1
|
Sugimoto T, Miyagawa K, Shoji M, Katayama K, Shigeta Y, Kandori H. Calcium Binding Mechanism in TAT Rhodopsin. J Phys Chem B 2024; 128:7102-7111. [PMID: 39012779 DOI: 10.1021/acs.jpcb.4c02363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
TAT rhodopsin binds Ca2+ near the Schiff base region, which accompanies deprotonation of the Schiff base. This paper reports the Ca2+-free and Ca2+-bound structures of TAT rhodopsin by molecular dynamics (MD) simulation launched from AlphaFold structures. In the Ca2+-bound TAT rhodopsin, Ca2+ is directly coordinated by eight oxygen atoms, four oxygens of the side chains of E54 and D227, and four oxygens of water molecules. E54 is not involved in the hydrogen-bonding network of the Ca2+-free TAT rhodopsin, while flipping motion of E54 allows Ca2+ binding to TAT rhodopsin with deformation of helices observed by FTIR spectroscopy. The hydrogen-bonding network plays a crucial role in maintaining the Ca2+ binding, as mutations of E54, Y55, R79, Y200, E220, and D227 abolished the binding. Only T82V exhibited the Ca2+ binding like the wild type among the mutants in this study. The molecular mechanism of Ca2+ binding is discussed based on the present computational and experimental analysis.
Collapse
Affiliation(s)
- Teppei Sugimoto
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Koichi Miyagawa
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Mitsuo Shoji
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Abstract
Rhodopsin is a large family of retinal-binding photoreceptive proteins found in animals and microbes. The retinal chromophore is normally positively charged by protonation of the Schiff base linkage, which is stabilized by the negatively charged counterion(s) such as aspartates, glutamates, and chloride ions. In contrast, no cation binding was reported near the retinal chromophore under physiological pH, presumably because of the electrostatic repulsion. Sodium binding takes place in light-driven sodium pumps, but the binding near the retinal chromophore is a transient event. Here, we report Ca2+ binding to a wild-type microbial rhodopsin, which is achieved for the neutral retinal chromophore with a deprotonated Schiff base. TAT rhodopsin from marine bacteria contains protonated and deprotonated retinal Schiff bases at physiological pH (pH ∼ 8), which absorb visible and UV light, respectively. We observed that the equilibrium shifted toward the deprotonated state upon increasing Ca2+ concentration, and the Kd value was determined to be 0.17 mM. Site-directed mutagenesis study showed that E54 and D227 constitute the binding site of Ca2+. ATR-FTIR spectroscopy revealed secondary structural changes upon Ca2+ binding to E54 and D227, while they are negatively charged with or without Ca2+ binding.
Collapse
Affiliation(s)
- Teppei Sugimoto
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
3
|
Affiliation(s)
- Sansa Dutta
- Department
of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lev Weiner
- Department
of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mordechai Sheves
- Department
of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
4
|
El-Sayed MA, Yang D, Yoo SK, Zhang N. The Effect of Different Metal Cation Binding on the Proton Pumping in Bacteriorhodopsin. Isr J Chem 2013. [DOI: 10.1002/ijch.199500043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Perálvarez-Marín A, Sepulcre F, Márquez M, Proietti MG, Padrós E. Combination of extended X-ray absorption fine structure spectroscopy with lipidic cubic phases for the study of cation binding in bacteriorhodopsin. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:1007-12. [PMID: 21667310 DOI: 10.1007/s00249-011-0714-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 05/10/2011] [Accepted: 05/18/2011] [Indexed: 10/18/2022]
Abstract
We have performed a quantitative X-ray absorption fine structure analysis of bacteriorhodopsin in purple membrane patches and in lipidic cubic phases regenerated with Mn(2+). Lipidic cubic phases and purple membrane results have been compared, demonstrating that the lipidic cubic phase process does not introduce relevant distortions in the local geometry of the cation binding sites. For both samples, we have observed similarities for Mn(2+) coordination in terms of type, number, and average distances of surrounding atoms, indicating a first coordination shell composed by 6 O atoms, and 3/4 C atoms located in the second coordination shell.
