alu elements (a common primate retroelement) adjacent to the site of a missing segment of the nonfunctional GLO gene. Although Homo sapiens and other higher primates produce other endogenous antioxidants, including superoxide dismutase and uric acid, they do not quench the same radicals as ascorbate and cannot fully compensate for a lack of endogenous ascorbate. As a consequence, a retrovirus may have played a pivotal role in primate and H. sapiens evolution, and the absence of endogenous ascorbate may be continuing to accelerate the rate of H. sapiens and primate evolution.
Collapse
Affiliation(s)
- J J Challem
- Computational Center for Molecular Structure and Design, University of Georgia, Athens, USA
| | | |
Collapse
|
16
|
Abstract
Alu sequences are frequently encountered during study of human genomic nucleic acid and form a major component of repetitive DNA. This review describes the origin of Alu sequences and their subsequent amplification and evolution into distinct subfamilies. In recent years a number of different functional roles for Alu sequences have been described. The multiple influences of Alu sequences on RNA polymerase II-mediated gene expression and the presence of Alu sequences in RNA polymerase III-generated transcripts are discussed.
Collapse
Affiliation(s)
- A J Mighell
- Molecular Medicine Unit, The University of Leeds, St. James's University Hospital, UK.
| | | | | |
Collapse
|
17
|
Bailey AD, Shen CC, Shen CK. Molecular origin of the mosaic sequence arrangements of higher primate alpha-globin duplication units. Proc Natl Acad Sci U S A 1997; 94:5177-82. [PMID: 9144211 PMCID: PMC24652 DOI: 10.1073/pnas.94.10.5177] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The human adult alpha-globin locus consists of three pairs of homology blocks (X, Y, and Z) interspersed with three nonhomology blocks (I, II, and III), and three Alu family repeats, Alu1, Alu2, and Alu3. It has been suggested that an ancient primate alpha-globin-containing unit was ancestral to the X, Y, and Z and the Alu1/Alu2 repeats. However, the evolutionary origin of the three nonhomologous blocks has remained obscure. We have now analyzed the sequence organization of the entire adult alpha-globin locus of gibbon (Hylobates lar). DNA segments homologous to human block I occur in both duplication units of the gibbon alpha-globin locus. Detailed interspecies sequence comparisons suggest that nonhomologous blocks I and II, as well as another sequence, IV, were all part of the ancestral alpha-globin-containing unit prior to its tandem duplication. However, sometime thereafter, block I was deleted from the human alpha1-globin-containing unit, and block II was also deleted from the alpha2-globin-containing unit in both human and gibbon. These were probably independent events both mediated by independent illegitimate recombination processes. Interestingly, the end points of these deletions coincide with potential insertion sites of Alu family repeats. These results suggest that the shaping of DNA segments in eukaryotic genomes involved the retroposition of repetitive DNA elements in conjunction with simple DNA recombination processes.
Collapse
Affiliation(s)
- A D Bailey
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
18
|
Abstract
ID sequences are members of a short interspersed element (SINE) repetitive DNA family within the rodent genome. The copy number of individual ID elements varies by up to three orders of magnitude between species. This amplification has been highly sporadic in the order Rodentia and does not follow any phylogenetic trend. Using library screening and dot-blot analysis, we estimate there are 25,000 copies of ID elements in the deer mouse, 1,500 copies in the gerbil (both cricetid rodents), and 60,000 copies of either ID or ID-like elements in a sciurid rodent (squirrel). By dot-blot analysis, we estimate there are 150,000, 4,000, 1,000, and 200 copies of ID elements in the rat, mouse, hamster, and guinea pig, respectively (which is consistent with previous reports) and 200 copies in the hystricognath rodent, nutria. Therefore, a rapid amplification took place not only after the divergence of rat and mouse but also following the deer mouse (Peromyscus) and hamster split, with no evidence of increased amplifications in hystricognath rodents. No notable variations of sequences from the BC1 genes of several myomorphic rodents were observed that would possibly explain the varied levels of ID amplification. We did observe subgenera and species-group-specific variation in the ID core sequence of the BC1 gene within the genus Peromyscus. Sequence analysis of cloned ID elements in Peromyscus show most ID elements in this genus arose prior to Peromyscus subgenus divergence. Correspondence of the consensus sequence of individual ID elements in gerbil and deer mouse further confirms BC1 as a master gene in ID amplification. Several possible mechanisms responsible for the quantitative variations are explored.
