1
|
Katsumata O, Hara-Yokoyama M, Sautès-Fridman C, Nagatsuka Y, Katada T, Hirabayashi Y, Shimizu K, Fujita-Yoshigaki J, Sugiya H, Furuyama S. Association of FcgammaRII with low-density detergent-resistant membranes is important for cross-linking-dependent initiation of the tyrosine phosphorylation pathway and superoxide generation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:5814-23. [PMID: 11698455 DOI: 10.4049/jimmunol.167.10.5814] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
IgG immune complexes trigger humoral immune responses by cross-linking of FcRs for IgG (FcgammaRs). In the present study, we investigated role of lipid rafts, glycolipid- and cholesterol-rich membrane microdomains, in the FcgammaR-mediated responses. In retinoic acid-differentiated HL-60 cells, cross-linking of FcgammaRs resulted in a marked increase in the tyrosine phosphorylation of FcgammaRIIa, p58(lyn), and p120(c-cbl), which was inhibited by a specific inhibitor of Src family protein tyrosine kinases. After cross-linking, FcgammaRs and tyrosine-phosphorylated proteins including p120(c-cbl) were found in the low-density detergent-resistant membrane (DRM) fractions isolated by sucrose-density gradient ultracentrifugation. The association of FcgammaRs as well as p120(c-cbl) with DRMs did not depend on the tyrosine phosphorylation. When endogenous cholesterol was reduced with methyl-beta-cyclodextrin, the cross-linking did not induce the association of FcgammaRs as well as p120(c-cbl) with DRMs. In addition, although the physical association between FcgammaRIIa and p58(lyn) was not impaired, the cross-linking did not induce the tyrosine phosphorylation. In human neutrophils, superoxide generation induced by opsonized zymosan or chemoattractant fMLP was not affected or increased, respectively, after the methyl-beta-cyclodextrin treatment, but the superoxide generation induced by the insoluble immune complex via FcgammaRII was markedly reduced. Accordingly, we conclude that the cross-linking-dependent association of FcgammaRII to lipid rafts is important for the activation of FcgammaRII-associated Src family protein tyrosine kinases to initiate the tyrosine phosphorylation cascade leading to superoxide generation.
Collapse
Affiliation(s)
- O Katsumata
- Department of Physiology, Nihon University School of Dentistry, Matsudo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Kedzierska K, Vardaxis NJ, Jaworowski A, Crowe SM. FcγR‐mediated phagocytosis by human macrophages involves Hck, Syk, and Pyk2 and is augmented by GM‐CSF. J Leukoc Biol 2001. [DOI: 10.1189/jlb.70.2.322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Katherine Kedzierska
- AIDS Pathogenesis Research Unit, Macfarlane Burnet Centre for Medical Research, and National Centre for HIV Virology Research, Fairfield
- Department of Medicine, Monash University, Prahran; and
| | - Nicholas J. Vardaxis
- Department of Medical Laboratory Science, Royal Melbourne Institute of Technology, Bundoora, Australia
| | - Anthony Jaworowski
- AIDS Pathogenesis Research Unit, Macfarlane Burnet Centre for Medical Research, and National Centre for HIV Virology Research, Fairfield
- Department of Medicine, Monash University, Prahran; and
- Department of Medical Laboratory Science, Royal Melbourne Institute of Technology, Bundoora, Australia
| | - Suzanne M. Crowe
- AIDS Pathogenesis Research Unit, Macfarlane Burnet Centre for Medical Research, and National Centre for HIV Virology Research, Fairfield
- Department of Medicine, Monash University, Prahran; and
| |
Collapse
|
3
|
Abstract
Co-clustering of the type II receptors binding the Fc part of IgG (FcgammaRIIb) and B cell receptors results in the translocation of cytosolic, negative regulatory molecules to the phosphorylated immunoreceptor tyrosine-based inhibitory motif (P-ITIM) of the FcgammaRIIb. SH2 domain-containing protein tyrosine phosphatases (SHP-1 and SHP-2), and the polyphosphoinositol 5'-phosphatase (SHIP) have been reported earlier to bind to murine FcgammaRIIb P-ITIM. However, neither the functional substrates of these enzymes, nor the mechanism of the inhibition are fully resolved. We show here that the human FcgammaRIIb binds SHP-2 when co-clustered with the B cell receptors, whereas its synthetic P-ITIM peptide bindes SHP-2 and SHIP in lysates of the Burkitt's lymphoma cell line BL41. The P-ITIM peptide binding enhances SHP-2 activity, resulting in dephosphorylation and release of P-ITIM-bound SHIP and Shc. Moreover, P-ITIM-bound SHP-2 dephosphorylates synthetic peptides corresponding to the sites of tyrosine phosphorylation on SHIP and Shc, indicating that these proteins are its potential substrates. Thus SHP-2-induced dephosphorylation may modulate the intracellular localization and/or activity of SHIP and Shc, thereby inhibiting further activation pathways which they mediate.
