1
|
Yang W, Lefebvre V. PTPN11 in cartilage development, adult homeostasis, and diseases. Bone Res 2025; 13:53. [PMID: 40379623 DOI: 10.1038/s41413-025-00425-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 05/19/2025] Open
Abstract
The SH2 domain-containing protein tyrosine phosphatase 2 (SHP2, also known as PTP2C), encoded by PTPN11, is ubiquitously expressed and has context-specific effects. It promotes RAS/MAPK signaling downstream of receptor tyrosine kinases, cytokine receptors, and extracellular matrix proteins, and was shown in various lineages to modulate cell survival, proliferation, differentiation, and migration. Over the past decade, PTPN11 inactivation in chondrocytes was found to cause metachondromatosis, a rare disorder characterized by multiple enchondromas and osteochondroma-like lesions. Moreover, SHP2 inhibition was found to mitigate osteoarthritis pathogenesis in mice, and abundant but incomplete evidence suggests that SHP2 is crucial for cartilage development and adult homeostasis, during which its expression and activity are tightly regulated transcriptionally and posttranslationally, and by varying sets of functional partners. Fully uncovering SHP2 actions and regulation in chondrocytes is thus fundamental to understanding the mechanisms underlying both rare and common cartilage diseases and to designing effective disease treatments. We here review current knowledge, highlight recent discoveries and controversies, and propose new research directions to answer remaining questions.
Collapse
Affiliation(s)
- Wentian Yang
- Department of Orthopaedic Surgery, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, USA.
| | - Véronique Lefebvre
- Division of Orthopaedic Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Kiani A, Pierotti CL, Schedel F, Kokot T, Weyershaeuser J, Brehm M, Rios P, Fehrenbach K, Warscheid B, Minguet S, Schamel WW, Köhn M. Development of a Peptide Inhibitor Targeting the C-SH2 Domain of the SHP2 Phosphatase. Chembiochem 2025:e2400938. [PMID: 40318117 DOI: 10.1002/cbic.202400938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2025] [Revised: 05/02/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2) mediates important signal transduction upon cell surface receptor stimulation, regulating multiple cellular functions. In addition to the catalytically active phosphotyrosine (pTyr) phosphatase domain, SHP2 contains two regulatory pTyr-binding domains: the N-SH2 and C-SH2 domains. While the role of the N-SH2 domain is well understood, the role of the C-SH2 domain is less clear. To support studies on the involvement of the domains in SHP2 function, herein, the development of a peptide inhibitor containing a nonhydrolysable pTyr mimetic, which selectively binds to the C-SH2 domain of SHP2 and blocks its protein-protein interactions, is described. Incorporation of the pTyr mimetic l-O-malonyltyrosine (l-OMT) results in robust binding affinity to the C-SH2 domain, while the widely used pTyr mimetic phosphonodifluoromethyl phenylalanine (F2Pmp) abolishes binding, showing that this mimetic is not a general binder of SH2 domains, which challenges existing notions. The C-SH2 inhibitor peptide (CSIP) is stable, selective, cell permeable, and noncytotoxic. CSIP enriches the toolbox of inhibitors with different modes of action targeting SHP2, and will support studies to better understand SHP2 regulation and interactions, which can ultimately inform new drug discovery efforts.
Collapse
Affiliation(s)
- Azin Kiani
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg im Breisgau, Germany
- Faculty of Chemistry and Pharmacy, Hermann-Staudinger Graduate School, University of Freiburg, Hebelstraße 27, 79087, Freiburg im Breisgau, Germany
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg im Breisgau, Germany
| | - Catia L Pierotti
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg im Breisgau, Germany
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg im Breisgau, Germany
- Institute for Cell Biology, Department of Molecular Cell Biology, University of Bonn, Käthe-Kümmel-Straße 1, 53115, Bonn, Germany
| | - Franziska Schedel
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg im Breisgau, Germany
- Faculty of Chemistry and Pharmacy, Hermann-Staudinger Graduate School, University of Freiburg, Hebelstraße 27, 79087, Freiburg im Breisgau, Germany
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg im Breisgau, Germany
- Institute for Cell Biology, Department of Molecular Cell Biology, University of Bonn, Käthe-Kümmel-Straße 1, 53115, Bonn, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstraße 19A, 79104, Freiburg im Breisgau, Germany
| | - Thomas Kokot
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg im Breisgau, Germany
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg im Breisgau, Germany
| | - Judith Weyershaeuser
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg im Breisgau, Germany
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg im Breisgau, Germany
| | - Mario Brehm
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg im Breisgau, Germany
| | - Pablo Rios
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg im Breisgau, Germany
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg im Breisgau, Germany
| | - Kerstin Fehrenbach
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg im Breisgau, Germany
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg im Breisgau, Germany
| | - Bettina Warscheid
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg im Breisgau, Germany
- Biochemistry II, Theodor-Boveri-Institute, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Susana Minguet
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg im Breisgau, Germany
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg im Breisgau, Germany
- Centre of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Breisacher Straße 115, 79106, Freiburg im Breisgau, Germany
| | - Wolfgang W Schamel
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg im Breisgau, Germany
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg im Breisgau, Germany
- Centre of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Breisacher Straße 115, 79106, Freiburg im Breisgau, Germany
| | - Maja Köhn
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg im Breisgau, Germany
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg im Breisgau, Germany
- Institute for Cell Biology, Department of Molecular Cell Biology, University of Bonn, Käthe-Kümmel-Straße 1, 53115, Bonn, Germany
| |
Collapse
|
3
|
Lu J, Yu D, Li H, Qin P, Chen H, Chen L. Promising natural products targeting protein tyrosine phosphatase SHP2 for cancer therapy. Phytother Res 2025; 39:1735-1757. [PMID: 38558278 DOI: 10.1002/ptr.8185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
The development of Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) inhibitors is a hot spot in the research and development of antitumor drugs, which may induce immunomodulatory effects in the tumor microenvironment and participate in anti-tumor immune responses. To date, several SHP2 inhibitors have made remarkable progress and entered clinical trials for the treatment of patients with advanced solid tumors. Multiple compounds derived from natural products have been proved to influence tumor cell proliferation, apoptosis, migration and other cellular functions, modulate cell cycle and immune cell activation by regulating the function of SHP2 and its mutants. However, there is a paucity of information about their diversity, biochemistry, and therapeutic potential of targeting SHP2 in tumors. This review will provide the structure, classification, inhibitory activities, experimental models, and antitumor effects of the natural products. Notably, this review summarizes recent advance in the efficacy and pharmacological mechanism of natural products targeting SHP2 in inhibiting the various signaling pathways that regulate different cancers and thus pave the way for further development of anticancer drugs targeting SHP2.