Collapse
Affiliation(s)
- Alex Perálvarez-Marín
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular and Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | | | | | | | | |
Collapse
|
6
|
Wang J, El-Sayed MA. Rapid Thermal Tuning of Chromophore Structure in Membrane Protein. J Phys Chem B 2009; 113:4184-6. [DOI: 10.1021/jp901560m] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jianping Wang
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China, and Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
| | - Mostafa A. El-Sayed
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China, and Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
| |
Collapse
|
7
|
Wassenaar TA, Daura X, Padrós E, Mark AE. Calcium binding to the purple membrane: A molecular dynamics study. Proteins 2009; 74:669-81. [PMID: 18704943 DOI: 10.1002/prot.22182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The purple membrane (PM) is a specialized membrane patch found in halophilic archaea, containing the photoreceptor bacteriorhodopsin (bR). It is long known that calcium ions bind to the PM, but their position and role remain elusive to date. Molecular dynamics simulations in conjunction with a highly detailed model of the PM have been used to investigate the stability of calcium ions placed at three proposed cation binding sites within bR, one near the Schiff base, one in the region of the proton release group, and one near Glu9. The simulations suggest that, of the sites investigated, the binding of calcium ions was most likely at the proton release group. Binding in the region of the Schiff base, while possible, was associated with significant changes in local geometry. Calcium ions placed near Glu9 in the interior of bR (simultaneously to a Ca(2+) near the Schiff base and another one near the Glu194-Glu204 site) were not stable. The results obtained are discussed in relation to recent experimental observations and theoretical considerations.
Collapse
Affiliation(s)
- Tsjerk A Wassenaar
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG Groningen, The Netherlands
| | | | | | | |
Collapse
|
8
|
Neebe M, Rhinow D, Schromczyk N, Hampp NA. Thermochromism of Bacteriorhodopsin and Its pH Dependence. J Phys Chem B 2008; 112:6946-51. [DOI: 10.1021/jp7111389] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Martin Neebe
- Department of Chemistry, University of Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany, and Material Sciences Center, D-35032 Marburg, Germany
| | - Daniel Rhinow
- Department of Chemistry, University of Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany, and Material Sciences Center, D-35032 Marburg, Germany
| | - Nina Schromczyk
- Department of Chemistry, University of Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany, and Material Sciences Center, D-35032 Marburg, Germany
| | - Norbert A. Hampp
- Department of Chemistry, University of Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany, and Material Sciences Center, D-35032 Marburg, Germany
| |
Collapse
|
9
|
Rhinow D, Hampp NA. Sugar-induced blue membrane: release of divalent cations during phase transition of purple membranes observed in sugar-derived glasses. J Phys Chem B 2008; 112:4613-9. [PMID: 18358028 DOI: 10.1021/jp710694s] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The formation of blue membrane from purple membranes (PM) has been observed in glassy films made from PM and various sugars. The phase transition of PM at about 70 degrees C causes the complexation of divalent cations to be weakened. The vicinal diol structures in sugars are capable to complex divalent cations and delocalize them throughout the matrix as long as its glass transition temperature is lower than the phase transition temperature of PM. The loss of divalent cations from bacteriorhodopsin (BR), the only protein in PM, causes the formation of blue membrane (BM), which is accompanied by a loss of beta-sheet structure observable in the infrared spectrum. Glassy sugars are particular useful to observe this transition, as sugar entrapment does not restrict conformational changes of BR but rather retards them. The material obtained was named sugar-induced blue membrane (SIBM). The formation of SIBM is inhibited by the addition of divalent cations. Furthermore, SIBM is reverted immediately to PM by addition of water. A characteristic time dependence of the thermal reversion of SIBM to PM proves that the phase transition of PM triggers the release and uptake of divalent cations and the corresponding color change.