Collapse
Affiliation(s)
- G Koncz
- Research Group of the Hungarian Academy of Science at the Department of Immunology, L. Eötvös University, Göd
| | | | | | | |
Collapse
|
4
|
Gergely J, Pecht I, Sármay G. Immunoreceptor tyrosine-based inhibition motif-bearing receptors regulate the immunoreceptor tyrosine-based activation motif-induced activation of immune competent cells. Immunol Lett 1999; 68:3-15. [PMID: 10397150 DOI: 10.1016/s0165-2478(99)00024-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ITIM-bearing receptors, a family which only recently has been recognized, play a key role in the regulation of the ITAM-induced activation of immune competent cells. The mechanism of ITM-mediated regulation in various cells was recently clarified. The present review focuses on ITIM bearing membrane proteins that negatively regulate the activation of cells when co-crosslinked with ITAM containing receptors, illustrates the inhibitory processes by the negative regulation of B-, NK-, T-cells and mast cells and summarizes current views on the mechanism of ITIM-mediated inhibition.
Collapse
Affiliation(s)
- J Gergely
- Research Group of the Hungarian Academy of Science at the Department of Immunology, Eötvös Loránd University, Göd
| | | | | |
Collapse
|
5
|
Massol P, Montcourrier P, Guillemot JC, Chavrier P. Fc receptor-mediated phagocytosis requires CDC42 and Rac1. EMBO J 1998; 17:6219-29. [PMID: 9799231 PMCID: PMC1170948 DOI: 10.1093/emboj/17.21.6219] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
At the surface of phagocytes, antibody-opsonized particles are recognized by surface receptors for the Fc portion of immunoglobulins (FcRs) that mediate their capture by an actin-driven process called phagocytosis which is poorly defined. We have analyzed the function of the Rho proteins Rac1 and CDC42 in the high affinity receptor for IgE (FcepsilonRI)-mediated phagocytosis using transfected rat basophil leukemia (RBL-2H3) mast cells expressing dominant inhibitory forms of CDC42 and Rac1. Binding of opsonized particles to untransfected RBL-2H3 cells led to the accumulation of F-actin at the site of contact with the particles and further, to particle internalization. This process was inhibited by Clostridium difficile toxin B, a general inhibitor of Rho GTP-binding proteins. Dominant inhibition of Rac1 or CDC42 function severely inhibited particle internalization but not F-actin accumulation. Inhibition of CDC42 function resulted in the appearance of pedestal-like structures with particles at their tips, while particles bound at the surface of the Rac1 mutant cell line were enclosed within thin membrane protrusions that did not fuse. These phenotypic differences indicate that Rac1 and CDC42 have distinct functions and may act cooperatively in the assembly of the phagocytic cup. Inhibition of phagocytosis in the mutant cell lines was accompanied by the persistence of tyrosine-phosphorylated proteins around bound particles. Phagocytic cup closure and particle internalization were also blocked when phosphotyrosine dephosphorylation was inhibited by treatment of RBL-2H3 cells with phenylarsine oxide, an inhibitor of protein phosphotyrosine phosphatases. Altogether, our data show that Rac1 and CDC42 are required to coordinate actin filament organization and membrane extension to form phagocytic cups and to allow particle internalization during FcR-mediated phagocytosis. Our data also suggest that Rac1 and CDC42 are involved in phosphotyrosine dephosphorylation required for particle internalization.