Collapse
Affiliation(s)
- Jiani Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Danmei Yu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongtao Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pengcheng Qin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Pharmacy, Henan University, Kaifeng, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Fuhr D, Johnston J, Brooks EP, Fantauzzo KA. Additive effects on craniofacial development upon conditional ablation of PDGFRα and SHP2 in the mouse neural crest lineage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638176. [PMID: 39990469 PMCID: PMC11844557 DOI: 10.1101/2025.02.13.638176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Background Activity of the receptor tyrosine kinase PDGFRα and the tyrosine phosphatase SHP2 are critical for vertebrate craniofacial development. We sought to determine the effect of SHP2 binding to PDGFRα via phenotypic and biochemical analyses of an allelic series of mouse embryos with combined loss of both proteins in the neural crest lineage. Results We demonstrated that SHP2 preferentially binds PDGFRα/α homodimers among the three PDGFR dimers. Analysis of allelic series mutant embryos revealed increased cell death in the lateral nasal and maxillary processes at E10.5, variably penetrant facial blebbing, facial hemorrhaging, midline clefting and loss of the mandibular region at E13.5, and widespread craniofacial bone and cartilage defects at birth. Further, we showed that loss of SHP2 leads to increased phosphorylation of PDGFRα and the downstream effector Erk1/2 in E10.5 allelic series mutant embryo lysates. Conclusions Together, our findings demonstrate additive effects on craniofacial development upon conditional ablation of PDGFRα and SHP2 in the mouse neural crest lineage and indicate that SHP2 may negatively and positively regulate PDGFRα signaling through distinct mechanisms.
Collapse
Affiliation(s)
- Daniel Fuhr
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jessica Johnston
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elliott P. Brooks
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katherine A. Fantauzzo
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
5
|
Sudhakar N, Yan L, Qiryaqos F, Engstrom LD, Laguer J, Calinisan A, Hebbert A, Waters L, Moya K, Bowcut V, Vegar L, Ketcham JM, Ivetac A, Smith CR, Lawson JD, Rahbaek L, Clarine J, Nguyen N, Saechao B, Parker C, Elliott AJ, Vanderpool D, He L, Hover LD, Fernandez-Banet J, Coma S, Pachter JA, Hallin J, Marx MA, Briere DM, Christensen JG, Olson P, Haling J, Khare S. The SOS1 Inhibitor MRTX0902 Blocks KRAS Activation and Demonstrates Antitumor Activity in Cancers Dependent on KRAS Nucleotide Loading. Mol Cancer Ther 2024; 23:1418-1430. [PMID: 38904222 PMCID: PMC11443210 DOI: 10.1158/1535-7163.mct-23-0870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/14/2024] [Accepted: 04/05/2024] [Indexed: 04/21/2024]
Abstract
KRAS is the most frequently mutated oncogene in human cancer and facilitates uncontrolled growth through hyperactivation of the receptor tyrosine kinase (RTK)/mitogen-activated protein kinase (MAPK) pathway. The Son of Sevenless homolog 1 (SOS1) protein functions as a guanine nucleotide exchange factor (GEF) for the RAS subfamily of small GTPases and represents a druggable target in the pathway. Using a structure-based drug discovery approach, MRTX0902 was identified as a selective and potent SOS1 inhibitor that disrupts the KRAS:SOS1 protein-protein interaction to prevent SOS1-mediated nucleotide exchange on KRAS and translates into an anti-proliferative effect in cancer cell lines with genetic alterations of the KRAS-MAPK pathway. MRTX0902 augmented the antitumor activity of the KRAS G12C inhibitor adagrasib when dosed in combination in eight out of 12 KRAS G12C-mutant human non-small cell lung cancer and colorectal cancer xenograft models. Pharmacogenomic profiling in preclinical models identified cell cycle genes and the SOS2 homolog as genetic co-dependencies and implicated tumor suppressor genes (NF1 and PTEN) in resistance following combination treatment. Lastly, combined vertical inhibition of RTK/MAPK pathway signaling by MRTX0902 with inhibitors of EGFR or RAF/MEK led to greater downregulation of pathway signaling and improved antitumor responses in KRAS-MAPK pathway-mutant models. These studies demonstrate the potential clinical application of dual inhibition of SOS1 and KRAS G12C and additional SOS1 combination strategies that will aide in the understanding of SOS1 and RTK/MAPK biology in targeted cancer therapy.