Collapse
Affiliation(s)
- D H Kass
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans 70112, USA
| | | | | |
Collapse
|
19
|
Batzer MA, Arcot SS, Phinney JW, Alegria-Hartman M, Kass DH, Milligan SM, Kimpton C, Gill P, Hochmeister M, Ioannou PA, Herrera RJ, Boudreau DA, Scheer WD, Keats BJ, Deininger PL, Stoneking M. Genetic variation of recent Alu insertions in human populations. J Mol Evol 1996; 42:22-9. [PMID: 8576959 DOI: 10.1007/bf00163207] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Alu family of interspersed repeats is comprised of over 500,000 members which may be divided into discrete subfamilies based upon mutations held in common between members. Distinct subfamilies of Alu sequences have amplified within the human genome in recent evolutionary history. Several individual Alu family members have amplified so recently in human evolution that they are variable as to presence and absence at specific loci within different human populations. Here, we report on the distribution of six polymorphic Alu insertions in a survey of 563 individuals from 14 human population groups across several continents. Our results indicate that these polymorphic Alu insertions probably have an African origin and that there is a much smaller amount of genetic variation between European populations than that found between other population groups.
Collapse
Affiliation(s)
- M A Batzer
- Human Genome Center, Lawrence Livermore National Laboratory, CA 94551, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Schmid CW. Alu: structure, origin, evolution, significance and function of one-tenth of human DNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 53:283-319. [PMID: 8650306 DOI: 10.1016/s0079-6603(08)60148-8] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- C W Schmid
- Section of Molecular and Cellular Biology, University of California, Davis 95616, USA
| |
Collapse
|
21
|
Batzer MA, Stoneking M, Alegria-Hartman M, Bazan H, Kass DH, Shaikh TH, Novick GE, Ioannou PA, Scheer WD, Herrera RJ. African origin of human-specific polymorphic Alu insertions. Proc Natl Acad Sci U S A 1994; 91:12288-92. [PMID: 7991620 PMCID: PMC45422 DOI: 10.1073/pnas.91.25.12288] [Citation(s) in RCA: 219] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Alu elements are a family of interspersed repeats that have mobilized throughout primate genomes by retroposition from a few "master" genes. Among the 500,000 Alu elements in the human genome are members of the human-specific subfamily that are not fixed in the human species; that is, not all chromosomes carry an Alu element at a particular locus. Four such polymorphic human-specific Alu insertions were analyzed by a rapid, PCR-based assay that uses primers that flank the insertion point to determine genotypes based on the presence or absence of the Alu element. These four polymorphic Alu insertions were shown to be absent from the genomes of a number of nonhuman primates, consistent with their arising as human genetic polymorphisms sometime after the human/African ape divergence. Analysis of 664 unrelated individuals from 16 population groups from around the world revealed substantial levels of variation within population groups and significant genetic differentiation among groups. No significant associations were found among the four loci, consistent with their location on different chromosomes. A maximum-likelihood tree of population relationships showed four major groupings consisting of Africa, Europe, Asia/Americas, and Australia/New Guinea, which is concordant with similar trees based on other loci. A particularly useful feature of the polymorphic Alu insertions is that the ancestral state is known to be the absence of the Alu element, and the presence of the Alu element at a particular chromosomal site reflects a single, unique event in human evolution. A hypothetical ancestral group can then be included in the tree analysis, with the frequency of each insertion set to zero. The ancestral group connected to the maximum-likelihood tree within the African branch, which suggests an African origin of these polymorphic Alu insertions. These data are concordant with other diverse data sets, which lends further support to the recent African origin hypothesis for modern humans. Polymorphic Alu insertions represent a source of genetic variation for studying human population structure and evolution.