Collapse
Affiliation(s)
- P Massol
- Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, Case 906, 13288 Marseille Cedex 9, France
| | | | | | | |
Collapse
|
6
|
Sarmay G, Koncz G, Pecht I, Gergely J. Fc gamma receptor type IIb induced recruitment of inositol and protein phosphatases to the signal transductory complex of human B-cell. Immunol Lett 1997; 57:159-64. [PMID: 9232445 DOI: 10.1016/s0165-2478(97)00055-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Co-clustering of Fc gamma RIIb and B-cell receptor (BCR) inhibits cell activation by interrupting BCR stimulated signal transduction. The immunoreceptor tyrosine-based inhibitory motif (ITIM) of Fc gamma RIIb becomes tyrosyl phosphorylated (P-ITIM) upon co-clustering with BCR then P-ITIM interacts with several signalling molecules, some of which negatively regulate the cell activation process. The molecules recruited by the P-ITIM of human Fc gamma RIIb have not been characterised yet. In order to affinity isolate the potential functional partner molecules of human Fc gamma RIIb, synthetic peptides were designed to cover almost the entire intracellular Fc gamma RIIb domain, including Fc gamma RIIb2 specific sequences and stretches containing the phosphorylated and non-phosphorylated ITIM. We report here that several tyrosyl phosphorylated proteins bind to the P-ITIM peptide from both resting and activated B-cell lysates, the 53-56 kDa being the most prominent one. A fraction of the 53-56 kDa bands were identified as the protein tyrosine kinase (PTK), Lyn which also bound to ITIM peptide, pointing to its role in initiating Fc gamma RIIb-mediated negative regulation. Among the P-ITIM associated tyr phosphorylated components, the 145 kDa one was identified as the inositol polyphosphate 5-phosphatase, SHIP and the 72 kDa protein as the protein tyrosine phosphatase (PTP) SHP2, whereas SHP1 was not detected. Phosphatase activity assays showed that P-ITIM bound about five times higher SHIP and four times higher PTP activity than the ITIM containing peptide. Furthermore, we detected PKC and MAPK in both ITIM and P-ITIM peptides precipitated samples. Since human B-cells express both Fc gamma RIIb1 and Fc gamma RIIb2, differing in a 19 amino acid insert in the cytoplasmic tail of the former, we investigated the components binding to Fc gamma RIIb1 and Fc gamma RIIb2 specific sequences. Synthetic peptide representing Fc gamma RIIb1 and Fc gamma RIIb2 specific sequences weakly bound unidentified tyr phosphorylated proteins at 50-56 kDa, while the insert itself did not bind a detectable amount of protein. Neither of the ITIM or P-ITIM bound molecules were observed in samples precipitated with peptides corresponding to Fc gamma RIIb1 or Fc gamma RIIb2 specific sequences. These observations suggest that protein kinases associate with both ITIM and P-ITIM of human Fc gamma RIIb, Lyn being responsible for the tyrosyl phosphorylation of ITIM. SHIP and SHP2 phosphatases selectively bind to the phosphorylated ITIM. Based on these data we assume that SHIP and SHP2 recruited in vivo to the Fc gamma RIIb co-clustered BCR are responsible for the Fc gamma RIIb mediated negative regulation of human B-cell activation.