Collapse
Affiliation(s)
| | - Larry Yan
- Mirati Therapeutics, Inc., San Diego, California
| | | | | | - Jade Laguer
- Mirati Therapeutics, Inc., San Diego, California
| | | | | | - Laura Waters
- Mirati Therapeutics, Inc., San Diego, California
| | - Krystal Moya
- Mirati Therapeutics, Inc., San Diego, California
| | | | - Laura Vegar
- Mirati Therapeutics, Inc., San Diego, California
| | | | | | | | | | - Lisa Rahbaek
- Mirati Therapeutics, Inc., San Diego, California
| | | | | | | | - Cody Parker
- Mirati Therapeutics, Inc., San Diego, California
| | | | | | - Leo He
- Monoceros Biosciences LLC, San Diego, California
| | | | | | | | | | - Jill Hallin
- Mirati Therapeutics, Inc., San Diego, California
| | | | | | | | - Peter Olson
- Mirati Therapeutics, Inc., San Diego, California
| | - Jacob Haling
- Mirati Therapeutics, Inc., San Diego, California
| | - Shilpi Khare
- Mirati Therapeutics, Inc., San Diego, California
| |
Collapse
|
6
|
Adhikari N, Ayyannan SR. Development and validation of machine learning models for the prediction of SH-2 containing protein tyrosine phosphatase 2 inhibitors. Mol Divers 2024; 28:1889-1905. [PMID: 37552436 DOI: 10.1007/s11030-023-10710-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Discovery and development of a new drug to the market is a highly challenging and resource consuming process. Although, modern drug discovery technologies have enabled the rapid identification of lead compounds, translation of the lead compounds into successful clinical candidates remains a big challenge. In recent years, the availability of massive structural and biological data of diverse small molecules and macromolecules has helped the researchers to deep mine the multidimensional data with the help of artificial intelligence-based predictive tools to draw useful insights on the structural features of biological or therapeutic significance. The aim of this study was to utilize the available data on small molecule (SH2)-containing protein tyrosine phosphatase 2 (SHP2) inhibitors to build and develop machine learning (ML) models that can predict the SHP2 inhibitory potential of new compounds. The dataset contained 2739 unique small molecule SHP2 inhibitors obtained from the BindingDB, ChEMBL and recent literature. After curation of the data, the predictive models such as XGBoost, K nearest neighbours, neural networks were developed and validated through a tenfold cross-validation testing procedure. Out of the seven models developed, the XGBoost model showed an excellent performance with ROC AUC score of 0.96 and accuracy of 0.97 on the test data. Moreover, the Shapley Additive Explanations method was applied to assess a more in-depth understanding of the influence of variables on the model's predictions. In summary, the XGBoost model developed in this study can be useful in the identification of novel SHP2 inhibitors and therefore, can accelerate the discovery of novel therapeutics for cancer therapy.
Collapse
Affiliation(s)
- Nilanjan Adhikari
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India.
| |
Collapse
|
7
|
Scheiter A, Lu LC, Gao LH, Feng GS. Complex Roles of PTPN11/SHP2 in Carcinogenesis and Prospect of Targeting SHP2 in Cancer Therapy. ANNUAL REVIEW OF CANCER BIOLOGY 2024; 8:15-33. [PMID: 39959686 PMCID: PMC11824402 DOI: 10.1146/annurev-cancerbio-062722-013740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The non-receptor tyrosine phosphatase SHP2 has been at the center of cell signaling research for three decades. SHP2 is required to fully activate the RTK-RAS-ERK cascade, although the underlying mechanisms are not completely understood. PTPN11, coding for SHP2, is the first identified proto-oncogene that encodes a tyrosine phosphatase, with dominantly activating mutations detected in leukemias and solid tumors. However, SHP2 has been shown to have pro- and anti-oncogenic effects, and the most recent data reveal opposite activities of SHP2 in tumor cells and microenvironment cells. Allosteric SHP2 inhibitors show promising anti-tumor effects and overcome resistance to inhibitors of RAS-ERK signaling in animal models. Many clinical trials with orally bioactive SHP2 inhibitors, alone or combined with other regimens, are ongoing for a variety of cancers worldwide, with therapeutic outcomes yet unknown. This review discusses the multi-faceted SHP2 functions in oncogenesis, preclinical studies and clinical trials with SHP2 inhibitors in oncological treatment.
Collapse
Affiliation(s)
- Alexander Scheiter
- Department of Pathology, and Moores Cancer Center, School of Medicine, University of California San Diego, La Jolla, California 92093
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Li-Chun Lu
- Department of Pathology, and Moores Cancer Center, School of Medicine, University of California San Diego, La Jolla, California 92093
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (ROC)
| | - Lilian H. Gao
- Department of Pathology, and Moores Cancer Center, School of Medicine, University of California San Diego, La Jolla, California 92093
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, California 92093
| | - Gen-Sheng Feng
- Department of Pathology, and Moores Cancer Center, School of Medicine, University of California San Diego, La Jolla, California 92093
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, California 92093
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
8
|
Lee S, Kim J, Ryu HH, Jang H, Lee D, Lee S, Song JM, Lee YS, Ho Suh Y. SHP2 regulates GluA2 tyrosine phosphorylation required for AMPA receptor endocytosis and mGluR-LTD. Proc Natl Acad Sci U S A 2024; 121:e2316819121. [PMID: 38657042 PMCID: PMC11066993 DOI: 10.1073/pnas.2316819121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/29/2024] [Indexed: 04/26/2024] Open
Abstract
Posttranslational modifications regulate the properties and abundance of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors that mediate fast excitatory synaptic transmission and synaptic plasticity in the central nervous system. During long-term depression (LTD), protein tyrosine phosphatases (PTPs) dephosphorylate tyrosine residues in the C-terminal tail of AMPA receptor GluA2 subunit, which is essential for GluA2 endocytosis and group I metabotropic glutamate receptor (mGluR)-dependent LTD. However, as a selective downstream effector of mGluRs, the mGluR-dependent PTP responsible for GluA2 tyrosine dephosphorylation remains elusive at Schaffer collateral (SC)-CA1 synapses. In the present study, we find that mGluR5 stimulation activates Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2) by increasing phospho-Y542 levels in SHP2. Under steady-state conditions, SHP2 plays a protective role in stabilizing phospho-Y869 of GluA2 by directly interacting with GluA2 phosphorylated at Y869, without affecting GluA2 phospho-Y876 levels. Upon mGluR5 stimulation, SHP2 dephosphorylates GluA2 at Y869 and Y876, resulting in GluA2 endocytosis and mGluR-LTD. Our results establish SHP2 as a downstream effector of mGluR5 and indicate a dual action of SHP2 in regulating GluA2 tyrosine phosphorylation and function. Given the implications of mGluR5 and SHP2 in synaptic pathophysiology, we propose SHP2 as a promising therapeutic target for neurodevelopmental and autism spectrum disorders.