Collapse
Affiliation(s)
- Daniel Rhinow
- Department of Chemistry, and Material Sciences Center, University of Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
| | | |
Collapse
|
10
|
Wang J, El-Sayed MA. The Effect of Metal Cation Binding on the Protein, Lipid and Retinal Isomeric Ratio in Regenerated Bacteriorhodopsin of Purple Membrane¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0730564teomcb2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Okumura H, Murakami M, Kouyama T. Crystal structures of acid blue and alkaline purple forms of bacteriorhodopsin. J Mol Biol 2005; 351:481-95. [PMID: 16023672 DOI: 10.1016/j.jmb.2005.06.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 06/05/2005] [Accepted: 06/08/2005] [Indexed: 11/22/2022]
Abstract
Bacteriorhodopsin, a light-driven proton pump found in the purple membrane of Halobacterium salinarum, exhibits purple at neutral pH but its color is sensitive to pH. Here, structures are reported for an acid blue form and an alkaline purple form of wild-type bacteriorhodopsin. When the P622 crystal prepared at pH 5.2 was acidified with sulfuric acid, its color turned to blue with a pKa of 3.5 and a Hill coefficient of 2. Diffraction data at pH 2-5 indicated that the purple-to-blue transition accompanies a large structural change in the proton release channel; i.e. the extracellular half of helix C moves towards helix G, narrowing the proton release channel and expelling a water molecule from a micro-cavity in the vicinity of the retinal Schiff base. In this respect, the acid-induced structural change resembles the structural change observed upon formation of the M intermediate. But, the acid blue form contains a sulfate ion in a site(s) near Arg82 that is created by re-orientations of the carboxyl groups of Glu194 and Glu204, residues comprising the proton release complex. This result suggests that proton uptake by the proton release complex evokes the anion binding, which in turn induces protonation of Asp85, a key residue regulating the absorption spectrum of the chromophore. Interestingly, a pronounced structural change in the proton release complex was also observed at high pH; i.e. re-orientation of Glu194 towards Tyr83 was found to take place at around pH 10. This alkaline transition is suggested to be accompanied by proton release from the proton release complex and responsible for rapid formation of the M intermediate at high pH.
Collapse
Affiliation(s)
- Hideo Okumura
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | | | | |
Collapse
|
12
|
Affiliation(s)
- Colin D. Heyes
- Laser Dynamics Laboratory, School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
| | - Mostafa A. El-Sayed
- Laser Dynamics Laboratory, School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
| |
Collapse
|
13
|
Saga Y, Ishikawa T, Watanabe T. Effect of metal ion exchange on the photocurrent response from bacteriorhodopsin on tin oxide electrodes. Bioelectrochemistry 2002; 57:17-22. [PMID: 12049752 DOI: 10.1016/s1567-5394(01)00173-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The transient photocurrent response from bacteriorhodopsin (bR) on tin oxide electrodes was strongly influenced by metal ions bound to bR molecules. The photocurrent polarity reversal pH, which corresponded to the pH value for the reversal of the proton release/uptake sequence in the bR photocycle, of cation-substituted purple membrane (PM) was shifted to lower pH with the increase in the cation affinities to carboxyl groups and a close correlation was noted between the two values. This suggests that the metal ion present in the extracellular region of a bR molecule modulates the pK(a) of proton release groups of bR by stabilizing the ionized state of the proton-releasing glutamic acids. The behavior of photocurrents at light-off in alkaline media, reflecting the proton uptake by bR, was unchanged by binding monovalent (Na(+) and K(+)) or divalent cations (Mg(2+) and Ca(2+)), but was drastically changed by binding La(3+) ions. This can be explained by invoking a substantial slowing of the proton uptake process in the presence of La(3+).
Collapse
Affiliation(s)
- Yoshitaka Saga
- Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | | | | |
Collapse
|
14
|
Heyes CD, Wang J, Sanii LS, El-Sayed MA. Fourier transform infrared study of the effect of different cations on bacteriorhodopsin protein thermal stability. Biophys J 2002; 82:1598-606. [PMID: 11867472 PMCID: PMC1301958 DOI: 10.1016/s0006-3495(02)75511-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The effect of divalent ion binding to deionized bacteriorhodopsin (dI-bR) on the thermal transitions of the protein secondary structure have been studied by using temperature-dependent Fourier transform infrared (FT-IR) spectroscopy. The native metal ions in bR, Ca(2+), and Mg(2+), which we studied previously, are compared with Mn(2+), Hg(2+), and a large, synthesized divalent organic cation, ((Et)(3)N)(2)Bu(2+). It was found that in all cases of ion regeneration, there is a pre-melting, reversible conformational transition in which the amide frequency shifts from 1665 to 1652 cm(-1). This always occurs at approximately 80 degrees C, independent of which cation is used for the regeneration. The irreversible thermal transition (melting), monitored by the appearance of the band at 1623 cm(-1), is found to occur at a lower temperature than that for the native bR but higher than that for acid blue bR in all cases. However, the temperature for this transition is dependent on the identity of the cation. Furthermore, it is shown that the mechanism of melting of the organic cation regenerated bR is different than for the metal cations, suggesting a difference in the type of binding to the protein (either to different sites or different binding to the same site). These results are used to propose specific direct binding mechanisms of the ions to the protein of deionized bR.