Collapse
Affiliation(s)
- G Sarmay
- Department of Immunology, Loránd Eötvös University, Göd, Hungary.
| | | | | | | |
Collapse
|
7
|
Wolven A, Okamura H, Rosenblatt Y, Resh MD. Palmitoylation of p59fyn is reversible and sufficient for plasma membrane association. Mol Biol Cell 1997; 8:1159-73. [PMID: 9201723 PMCID: PMC305721 DOI: 10.1091/mbc.8.6.1159] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Members of the Src family of protein tyrosine kinases are localized to subspecialized regions of the plasma membrane. Herein we show that the N-terminal SH4 region of the Src family member p59fyn (Fyn) is both necessary and sufficient for targeting of Fyn and heterologous proteins to the plasma membrane and detergent-insoluble subdomains. Attachment of the first 16 amino acids of Fyn to a normally cytosolic protein, beta-galactosidase, resulted in distinct plasma membrane localization of the chimeric protein. Mutation of the palmitoylation site (cysteine-3) within Fyn16-beta-galactosidase or wild-type Fyn abrogated plasma membrane localization, resulting in redistribution of the mutant proteins into intracellular membranes. Substitution of the SH4 motif within Fyn with heterologous sequences from other palmitoylated proteins (G alpha o and GAP43) revealed that the presence of palmitate is sufficient to direct plasma membrane localization independent of surrounding amino acid sequences and myristate. Palmitoylated Fyn chimeras were also enriched in the Triton X-100-resistant matrix, whereas nonpalmitoylated forms of these proteins were detected in the detergent-soluble fraction. The palmitate moiety on Fyn exhibited a half-life of 1.5-2 h. In contrast, the half-life of the polypeptide backbone was 8 h, indicating that palmitoylation is a reversible modification. These studies establish that the palmitoylated SH4 sequence of Fyn can be used to specifically target proteins to the plasma membrane in a reversible manner.
Collapse
Affiliation(s)
- A Wolven
- Program in Molecular Biology, Cornell University Graduate School of Medical Sciences, New York, New York 10021, USA
| | | | | | | |
Collapse
|
8
|
Sármay G, Koncz G, Gergely J. Human type II Fcgamma receptors inhibit B cell activation by interacting with the p21(ras)-dependent pathway. J Biol Chem 1996; 271:30499-504. [PMID: 8940017 DOI: 10.1074/jbc.271.48.30499] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Co-ligation of antigen receptors and type II Fcgamma receptors (FcgammaRIIb) on B cells interrupts signal transduction and ultimately inhibits antibody production. We have identified p52 Shc in the FcgammaRIIb1-specific immunoprecipitates isolated from the membrane fraction of BL41 Burkitt lymphoma cells following B cell receptor-FcgammaRIIb1 co-ligation. The insolubilized synthetic peptide representing the phosphorylated form of the tyrosine-based inhibitory motif of FcgammaRIIb also binds Shc from the lysates of activated but not from resting BL41 cells. This suggests that the binding does not depend on the interaction of FcgammaRIIb1-phosphotyrosine with the SH2 domain of Shc. Tyr phosphorylation of FcgammaRIIb1-associated Shc is low, indicating an impaired function. Shc is implicated in regulating p21(ras) activation; thus, we have compared p21(ras) activities in BL41 cells treated in different ways. p21(ras) activity is reduced when B cell receptor and FcgammaRIIb1 are co-ligated. p21(ras) couples protein-tyrosine kinase-dependent events to the Ser/Thr kinase-mediated signaling pathway leading to the activation of mitogen-activated protein kinases (MAPK). Our results show that B cell receptor-FcgammaRIIb1 co-cross-linking partially inhibits mitogen-activated protein kinase activity. We conclude that FcgammaRIIb1-dependent inhibition of human B cell activation may be based on interrupting signal transduction between protein-tyrosine kinases and the p21(ras)/mitogen-activated protein kinase-dependent activation pathway.