Collapse
Affiliation(s)
- Sanghyeon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul03080, South Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
| | - Jungho Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul03080, South Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
| | - Hyun-Hee Ryu
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul03080, South Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul03080, South Korea
| | - Hanbyul Jang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul03080, South Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul03080, South Korea
| | - DoEun Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul03080, South Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
| | - Seungha Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul03080, South Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
| | - Jae-man Song
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul03080, South Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
| | - Yong-Seok Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul03080, South Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul03080, South Korea
| | - Young Ho Suh
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul03080, South Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
| |
Collapse
|
9
|
Niemand RR, Stafford JL. Counteracting immunotyrosine-based signaling motifs augment zebrafish leukocyte immune-type receptor-mediated phagocytic activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 153:105121. [PMID: 38135021 DOI: 10.1016/j.dci.2023.105121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Leukocyte immune-type receptors (LITRs) represent a polymorphic and polygenic family of immunoregulatory proteins originally discovered in channel catfish (Ictalurus punctatus; IpLITRs). Belonging to the immunoglobulin superfamily (IgSF), IpLITRs are generally classified as stimulatory or inhibitory types based on their utilization of various intracellular tyrosine-based signaling motifs. While research has shown that IpLITRs can activate as well as abrogate different immune cell effector responses including phagocytosis, recent identification of LITRs within the zebrafish genome (Danio rerio; DrLITRs) revealed the existence of fish LITR-types uniquely containing counteracting stimulatory and inhibitory cytoplasmic tail (CYT) region motifs (i.e., an immunoreceptor tyrosine-based activation motif; ITAM, and immunoreceptor tyrosine-based inhibitory motif; ITIM) within the same receptor. This arrangement is unusual as these motifs typically exist on separate stimulatory (i.e., ITAM-containing) or inhibitory (i.e., ITIM-containing) immunoregulatory receptors that then co-engage to fine-tune cellular signaling and effector responses. Using a flow cytometric-based phagocytosis assay, we show here that engagement of DrLITR 1.2-expressing cells with antibody coated 4.5 μm beads causes a robust ITAM-dependent phagocytic response and reveal that its tandem ITIM motif surprisingly enhances the DrLITR 1.2-induced phagocytic activity while simultaneously decreasing the receptors ability to bind the beads. Confocal microscopy studies also revealed that the ITIM-associated inhibitory signaling molecule SHP-2 is localized to the phagocytic synapse during the phagocytic response. Overall, these results provide the first functional characterization of teleost immune receptors containing a tandem ITAM and ITIM and allow for the proposal of an intracytoplasmic tail signaling model for ITIM-mediated enhancement of ITAM-dependent cellular activation.
Collapse
Affiliation(s)
- Rikus R Niemand
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
10
|
Xie X, Yu T, Li X, Zhang N, Foster LJ, Peng C, Huang W, He G. Recent advances in targeting the "undruggable" proteins: from drug discovery to clinical trials. Signal Transduct Target Ther 2023; 8:335. [PMID: 37669923 PMCID: PMC10480221 DOI: 10.1038/s41392-023-01589-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Undruggable proteins are a class of proteins that are often characterized by large, complex structures or functions that are difficult to interfere with using conventional drug design strategies. Targeting such undruggable targets has been considered also a great opportunity for treatment of human diseases and has attracted substantial efforts in the field of medicine. Therefore, in this review, we focus on the recent development of drug discovery targeting "undruggable" proteins and their application in clinic. To make this review well organized, we discuss the design strategies targeting the undruggable proteins, including covalent regulation, allosteric inhibition, protein-protein/DNA interaction inhibition, targeted proteins regulation, nucleic acid-based approach, immunotherapy and others.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tingting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Gu He
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
11
|
Drilon A, Sharma MR, Johnson ML, Yap TA, Gadgeel S, Nepert D, Feng G, Reddy MB, Harney AS, Elsayed M, Cook AW, Wong CE, Hinklin RJ, Jiang Y, Brown EN, Neitzel NA, Laird ER, Wu WI, Singh A, Wei P, Ching KA, Gaudino JJ, Lee PA, Hartley DP, Rothenberg SM. SHP2 Inhibition Sensitizes Diverse Oncogene-Addicted Solid Tumors to Re-treatment with Targeted Therapy. Cancer Discov 2023; 13:1789-1801. [PMID: 37269335 PMCID: PMC10401072 DOI: 10.1158/2159-8290.cd-23-0361] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 06/05/2023]
Abstract
Rationally targeted therapies have transformed cancer treatment, but many patients develop resistance through bypass signaling pathway activation. PF-07284892 (ARRY-558) is an allosteric SHP2 inhibitor designed to overcome bypass-signaling-mediated resistance when combined with inhibitors of various oncogenic drivers. Activity in this setting was confirmed in diverse tumor models. Patients with ALK fusion-positive lung cancer, BRAFV600E-mutant colorectal cancer, KRASG12D-mutant ovarian cancer, and ROS1 fusion-positive pancreatic cancer who previously developed targeted therapy resistance were treated with PF-07284892 on the first dose level of a first-in-human clinical trial. After progression on PF-07284892 monotherapy, a novel study design allowed the addition of oncogene-directed targeted therapy that had previously failed. Combination therapy led to rapid tumor and circulating tumor DNA (ctDNA) responses and extended the duration of overall clinical benefit. SIGNIFICANCE PF-07284892-targeted therapy combinations overcame bypass-signaling-mediated resistance in a clinical setting in which neither component was active on its own. This provides proof of concept of the utility of SHP2 inhibitors in overcoming resistance to diverse targeted therapies and provides a paradigm for accelerated testing of novel drug combinations early in clinical development. See related commentary by Hernando-Calvo and Garralda, p. 1762. This article is highlighted in the In This Issue feature, p. 1749.