Collapse
Affiliation(s)
- Colin D Heyes
- Laser Dynamics Lab, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | |
Collapse
|
15
|
Shibata A, Yorimitsu A, Ikema H, Minami K, Ueno S, Muneyuki E, Higuti T. Photocurrent of purple membrane adsorbed onto a thin polymer film: action characteristics of the local anesthetics. Colloids Surf B Biointerfaces 2002. [DOI: 10.1016/s0927-7765(01)00272-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Abstract
The Asp-85 residue, located in the vicinity of the retinal chromophore, plays a key role in the function of bacteriorhodopsin (bR) as a light-driven proton pump. In the unphotolyzed pigment the protonation of Asp-85 is responsible for the transition from the purple form (lambda(max) = 570 nm) to the blue form (lambda(max) = 605 nm) of bR. This transition can also be induced by deionization (cation removal). It was previously proposed that the cations bind to the bR surface and raise the surface pH, or bind to a specific site in the protein, probably in the retinal vicinity. We have reexamined these possibilities by evaluating the interaction between Mn(2+) and a nitroxyl radical probe covalently bound to several mutants in which protein residues were substituted by cystein. We have found that Mn(2+), which binds to the highest-affinity binding site, significantly affects the EPR spectrum of a spin label attached to residue 74C. Therefore, it is concluded that the highest-affinity binding site is located in the extracellular side of the protein and its distance from the spin label at 74C is estimated to be approximately 9.8 +/- 0.7 A. At least part of the three to four low-affinity cation binding sites are located in the cytoplasmic side, because Mn(2+) bound to these binding sites affects spin labels attached to residues 103C and 163C located in the cytoplasmic side of the protein. The results indicate specific binding sites for the color-controlling cations, and suggest that the binding sites involve negatively charged lipids located on the exterior of the bR trimer structure.
Collapse
Affiliation(s)
- T Eliash
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
17
|
Wang J, El-Sayed MA. Time-resolved Fourier transform infrared spectroscopy of the polarizable proton continua and the proton pump mechanism of bacteriorhodopsin. Biophys J 2001; 80:961-71. [PMID: 11159463 PMCID: PMC1301294 DOI: 10.1016/s0006-3495(01)76075-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Nanosecond-to-microsecond time-resolved Fourier transform infrared (FTIR) spectroscopy in the 3000-1000-cm(-1) region has been used to examine the polarizable proton continua observed in bacteriorhodopsin (bR) during its photocycle. The difference in the transient FTIR spectra in the time domain between 20 ns and 1 ms shows a broad absorption continuum band in the 2100-1800-cm(-1) region, a bleach continuum band in the 2500-2150-cm(-1) region, and a bleach continuum band above 2700 cm(-1). According to Zundel (G., J. Mol. Struct. 322:33-42), these continua appear in systems capable of forming polarizable hydrogen bonds. The formation of a bleach continuum suggests the presence of a polarizable proton in the ground state that changes during the photocycle. The appearance of a transient absorption continuum suggests a change in the polarizable proton or the appearance of new ones. It is found that each continuum has a rise time of less than 80 ns and a decay time component of approximately 300 micros. In addition, it is found that the absorption continuum in the 2100-1800-cm(-1) region has a slow rise component of 190 ns and a fast decay component of approximately 60 micros. Using these results and those of the recent x-ray structural studies of bR(570) and M(412) (H. Luecke, B. Schobert, H.T. Richter, J.-P. Cartailler, and J. K., Science 286:255-260), together with the already known spectroscopic properties of the different intermediates in the photocycle, the possible origins of the polarizable protons giving rise to these continua during the bR photocycle are proposed. Models of the proton pump are discussed in terms of the changes in these polarizable protons and the hydrogen-bonded chains and in terms of previously known results such as the simultaneous deprotonation of the protonated Schiff base (PSB) and Tyr185 and the disappearance of water molecules in the proton release channel during the proton pump process.