Collapse
Affiliation(s)
- M A Batzer
- Human Genome Center, Lawrence Livermore National Laboratory, CA 94551
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Schäble K, Thiebe R, Flügel A, Meindl A, Zachau HG. The human immunoglobulin kappa locus: pseudogenes, unique and repetitive sequences. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1994; 375:189-99. [PMID: 8011175 DOI: 10.1515/bchm3.1994.375.3.189] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The human kappa locus contains 25 pseudogenes. After seven of them were described earlier the structures of the remaining 18 are reported now, thus completing the description of all human V kappa genes and pseudogenes. Most of the pseudogenes carry several defects each. Alignments of the pseudogene sequences and comparison with the consensus sequences of the potentially functional V kappa genes indicate that, on PCR amplification of genomic DNA aimed at certain genes of the latter class, also some of the pseudogenes would be coamplified. Unique sequences, which qualify as sequence tagged sites (STS), were defined across the locus. The occurrence of 15 repetitive elements of the LINE1 type in the locus is described. The 15 sequenced Alu elements were assigned to the known Alu subfamilies of different evolutionary age. One of the Alu elements was found only in one of the copies of the kappa locus. It must, therefore, have been inserted after the duplication step which may have taken place about one million years ago. This element belongs to an Alu subfamily known to have been mobile until recently. Some aspects of the evolution of the V kappa pseudogenes and orphons (i.e. V kappa genes located outside the kappa locus) are also discussed.
Collapse
Affiliation(s)
- K Schäble
- Institut für Physiologische Chemie der Universität, München, Germany
| | | | | | | | | |
Collapse
|
23
|
Abstract
Reverse transcriptase catalyses the conversion of RNA into DNA. This operation seems to have largely contributed to the evolution of complex genomes. More than 10% of a mammalian genome is composed of sequences with reverse transcribed origin, most of which consists of repeated sequences (SINEs, LINEs). In spite of their simplicity, these sequences can play a key role in evolution by favoring illegitimate recombination. In addition to this abundant material, retrotransposed sequences include retrotransposons, retroviruses and genes depleted from intervening sequences, known as pseudogenes. Some of these sequences can be functional or involved in the regulation of neighbouring genes. These hallmarks of reverse transcription activity indicate that it has largely contributed to the fluidity of modern genomes.
Collapse
Affiliation(s)
- P Nouvel
- Unité de Génétique des Mammifères, Institut Pasteur, Paris, France
| |
Collapse
|
24
|
Kass DH, Aleman C, Batzer MA, Deininger PL. Identification of a human specific Alu insertion in the factor XIIIB gene. Genetica 1994; 94:1-8. [PMID: 7729692 DOI: 10.1007/bf01429214] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The factor XIIIB gene was examined to determine the nature of a previously described 300 bp restriction fragment length polymorphism (RFLP) seen in the human population. Polymerase chain reaction analysis of different regions within the factor XIIIB gene was carried out to define a high resolution map of the region encompassing the polymorphism, followed by DNA sequence analysis. An Alu insertion was found to be the source of this variation. This Alu repeat is a member of the human specific-1 (HS-1) subfamily, although one of the five diagnostic nucleotides is a cattarhine specific (CS) subfamily mutation, suggesting that it may represent an intermediate form in the evolution between these two subfamilies. Subsequently, we developed a PCR-based assay to detect the polymorphism, rendering it a more useful marker for genetic linkage studies and genome mapping. This insertion is also a valuable polymorphism for human population studies, as demonstrated by the large variations in allele frequencies seen in three population groups.
Collapse
Affiliation(s)
- D H Kass
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans 70112
| | | | | | | |
Collapse
|
25
|
Boccaccio C, Deschatrette J, Meunier-Rotival M. The human episome HALF1: structure of its genomic counterpart. Genetica 1994; 93:217-24. [PMID: 7813915 DOI: 10.1007/bf01435253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A human episomal sequence (HALF1) has been identified by its ability to restore expression of hepatic functions when used to transfect a rat dedifferentiated cell line. The genomic equivalent of this human episome (gHALF1) and its flanking sequences were analyzed. HALF1 itself does not present the characteristics of a transposable element but half of its sequence corresponds to retroposons, including Alu and L1 repeats and a processed pseudogene, known to transpose via RNA intermediates. The structural characteristics of these different kinds of retroposons and their origin and evolution were analyzed.
Collapse
Affiliation(s)
- C Boccaccio
- Unité INSERM 347 affiliée au CNRS, 80, Le Kremlin-Bicêtre, France
| | | | | |
Collapse
|