Collapse
Affiliation(s)
- Alexander Drilon
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | | | | | - Timothy A. Yap
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shirish Gadgeel
- Henry Ford Cancer Center/Henry Ford Health, Detroit, Michigan
| | - Dale Nepert
- Pfizer Boulder Research Unit, Boulder, Colorado
| | - Gang Feng
- Early Clinical Development, Pfizer, Inc., Cambridge, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | - Wen-I Wu
- Pfizer Boulder Research Unit, Boulder, Colorado
| | | | - Ping Wei
- Pfizer Oncology Research and Development, La Jolla, California
| | - Keith A. Ching
- Pfizer Oncology Research and Development, La Jolla, California
| | | | | | | | - S. Michael Rothenberg
- Pfizer Boulder Research Unit, Boulder, Colorado
- Pfizer Oncology Research and Development, La Jolla, California
| |
Collapse
|
12
|
He C, Peng Z, Zhang D, Guo Y, Liang T, Zhao Y, Yu L, Zhang Q, Chang Z, Xiao Y, Li N, Xue H, Wu S, Zhao ZJ, Zhang C, Chen Y. Sunitinib selectively targets leukemogenic signaling of mutant SHP2 in juvenile myelomonocytic leukemia. Biochem Pharmacol 2023; 213:115588. [PMID: 37187274 DOI: 10.1016/j.bcp.2023.115588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
Leukemogenic SHP2 mutations occur in 35% of patients with juvenile myelomonocytic leukemia (JMML), a hematopoietic malignancy with poor response to cytotoxic chemotherapy. Novel therapeutic strategies are urgently needed for patients with JMML. Previously, we established a novel cell model of JMML with HCD-57, a murine erythroleukemia cell line that depends on EPO for survival. SHP2-D61Y or -E76K drove the survival and proliferation of HCD-57 in absence of EPO. In this study, we identified sunitinib as a potent compound to inhibit SHP2-mutant cells by screening a kinase inhibitor library with our model. We used cell viability assay, colony formation assay, flow cytometry, immunoblotting, and a xenograft model to evaluate the effect of sunitinib against SHP2-mutant leukemia cells in vitro and in vivo. The treatment of sunitinib selectively induced apoptosis and cell cycle arrest in mutant SHP2-transformed HCD-57, but not parental cells. It also inhibited cell viability and colony formation of primary JMML cells with mutant SHP2, but not bone marrow mononuclear cells from healthy donors. Immunoblotting showed that the treatment of sunitinib blocked the aberrantly activated signals of mutant SHP2 with deceased phosphorylation levels of SHP2, ERK, and AKT. Furthermore, sunitinib effectively reduced tumor burdens of immune-deficient mice engrafted with mutant-SHP2 transformed HCD-57. Our data demonstrated that sunitinib selectively inhibited SHP2-mutant leukemia cells, which could serve as an effective therapeutic strategy for SHP2-mutant JMML in the future.
Collapse
Affiliation(s)
- Chunxiao He
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhiyong Peng
- Nanfang-Chunfu Children's Institute of Hematology, Taixin Hospital, Dongguan, Guangdong, China
| | - Dengyang Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yao Guo
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Tianqi Liang
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yuming Zhao
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Liuting Yu
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qi Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhiguang Chang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yan Xiao
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Na Li
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hongman Xue
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Shunjie Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China.
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
13
|
Jensen NR, Kelly RR, Kelly KD, Khoo SK, Sidles SJ, LaRue AC. From Stem to Sternum: The Role of Shp2 in the Skeleton. Calcif Tissue Int 2023; 112:403-421. [PMID: 36422682 DOI: 10.1007/s00223-022-01042-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/05/2022] [Indexed: 11/25/2022]
Abstract
Src homology-2 domain-containing phosphatase 2 (SHP2) is a ubiquitously expressed phosphatase that is vital for skeletal development and maintenance of chondrocytes, osteoblasts, and osteoclasts. Study of SHP2 function in small animal models has led to insights in phenotypes observed in SHP2-mutant human disease, such as Noonan syndrome. In recent years, allosteric SHP2 inhibitors have been developed to specifically target the protein in neoplastic processes. These inhibitors are highly specific and have great potential for disease modulation in cancer and other pathologies, including bone disorders. In this review, we discuss the importance of SHP2 and related signaling pathways (e.g., Ras/MEK/ERK, JAK/STAT, PI3K/Akt) in skeletal development. We review rodent models of pathologic processes caused by germline mutations that activate SHP2 enzymatic activity, with a focus on the skeletal phenotype seen in these patients. Finally, we discuss SHP2 inhibitors in development and their potential for disease modulation in these genetic diseases, particularly as it relates to the skeleton.
Collapse
Affiliation(s)
- Nathaniel R Jensen
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Ryan R Kelly
- Ralph H. Johnson VA Health Care System, Research Service, Charleston, SC, USA
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Kirsten D Kelly
- Ralph H. Johnson VA Health Care System, Research Service, Charleston, SC, USA
| | - Stephanie K Khoo
- Ralph H. Johnson VA Health Care System, Research Service, Charleston, SC, USA
| | - Sara J Sidles
- Ralph H. Johnson VA Health Care System, Research Service, Charleston, SC, USA
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Amanda C LaRue
- Ralph H. Johnson VA Health Care System, Research Service, Charleston, SC, USA.
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
14
|
Khan S, Budamagunta V, Zhou D. Targeting KRAS in pancreatic cancer: Emerging therapeutic strategies. Adv Cancer Res 2023; 159:145-184. [PMID: 37268395 DOI: 10.1016/bs.acr.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
KRAS, a predominant member of the RAS family, is the most frequently mutated oncogene in human pancreatic cancer (∼95% of cases). Mutations in KRAS lead to its constitutive activation and activation of its downstream signaling pathways such as RAF/MEK/ERK and PI3K/AKT/mTOR that promote cell proliferation and provide apoptosis evasion capabilities to cancer cells. KRAS had been considered 'undruggable' until the discovery of the first covalent inhibitor targeting the G12C mutation. While G12C mutations are frequently found in non-small cell lung cancer, these are relatively rare in pancreatic cancer. On the other hand, pancreatic cancer harbors other KRAS mutations such as G12D and G12V. The inhibitors targeting G12D mutation (such as MRTX1133) have been recently developed, whereas those targeting other mutations are still lacking. Unfortunately, KRAS inhibitor monotherapy-associated resistance hinders their therapeutic efficacy. Therefore, various combination strategies have been tested and some yielded promising results, such as combinations with receptor tyrosine kinase, SHP2, or SOS1 inhibitors. In addition, we recently demonstrated that the combination of sotorasib with DT2216 (a BCL-XL-selective degrader) synergistically inhibits G12C-mutated pancreatic cancer cell growth in vitro and in vivo. This is in part because KRAS-targeted therapies induce cell cycle arrest and cellular senescence, which contributes to therapeutic resistance, while their combination with DT2216 can more effectively induce apoptosis. Similar combination strategies may also work for G12D inhibitors in pancreatic cancer. This chapter will review KRAS biochemistry, signaling pathways, different mutations, emerging KRAS-targeted therapies, and combination strategies. Finally, we discuss challenges associated with KRAS targeting and future directions, emphasizing pancreatic cancer.