Collapse
Affiliation(s)
- J Wang
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | |
Collapse
|
18
|
Houjou H, Inoue Y, Sakurai M. Study of the Opsin Shift of Bacteriorhodopsin: Insight from QM/MM Calculations with Electronic Polarization Effects of the Protein Environment. J Phys Chem B 2001. [DOI: 10.1021/jp0032863] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hirohiko Houjou
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Yoshio Inoue
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Minoru Sakurai
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
19
|
Wang J, el-Sayed MA. The Effect of Metal Cation Binding on the Protein, Lipid and Retinal Isomeric Ratio in Regenerated Bacteriorhodopsin of Purple Membrane¶. Photochem Photobiol 2001; 73:564-71. [PMID: 11367581 DOI: 10.1562/0031-8655(2001)073<0564:teomcb>2.0.co;2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effect of metal cation binding on bacteriorhodopsin (bR) in purple membrane has been examined using in situ attenuated total reflection-Fourier transform infrared difference spectroscopy in aqueous media. It is known that adding metal cations to deionized bR regenerates the purple state from its blue state and recovers the proton pump function. During this process, infrared spectral changes in the frequency region of 1800-1000 cm-1 are monitored. The results reveal that metal cation binding affects the protein conformation, the retinal isomeric composition as well as lipid head groups. It is also observed that metal cation binding induces conformational changes in the alpha 1-helix region of bR, converting the portion of its alpha 1-helical domain into beta-turn or disordered coil. In addition, the influence of Ho3+ binding on the protein and lipid is observed to be larger than that of Ca2+. These results suggest that some of the metal cation binding sites are on the membrane lipid domain, while others could be on the intrahelical domain or interhelical loops where the Asp and Glu are located (binding with their COO- groups). Our results also suggest that the removal of the C-terminal of bR increase the accessibility of the binding site of metal cations, which affects protein conformational structure. All these observations are discussed in terms of the two proposals given in the literature regarding the metal cation binding sites.
Collapse
Affiliation(s)
- J Wang
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | | |
Collapse
|
20
|
Abstract
Adding Ca2+ or other cations to deionized bacteriorhodopsin causes a blue to purple color shift, a result of deprotonation of Asp85. It has been proposed by different groups that the protonation state of Asp85 responds to the binding of Ca2+ either 1) directly at a specific site in the protein or 2) indirectly through the rise of the surface pH. We tested the idea of specific binding of Ca2+ and found that the surface pH, as determined from the ionization state of eosin covalently linked to engineered cysteine residues, rises about equally at both extracellular and cytoplasmic surfaces when only one Ca2+ is added. This precludes binding to a specific site and suggests that rather than decreasing the pKa of Asp85 by direct interaction, Ca2+ increases the surface pH by binding to anionic lipid groups. As Ca2+ is added the surface pH rises, but deprotonation of Asp85 occurs only when the surface pH approaches its pKa. The nonlinear relationship between Ca2+ binding and deprotonation of Asp85 from this effect is different in the wild-type protein and in various mutants and explains the observed complex and varied spectral titration curves.
Collapse
Affiliation(s)
- G Váró
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
21
|
Kusnetzow A, Singh DL, Martin CH, Barani IJ, Birge RR. Nature of the chromophore binding site of bacteriorhodopsin: the potential role of Arg82 as a principal counterion. Biophys J 1999; 76:2370-89. [PMID: 10233056 PMCID: PMC1300211 DOI: 10.1016/s0006-3495(99)77394-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The nature of the chromophore binding site of light-adapted bacteriorhodopsin is analyzed by using modified neglect of differential overlap with partial single and double configuration interaction (MNDO-PSDCI) molecular orbital theory to interpret previously reported linear and nonlinear optical spectroscopic measurements. We conclude that in the absence of divalent metal cations in close interaction with Asp85 and Asp212, a positively charged amino acid must be present in the same vicinity. We find that models in which Arg82 is pointed upward into the chromophore binding site and directly stabilizes Asp85 and Asp212 are successful in rationalizing the observed one-photon and two-photon properties. We conclude further that a water molecule is strongly hydrogen bonded to the chromophore imine proton. The chromophore "1Bu*+" and "1Ag*-" states, despite extensive mixing, exhibit significantly different configurational character. The lowest-lying "1Bu*+" state is dominated by single excitations, whereas the second-excited "1Ag*-" state is dominated by double excitations. We can rule out the possibility of a negatively charged binding site, because such a site would produce a lowest-lying "1Ag*-" state, which is contrary to experimental observation. The possibility that Arg82 migrates toward the extracellular surface during the photocycle is examined.