Collapse
Affiliation(s)
- G Sármay
- Laboratory of Immunoregulation, Vienna International Research Cooperation Center at SFI, Vienna, Austria
| | | | | |
Collapse
|
9
|
Bewarder N, Weinrich V, Budde P, Hartmann D, Flaswinkel H, Reth M, Frey J. In vivo and in vitro specificity of protein tyrosine kinases for immunoglobulin G receptor (FcgammaRII) phosphorylation. Mol Cell Biol 1996; 16:4735-43. [PMID: 8756631 PMCID: PMC231474 DOI: 10.1128/mcb.16.9.4735] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human B cells express four immunoglobulin G receptors, FcgammaRIIa, FcgammaRIIb1, FcgammaRIIb2, and FcgammaRIIc. Coligation of either FcgammaRII isoform with the B-cell antigen receptor (BCR) results in the abrogation of B-cell activation, but only the FcgammaRIIa/c and FcgammaIIb1 isoforms become phosphorylated. To identify the FcgammaRII-phosphorylating protein tyrosine kinase (PTK), we used the combination of an in vitro and an in vivo approach. In an in vitro assay using recombinant cytoplasmic tails of the different FcgammaRII isoforms as well as tyrosine exchange mutants, we show that each of the BCR-associated PTKs (Lyn, Blk, Fyn, and Syk) shows different phosphorylation patterns with regard to the different FcgammaR isoforms and point mutants. While each PTK phosphorylated FcgammaRIIa/c, FcgammaRIIb1 was phosphorylated by Lyn and Blk whereas FcgammaRIIb2 became phosphorylated only by Blk. Mutants lacking both tyrosine residues of the immune receptor tyrosine-based activation motif (ITAM) of FcgammaRIIa/c were not phosphorylated by Blk and Fyn, while Lyn-mediated phosphorylation was dependent on the presence of the C-terminal tyrosine of the ITAM. Results obtained in assays using an FcgammaR- B-cell line transfected with wild-type or mutated FcgammaRIIa demonstrated that exchange of the C-terminal tyrosine of the ITAM of FcgammaRIIa/c was sufficient to abolish FcgammaRIIa/c phosphorylation in B cells. Additionally, we could show that Lyn and Fyn bind to FcgammaRIIa/c, with the ITAM being necessary for association. Comparison of the phosphorylation pattern of each PTK observed in vitro with the phosphorylation pattern observed in vivo suggests that Lyn is the most likely candidate for FcgammaRIIa/c and FcgammaRIIb1 phosphorylation in vivo.
Collapse
Affiliation(s)
- N Bewarder
- Biochemie II, Fakultät für Chemie, Universität Bielefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- E Smythe
- Department of Biochemistry, Medical Sciences Institute, University of Dundee, Scotland
| |
Collapse
|
11
|
Fällman M, Andersson K, Håkansson S, Magnusson KE, Stendahl O, Wolf-Watz H. Yersinia pseudotuberculosis inhibits Fc receptor-mediated phagocytosis in J774 cells. Infect Immun 1995; 63:3117-24. [PMID: 7622239 PMCID: PMC173425 DOI: 10.1128/iai.63.8.3117-3124.1995] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Nonopsonized as well as immunoglobulin-G (IgG)-opsonized Yersinia pseudotuberculosis resists phagocytic uptake by the macrophage-like cell line J774 by a mechanism involving the plasmid-encoded proteins Yops. The tyrosine phosphatase YopH was of great importance for the antiphagocytic effect of the bacteria. YopH-negative mutants did not induce antiphagocytosis; instead, they were readily ingested, almost to the same extent as that of the translocation mutants YopB and YopD and the plasmid-cured strain. The bacterial determinant invasin was demonstrated to mediate phagocytosis of nonopsonized bacteria by these cells. In addition to inhibiting uptake of itself, Y. pseudotuberculosis also interfered with the phagocytic uptake of other types of prey: J774 cells that had been exposed to virulent Y. pseudotuberculosis exhibited a reduced capacity to ingest IgG-opsonized yeast particles. This effect was impaired when the bacterium-phagocyte interaction occurred in the presence of gentamicin, indicating a requirement for in situ bacterial protein synthesis. The Yersinia-mediated antiphagocytic effect on J774 cells was reversible: after 18 h in the presence of gentamicin, the phagocytic capacity of Yersinia-exposed J774 cells was completely restored. Inhibition of the uptake of IgG-opsonized yeast particles was dependent on the Yops in a manner similar to that seen for blockage of Yersinia phagocytosis. This similarity suggests that the pathogen affected a general phagocytic mechanism. Despite a marked reduction in the capacity to ingest IgG-opsonized yeast particles, no effect was observed on the binding of the prey. Taken together, these results demonstrate that Yop-mediated antiphagocytosis by Y. pseudotuberculosis affects regulatory functions downstream of the phagocytic receptor and thereby extends to other types of phagocytosis.