Collapse
Affiliation(s)
- Sajid Khan
- Department of Biochemistry & Structural Biology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.
| | - Vivekananda Budamagunta
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States; Genetics and Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Daohong Zhou
- Department of Biochemistry & Structural Biology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.
| |
Collapse
|
15
|
Solman M, Woutersen DTJ, den Hertog J. Modeling (not so) rare developmental disorders associated with mutations in the protein-tyrosine phosphatase SHP2. Front Cell Dev Biol 2022; 10:1046415. [PMID: 36407105 PMCID: PMC9672471 DOI: 10.3389/fcell.2022.1046415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Src homology region 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2) is a highly conserved protein tyrosine phosphatase (PTP), which is encoded by PTPN11 and is indispensable during embryonic development. Mutations in PTPN11 in human patients cause aberrant signaling of SHP2, resulting in multiple rare hereditary diseases, including Noonan Syndrome (NS), Noonan Syndrome with Multiple Lentigines (NSML), Juvenile Myelomonocytic Leukemia (JMML) and Metachondromatosis (MC). Somatic mutations in PTPN11 have been found to cause cancer. Here, we focus on the role of SHP2 variants in rare diseases and advances in the understanding of its pathogenesis using model systems.
Collapse
Affiliation(s)
- Maja Solman
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Jeroen den Hertog
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, Netherlands
- Institute Biology Leiden, Leiden University, Leiden, Netherlands
- *Correspondence: Jeroen den Hertog,
| |
Collapse
|
16
|
Protein Tyrosine Kinase 6 regulates activation of SRC kinase. J Biol Chem 2022; 298:102584. [DOI: 10.1016/j.jbc.2022.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/07/2022] Open
|
17
|
Asmamaw MD, Shi XJ, Zhang LR, Liu HM. A comprehensive review of SHP2 and its role in cancer. Cell Oncol 2022; 45:729-753. [PMID: 36066752 DOI: 10.1007/s13402-022-00698-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 12/26/2022] Open
Abstract
Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) is a non-receptor protein tyrosine phosphatase ubiquitously expressed mainly in the cytoplasm of several tissues. SHP2 modulates diverse cell signaling events that control metabolism, cell growth, differentiation, cell migration, transcription and oncogenic transformation. It interacts with diverse molecules in the cell, and regulates key signaling events including RAS/ERK, PI3K/AKT, JAK/STAT and PD-1 pathways downstream of several receptor tyrosine kinases (RTKs) upon stimulation by growth factors and cytokines. SHP2 acts as both a phosphatase and a scaffold, and plays prominently oncogenic functions but can be tumor suppressor in a context-dependent manner. It typically acts as a positive regulator of RTKs signaling with some inhibitory functions reported as well. SHP2 expression and activity is regulated by such factors as allosteric autoinhibition, microRNAs, ubiquitination and SUMOylation. Dysregulation of SHP2 expression or activity causes many developmental diseases, and hematological and solid tumors. Moreover, upregulated SHP2 expression or activity also decreases sensitivity of cancer cells to anticancer drugs. SHP2 is now considered as a compelling anticancer drug target and several classes of SHP2 inhibitors with different mode of action are developed with some already in clinical trial phases. Moreover, novel SHP2 substrates and functions are rapidly growing both in cell and cancer. In view of this, we comprehensively and thoroughly reviewed literatures about SHP2 regulatory mechanisms, substrates and binding partners, biological functions, roles in human cancers, and different classes of small molecule inhibitors target this oncoprotein in cancer.
Collapse
Affiliation(s)
- Moges Dessale Asmamaw
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Xiao-Jing Shi
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450052, People's Republic of China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450001, People's Republic of China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China. .,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, Henan Province, 450001, People's Republic of China.
| |
Collapse
|
18
|
The current state of the art and future trends in RAS-targeted cancer therapies. Nat Rev Clin Oncol 2022; 19:637-655. [PMID: 36028717 PMCID: PMC9412785 DOI: 10.1038/s41571-022-00671-9] [Citation(s) in RCA: 256] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 12/18/2022]
Abstract
Despite being the most frequently altered oncogenic protein in solid tumours, KRAS has historically been considered ‘undruggable’ owing to a lack of pharmacologically targetable pockets within the mutant isoforms. However, improvements in drug design have culminated in the development of inhibitors that are selective for mutant KRAS in its active or inactive state. Some of these inhibitors have proven efficacy in patients with KRASG12C-mutant cancers and have become practice changing. The excitement associated with these advances has been tempered by drug resistance, which limits the depth and/or duration of responses to these agents. Improvements in our understanding of RAS signalling in cancer cells and in the tumour microenvironment suggest the potential for several novel combination therapies, which are now being explored in clinical trials. Herein, we provide an overview of the RAS pathway and review the development and current status of therapeutic strategies for targeting oncogenic RAS, as well as their potential to improve outcomes in patients with RAS-mutant malignancies. We then discuss challenges presented by resistance mechanisms and strategies by which they could potentially be overcome. The RAS oncogenes are among the most common drivers of tumour development and progression but have historically been considered undruggable. The development of direct KRAS inhibitors has changed this paradigm, although currently clinical use of these novel therapeutics is limited to a select subset of patients, and intrinsic or acquired resistance presents an inevitable challenge to cure. Herein, the authors provide an overview of the RAS pathway in cancer and review the ongoing efforts to develop effective therapeutic strategies for RAS-mutant cancers. They also discuss the current understanding of mechanisms of resistance to direct KRAS inhibitors and strategies by which they might be overcome. Owing to intrinsic and extrinsic factors, KRAS and other RAS isoforms have until recently been impervious to targeting with small-molecule inhibitors. Inhibitors of the KRASG12C variant constitute a potential breakthrough in the treatment of many cancer types, particularly non-small-cell lung cancer, for which such an agent has been approved by the FDA. Several forms of resistance to KRAS inhibitors have been defined, including primary, adaptive and acquired resistance; these resistance mechanisms are being targeted in studies that combine KRAS inhibitors with inhibitors of horizontal or vertical signalling pathways. Mutant KRAS has important effects on the tumour microenvironment, including the immunological milieu; these effects must be considered to fully understand resistance to KRAS inhibitors and when designing novel treatment strategies.