Collapse
Affiliation(s)
- A Kusnetzow
- Department of Chemistry and W. M. Keck Center for Molecular Electronics, Syracuse University, Syracuse, New York 13244, USA
| | | | | | | | | |
Collapse
|
22
|
Eliash T, Ottolenghi M, Sheves M. The titrations of Asp-85 and of the cation binding residues in bacteriorhodopsin are not coupled. FEBS Lett 1999; 447:307-10. [PMID: 10214967 DOI: 10.1016/s0014-5793(99)00289-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An outstanding problem relating to the structure and function of bacteriorhodopsin (bR), which is the only protein in the purple membrane of the photosynthetic microorganism Halobacterium salinarium, is the relation between the titration of Asp-85 and the binding/unbinding of metal cations. An extensively accepted working hypothesis has been that the two titrations are coupled, namely, protonation of Asp-85 (located in the vicinity of the retinal chromophore) and cation unbinding occur concurrently. We have carried out a series of experiments in which the purple blue equilibrium and the binding of Mn2+ ions (monitored by electron spin resonance) were followed as a function of pH for several (1-4) R = [Mn2+]/[bR] molar ratios. Data were obtained for native bR, bR mutants, artificial bR and chemically modified bR. We find that in the native pigment the two titrations are separated by more than a pKa unit [delta pKa = pKa(P/B)-pKa(Mn2+) = (4.2-2.8) = 1.4]. In the non-native systems, delta pKa values as high as 5 units, as well as negative delta pKas, are observed. We conclude that the pH titration of cation binding residues in bR is not directly related to the titration of Asp-85. This conclusion is relevant to the nature of the high affinity cation sites in bR and to their role in the photosynthetic function of the pigment.
Collapse
Affiliation(s)
- T Eliash
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
23
|
Tuzi S, Yamaguchi S, Tanio M, Konishi H, Inoue S, Naito A, Needleman R, Lanyi JK, Saitô H. Location of a cation-binding site in the loop between helices F and G of bacteriorhodopsin as studied by 13C NMR. Biophys J 1999; 76:1523-31. [PMID: 10049332 PMCID: PMC1300128 DOI: 10.1016/s0006-3495(99)77311-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The high-affinity cation-binding sites of bacteriorhodopsin (bR) were examined by solid-state 13C NMR of samples labeled with [3-13C]Ala and [1-13C]Val. We found that the 13C NMR spectra of two kinds of blue membranes, deionized (pH 4) and acid blue at pH 1.2, were very similar and different from that of the native purple membrane. This suggested that when the surface pH is lowered, either by removal of cations or by lowering the bulk pH, substantial change is induced in the secondary structure of the protein. Partial replacement of the bound cations with Na+, Ca2+, or Mn2+ produced additional spectral changes in the 13C NMR spectra. The following conclusions were made. First, there are high-affinity cation-binding sites in both the extracellular and the cytoplasmic regions, presumably near the surface, and one of the preferred cation-binding sites is located at the loop between the helix F and G (F-G loop) near Ala196, consistent with the 3D structure of bR from x-ray diffraction and cryoelectron microscopy. Second, the bound cations undergo rather rapid exchange (with a lifetime shorter than 3 ms) among various types of cation-binding sites. As expected from the location of one of the binding sites, cation binding induced conformational alteration of the F-G interhelical loop.
Collapse
Affiliation(s)
- S Tuzi
- Department of Life Science, Himeji Institute of Technology, Harima Science Garden City, Kamigori, Hyogo, Japan 678-1297, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tuparev N, Taneva S, Lazarova T, Padros E, Tóth-Boconádi R, Petkanchin I. Effect of single-site mutation at Asp38 of bacteriorhodopsin on the electric dipole moments of purple membranes. Colloids Surf A Physicochem Eng Asp 1999. [DOI: 10.1016/s0927-7757(98)00596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Tallent JR, Stuart JA, Song QW, Schmidt EJ, Martin CH, Birge RR. Photochemistry in dried polymer films incorporating the deionized blue membrane form of bacteriorhodopsin. Biophys J 1998; 75:1619-34. [PMID: 9746505 PMCID: PMC1299835 DOI: 10.1016/s0006-3495(98)77605-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The preparation and photochemical properties of dried deionized blue membrane (dIbR600; lambdamax approximately 600 nm, epsilon approximately 54, 760 cm-1 M-1, f approximately 1.1) in polyvinyl alcohol films are studied. Reversible photoconversion from dIbR600 to the pink membrane (dIbR485; lambdamax approximately 485 nm) is shown to occur in these films under conditions of strong 647-nm laser irradiation. The pink membrane analog, dIbR485, has a molar extinction coefficient of approximately 39,000 cm-1 M-1 (f approximately 1.2). The ratio of pink --> blue and blue --> pink quantum efficiencies is 33 +/- 5. We observe an additional blue-shifted species (dIbR455, lambdamax approximately 455 nm) with a very low oscillator strength (f approximately 0.6, epsilon approximately 26,000 cm-1 M-1). This species is the product of fast thermal decay of dIbR485. Molecular modeling indicates that charge/charge and charge/dipole interactions introduced by the protonation of ASP85 are responsible for lowering the excited-state all-trans --> 9-cis barrier to approximately 6 kcal mol-1 while increasing the corresponding all-trans --> 13-cis barrier to approximately 4 kcal mol-1. Photochemical formation of both 9-cis and 13-cis photoproducts are now competitive, as is observed experimentally. We suggest that dIbR455 may be a 9-cis, 10-s-distorted species that partially divides the chromophore into two localized conjugated segments with a concomitant blue shift and decreased oscillator strength of the lambdamax absorption band.