Collapse
Affiliation(s)
- M Fällman
- Department of Medical Microbiology, Linköping University, Sweden
| | | | | | | | | | | |
Collapse
|
12
|
Roberts JJ, Rodgers SE, Drury J, Ashman LK, Lloyd JV. Platelet activation induced by a murine monoclonal antibody directed against a novel tetra-span antigen. Br J Haematol 1995; 89:853-60. [PMID: 7772522 DOI: 10.1111/j.1365-2141.1995.tb08424.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
MAb 14A2.H1 identifies a novel low-abundance platelet surface antigen, PETA-3, which is a member of the tetra-span (TM4) family. This MAb brings about platelet aggregation and mediator release, which is completely inhibitable by prostaglandin E1, and partially inhibitable by aspirin and ketanserin. Platelet activation by MAb 14A2.H1 is dependent on interaction with both the platelet Fc receptor, Fc gamma RII, and the specific antigen as it was prevented by either a blocking MAb to Fc gamma RII (IV.3) or F(ab')2 fragments of 14A2.H1. The extent of platelet activation by the antibody varied considerably between donors, and is believed to reflect the polymorphism of Fc gamma RII. Subaggregating concentrations of 14A2.H1 synergized with other platelet agonists, ADP, adrenaline, collagen and serotonin, indicating signalling via a pathway distinct from these activators. Synergy was also blocked by MAb IV.3, or F(ab')2 fragments of 14A2.H1. The similar low copy number of PETA-3 and Fc gamma RII in the platelet membrane (approximately 1000/platelet), together with the dependence on Fc gamma RII for activation by MAb 14A2.H1, suggests that PETA-3 may be a component of the Fc gamma RII signal transducing complex in platelets.
Collapse
Affiliation(s)
- J J Roberts
- Department of Clinical and Experimental Pharmacology, University of Adelaide, South Australia
| | | | | | | | | |
Collapse
|
13
|
Budde P, Bewarder N, Weinrich V, Schulzeck O, Frey J. Tyrosine-containing sequence motifs of the human immunoglobulin G receptors FcRIIb1 and FcRIIb2 essential for endocytosis and regulation of calcium flux in B cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43861-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
14
|
Blake RA, Schieven GL, Watson SP. Collagen stimulates tyrosine phosphorylation of phospholipase C-gamma 2 but not phospholipase C-gamma 1 in human platelets. FEBS Lett 1994; 353:212-6. [PMID: 7523195 DOI: 10.1016/0014-5793(94)01037-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Collagen is an important primary stimulus of platelets during the process of hemostasis. As with many other platelet stimuli, collagen signal transduction involves the hydrolysis of inositol phospholipids; however, the mechanisms which underlies this event is not well understood. Neither the collagen receptor nor the isoform of phospholipase C that is activated have been identified. We report that collagen-activation of platelets induces tyrosine phosphorylation of phospholipase C-gamma 2 but not phospholipase C-gamma 1. We also show that the platelet low affinity Fc receptor (Fc gamma RII), which mediates activation of platelets by immune complexes, and wheat germ agglutinin, which binds non-specifically to glycoprotein, stimulate phospholipase C-gamma 2 tyrosine phosphorylation. In contrast, we could not detect phospholipase C-gamma 2 tyrosine phosphorylation in platelets stimulated by either thrombin or a stable thromboxane A2 analogue, U46619.
Collapse
Affiliation(s)
- R A Blake
- Department of Pharmacology, Oxford, UK
| | | | | |
Collapse
|
15
|
|
16
|
Affiliation(s)
- M D Hulett
- Austin Research Institute, Heidelberg, Australia
| | | |
Collapse
|