Collapse
|
19
|
Lin L, Miao L, Lin H, Cheng J, Li M, Zhuo Z, He J. Targeting RAS in neuroblastoma: Is it possible? Pharmacol Ther 2022; 236:108054. [PMID: 34915055 DOI: 10.1016/j.pharmthera.2021.108054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
Neuroblastoma is a common solid tumor in children and a leading cause of cancer death in children. Neuroblastoma exhibits genetic, morphological, and clinical heterogeneity that limits the efficacy of current monotherapies. With further research on neuroblastoma, the pathogenesis of neuroblastoma is found to be complex, and more and more treatment therapies are needed. The importance of personalized therapy is growing. Currently, various molecular features, including RAS mutations, are being used as targets for the development of new therapies for patients with neuroblastoma. A recent study found that RAS mutations are frequently present in recurrent neuroblastoma. RAS mutations have been shown to activate the MAPK pathway and play an important role in neuroblastoma. Treating RAS mutated neuroblastoma is a difficult challenge, but many preclinical studies have yielded effective results. At the same time, many of the therapies used to treat RAS mutated tumors also have good reference values for treating RAS mutated neuroblastoma. The success of KRAS-G12C inhibitors has greatly stimulated confidence in the direct suppression of RAS. This review describes the biological role of RAS and the frequency of RAS mutations in neuroblastoma. This paper focuses on the strategies, preclinical, and clinical progress of targeting carcinogenic RAS in neuroblastoma, and proposes possible prospects and challenges in the future.
Collapse
Affiliation(s)
- Lei Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Huiran Lin
- Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Meng Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| |
Collapse
|
20
|
Kim SM, Kwon EJ, Kim YJ, Go YH, Oh JY, Park S, Do JT, Kim KT, Cha HJ. Dichotomous role of Shp2 for naïve and primed pluripotency maintenance in embryonic stem cells. Stem Cell Res Ther 2022; 13:329. [PMID: 35850773 PMCID: PMC9290224 DOI: 10.1186/s13287-022-02976-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background The requirement of the Mek1 inhibitor (iMek1) during naïve pluripotency maintenance results from the activation of the Mek1-Erk1/2 (Mek/Erk) signaling pathway upon leukemia inhibitory factor (LIF) stimulation. Methods Through a meta-analysis of previous genome-wide screening for negative regulators of naïve pluripotency, Ptpn11 (encoding the Shp2 protein, which serves both as a tyrosine phosphatase and putative adapter), was predicted as one of the key factors for the negative modulation of naïve pluripotency through LIF-dependent Jak/Stat3 signaling. Using an isogenic pair of naïve and primed mouse embryonic stem cells (mESCs), we demonstrated the differential role of Shp2 in naïve and primed pluripotency. Results Loss of Shp2 increased naïve pluripotency by promoting Jak/Stat3 signaling and disturbed in vivo differentiation potential. In sharp contrast, Shp2 depletion significantly impeded the self-renewal of ESCs under primed culture conditions, which was concurrent with a reduction in Mek/Erk signaling. Similarly, upon treatment with an allosteric Shp2 inhibitor (iShp2), the cells sustained Stat3 phosphorylation and decoupled Mek/Erk signaling, thus iShp2 can replace the use of iMek1 for maintenance of naïve ESCs. Conclusions Taken together, our findings highlight the differential roles of Shp2 in naïve and primed pluripotency and propose the usage of iShp2 instead of iMek1 for the efficient maintenance and establishment of naïve pluripotency. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02976-z.
Collapse
Affiliation(s)
- Seong-Min Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Eun-Ji Kwon
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yun-Jeong Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Young-Hyun Go
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji-Young Oh
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seokwoo Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biology, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | - Keun-Tae Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea. .,Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea. .,Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Song Y, Yang X, Wang S, Zhao M, Yu B. Crystallographic landscape of SHP2 provides molecular insights for SHP2 targeted drug discovery. Med Res Rev 2022; 42:1781-1821. [DOI: 10.1002/med.21890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/17/2022] [Accepted: 05/04/2022] [Indexed: 12/31/2022]
Affiliation(s)
- Yihui Song
- School of Pharmaceutical Sciences Zhengzhou University 450001 Henan Zhengzhou China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment Zhengzhou University 450000 Henan Zhengzhou China
| | - Xinyu Yang
- School of Pharmaceutical Sciences Zhengzhou University 450001 Henan Zhengzhou China
| | - Shu Wang
- School of Pharmaceutical Sciences Zhengzhou University 450001 Henan Zhengzhou China
| | - Min Zhao
- School of Pharmaceutical Sciences Zhengzhou University 450001 Henan Zhengzhou China
| | - Bin Yu
- School of Pharmaceutical Sciences Zhengzhou University 450001 Henan Zhengzhou China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment Zhengzhou University 450000 Henan Zhengzhou China
| |
Collapse
|
22
|
Chen CL, Tseng PC, Satria RD, Nguyen TT, Tsai CC, Lin CF. Role of Glycogen Synthase Kinase-3 in Interferon-γ-Mediated Immune Hepatitis. Int J Mol Sci 2022; 23:ijms23094669. [PMID: 35563060 PMCID: PMC9101719 DOI: 10.3390/ijms23094669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 12/04/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3), a serine/threonine kinase, is a vital glycogen synthase regulator controlling glycogen synthesis, glucose metabolism, and insulin signaling. GSK-3 is widely expressed in different types of cells, and its abundant roles in cellular bioregulation have been speculated. Abnormal GSK-3 activation and inactivation may affect its original bioactivity. Moreover, active and inactive GSK-3 can regulate several cytosolic factors and modulate their diverse cellular functional roles. Studies in experimental liver disease models have illustrated the possible pathological role of GSK-3 in facilitating acute hepatic injury. Pharmacologically targeting GSK-3 is therefore suggested as a therapeutic strategy for liver protection. Furthermore, while the signaling transduction of GSK-3 facilitates proinflammatory interferon (IFN)-γ in vitro and in vivo, the blockade of GSK-3 can be protective, as shown by an IFN-γ-induced immune hepatitis model. In this study, we explored the possible regulation of GSK-3 and the potential relevance of GSK-3 blockade in IFN-γ-mediated immune hepatitis.