Collapse
Affiliation(s)
- J R Tallent
- Department of Chemistry and W. M. Keck Center for Molecular Electronics, Syracuse University, Syracuse, New York 13244-4100 USA
| | | | | | | | | | | |
Collapse
|
26
|
Pardo L, Sepulcre F, Cladera J, Duñach M, Labarta A, Tejada J, Padrós E. Experimental and theoretical characterization of the high-affinity cation-binding site of the purple membrane. Biophys J 1998; 75:777-84. [PMID: 9675179 PMCID: PMC1299752 DOI: 10.1016/s0006-3495(98)77567-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Binding of Mn2+ or Mg2+ to the high-affinity site of the purple membrane from Halobacterium salinarium has been studied by superconducting quantum interference device magnetometry or by ab initio quantum mechanical calculations, respectively. The binding of Mn2+ cation, in a low-spin state, to the high-affinity site occurs through a major octahedral local symmetry character with a minor rhombic distortion and a coordination number of six. A molecular model of this binding site in the Schiff base vicinity is proposed. In this model, a Mg2+ cation interacts with one oxygen atom of the side chain of Asp85, with both oxygen atoms of Asp212 and with three water molecules. One of these water molecules is hydrogen bonded to both the nitrogen of the protonated Schiff base and the Asp85 oxygen. It could serve as a shuttle for the Schiff base proton to move to Asp85 in the L-M transition.
Collapse
Affiliation(s)
- L Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
Petrak MR, Hong FT. Component analysis of the fast photoelectric signal from model bacteriorhodopsin membranes. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0302-4598(97)00068-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Zhang K, Song L, Dong J, El-Sayed MA. Studies of cation binding in ZnCl2-regenerated bacteriorhodopsin by x-ray absorption fine structures: effects of removing water molecules and adding Cl- ions. Biophys J 1997; 73:2097-105. [PMID: 9336205 PMCID: PMC1181110 DOI: 10.1016/s0006-3495(97)78240-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The binding of Zn2+ in Zn2+-regenerated bacteriorhodopsin (bR) was studied under various conditions by x-ray absorption fine structures (XAFS). The 0.9:1 and 2:1 Zn2+:bR samples gave similar XAFS spectra, suggesting that Zn2+ might have only one strong binding site in bR. It was found that in aqueous bR solution, Zn2+ has an average of six oxygen or nitrogen ligands. Upon drying, two ligands are lost, suggesting the existence of two weakly bound water ligands near the cation-binding site in bacteriorhodopsin. When excess Cl- ions were present before drying in the Zn2+-regenerated bR samples, it was found that two of the ligands were replaced by Cl- ions in the dried film, whereas two remain unchanged. The above observations suggest that Zn2+ has three types of ligands in regenerated bR (referred to as types I, II, and III). Type I ligands are strongly bound. These ligands cannot be removed by drying or by exchanging with Cl- ions. Type II ligands cannot be removed by drying, but can be replaced by Cl- ligands. Type III ligands are weakly bound to the metal cation and are most likely water molecules that can be removed by evaporation under vacuum or by drying with anhydrous CaSO4. The results are discussed in terms of the possible structure of the strongly binding site of Zn2+ in bR.
Collapse
Affiliation(s)
- K Zhang
- Biostructures Institute, Philadelphia, Pennsylvania 19104-3358, USA
| | | | | | | |
Collapse
|
29
|
Roselli C, Boussac A, Mattioli TA, Griffiths JA, el-Sayed MA. Detection of a Yb3+ binding site in regenerated bacteriorhodopsin that is coordinated with the protein and phospholipid head groups. Proc Natl Acad Sci U S A 1996; 93:14333-7. [PMID: 8962051 PMCID: PMC26132 DOI: 10.1073/pnas.93.25.14333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Near infrared Yb3+ vibronic sideband spectroscopy was used to characterize specific lanthanide binding sites in bacteriorhodopsin (bR) and retinal free bacteriorhodopsin (bO). The VSB spectra for deionized bO regenerated with a ratio of 1:1 and 2:1 ion to bO are identical. Application of a two-dimensional anti-correlation technique suggests that only a single Yb3+ site is observed. The Yb3+ binding site in bO is observed to consist of PO2- groups and carboxylic acid groups, both of which are bound in a bidentate manner. An additional contribution most likely arising from a phenolic group is also observed. This implies that the ligands for the observed single binding site are the lipid head groups and amino acid residues. The vibronic sidebands of Yb3+ in deionized bR regenerated at a ratio of 2:1 ion to bR are essentially identical to those in bO. The other high-affinity binding site is thus either not evident or its fluorescence is quenched. A discussion is given on the difference in binding of Ca2+ (or Mg2+) and lanthanides in phospholipid membrane proteins.
Collapse
Affiliation(s)
- C Roselli
- Section de Bioénergetique, Commissariat á l'Energie Atomique Saclay, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
30
|
Griffiths JA, Masciangioli TM, Roselli C, El-Sayed MA. Monodentate vs Bidentate Binding of Lanthanide Cations to PO2- in Bacteriorhodopsin. ACTA ACUST UNITED AC 1996. [DOI: 10.1021/jp9533279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jennifer A. Griffiths
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, and Section de Bioenergetique, DBCM, URA CNRS, CEA Saclay, Gif-Sur-Yvette Cedex, France
| | - Tina M. Masciangioli
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, and Section de Bioenergetique, DBCM, URA CNRS, CEA Saclay, Gif-Sur-Yvette Cedex, France
| | - Cecile Roselli
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, and Section de Bioenergetique, DBCM, URA CNRS, CEA Saclay, Gif-Sur-Yvette Cedex, France
| | - M. A. El-Sayed
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, and Section de Bioenergetique, DBCM, URA CNRS, CEA Saclay, Gif-Sur-Yvette Cedex, France
| |
Collapse
|
31
|
Calcium and Magnesium Binding in Native and Structurally Perturbed Purple Membrane. ACTA ACUST UNITED AC 1996. [DOI: 10.1021/jp952951i] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Yang D, el-Sayed MA. The Ca2+ binding to deionized monomerized and to retinal removed bacteriorhodopsin. Biophys J 1995; 69:2056-9. [PMID: 8580348 PMCID: PMC1236438 DOI: 10.1016/s0006-3495(95)80075-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In our continuing effort to characterize the metal cation binding in bacteriorhodopsin (bR) using Ca(2+)-specific electrodes, potentiometric titration was carried out on deionized solubilized bR (containing monomeric units) and deionized bacterioopsin (bR with its retinal removed). Scatchard plots were analyzed. The monomer was found to have plots similar to those of the trimer, suggesting that the binding sites in bR are localized within the protein monomer unit and not between the molecules within the trimer structure. This also supports the previous assumption that the curvature in the Scatchard plot of regenerated bR is not due to cooperativity of metal cation within the trimer, but rather due to multiple sites. Recent studies further support the finding that the curved Scatchard plot is not due to the cooperativity between the metal ions in the two high affinity sites, wherever they are. The results of the analysis of the Scatchard plot for deionized bacterioopsin have shown a change in the binding characteristics of the high affinity but not the low affinity sites from that observed in bR. This result supports previous conclusions that metal cations in the high affinity sites are not far from the retinal cavity.
Collapse
Affiliation(s)
- D Yang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta 30332-0400, USA
| | | |
Collapse
|
33
|
Stuart JA, Vought BW, Zhang CF, Birge RR. The active site of bacteriorhodopsin. Two-photon spectroscopic evidence for a positively charged chromophore binding site mediated by calcium. ACTA ACUST UNITED AC 1995. [DOI: 10.1002/bspy.350010104] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|