Collapse
Affiliation(s)
- Chia-Ling Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Po-Chun Tseng
- Core Laboratory of Immune Monitoring, Office of Research & Development, Taipei Medical University, Taipei 110, Taiwan;
| | - Rahmat Dani Satria
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (R.D.S.); (T.T.N.)
- Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Clinical Laboratory Installation, Dr. Sardjito Central General Hospital, Yogyakarta 55281, Indonesia
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Thi Thuy Nguyen
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (R.D.S.); (T.T.N.)
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Oncology, Hue University of Medicine and Pharmacy, Hue University, Hue City 530000, Vietnam
| | - Cheng-Chieh Tsai
- Department of Nursing, Chung Hwa University of Medical Technology, Tainan 703, Taiwan
- Department of Long Term Care Management, Chung Hwa University of Medical Technology, Tainan 703, Taiwan
- Correspondence: (C.-C.T.); (C.-F.L.)
| | - Chiou-Feng Lin
- Core Laboratory of Immune Monitoring, Office of Research & Development, Taipei Medical University, Taipei 110, Taiwan;
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (R.D.S.); (T.T.N.)
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (C.-C.T.); (C.-F.L.)
| |
Collapse
|
23
|
Heynen GJJE, Lisek K, Vogel R, Wulf-Goldenberg A, Alcaniz J, Montaudon E, Marangoni E, Birchmeier W. Targeting SHP2 phosphatase in breast cancer overcomes RTK-mediated resistance to PI3K inhibitors. Breast Cancer Res 2022; 24:23. [PMID: 35365185 PMCID: PMC8974145 DOI: 10.1186/s13058-022-01521-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/18/2022] [Indexed: 12/24/2022] Open
Abstract
Background PI3K signaling is frequently activated in breast cancer and is targeted by PI3K inhibitors. However, resistance of tumor cells to PI3K inhibition, often mediated by activated receptor tyrosine kinases, is commonly observed and reduces the potency of PI3K inhibitors. Therefore, new treatment strategies to overcome resistance to PI3K inhibitors are urgently needed to boost their efficacy. The phosphatase SHP2, which plays a crucial role in mediating signal transduction between receptor tyrosine kinases and both the PI3K and MAPK pathways, is a potential target for combination treatment. Methods We tested combinations of PI3K and SHP2 inhibitors in several experimental breast cancer models that are resistant to PI3K inhibition. Using cell culturing, biochemical and genetic approaches, we evaluated tumor cell proliferation and signaling output in cells treated with PI3K and SHP2 inhibitors. Results Combination treatment with PI3K and SHP2 inhibitors counteracted both acquired and intrinsic breast cancer cell resistance to PI3K inhibition that is mediated by activated receptor tyrosine kinases. Dual PI3K and SHP2 inhibition blocked proliferation and led to sustained inactivation of PI3K and MAPK signaling, where resistant cells rapidly re-activated these pathways upon PI3K inhibitor monotreatment. In addition, we demonstrate that overexpression of SHP2 induced resistance to PI3K inhibition, and that SHP2 was frequently activated during the development of PI3K inhibitor resistance after prolonged treatment of sensitive cells. Conclusions Our results highlight the importance of SHP2 as a player in resistance to PI3K inhibitors. Combination treatment with PI3K and SHP2 inhibitors could pave the way for significant improvements in therapies for breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-022-01521-3.
Collapse
Affiliation(s)
- Guus J J E Heynen
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125, Berlin, Germany.
| | - Kamil Lisek
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Regina Vogel
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Annika Wulf-Goldenberg
- Experimental and Pharmacological Oncology (EPO), Campus Berlin-Buch, Building 82, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Joshua Alcaniz
- Experimental and Pharmacological Oncology (EPO), Campus Berlin-Buch, Building 82, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Elodie Montaudon
- Preclinical Investigation Laboratory, Institut Curie, 20 Rue d'Ulm, 75248, Paris, France
| | - Elisabetta Marangoni
- Preclinical Investigation Laboratory, Institut Curie, 20 Rue d'Ulm, 75248, Paris, France
| | - Walter Birchmeier
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| |
Collapse
|
24
|
Pfeiffer A, Franciosa G, Locard-Paulet M, Piga I, Reckzeh K, Vemulapalli V, Blacklow SC, Theilgaard-Mönch K, Jensen LJ, Olsen JV. Phosphorylation of SHP2 at Tyr62 enables acquired resistance to SHP2 allosteric inhibitors in FLT3-ITD-driven AML. Cancer Res 2022; 82:2141-2155. [PMID: 35311954 DOI: 10.1158/0008-5472.can-21-0548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 12/17/2021] [Accepted: 03/17/2022] [Indexed: 11/16/2022]
Abstract
The protein tyrosine phosphatase SHP2 is crucial for oncogenic transformation of acute myeloid leukemia (AML) cells expressing mutated receptor tyrosine kinases (RTK). SHP2 is required for full RAS-ERK activation to promote cell proliferation and survival programs. Allosteric SHP2 inhibitors act by stabilizing SHP2 in its auto-inhibited conformation and are currently being tested in clinical trials for tumors with overactivation of the RAS/ERK pathway, alone and in various drug combinations. In this study, we established cells with acquired resistance to the allosteric SHP2 inhibitor SHP099 from two FLT3-ITD-positive AML cell lines. Label-free and isobaric labeling quantitative mass spectrometry-based phosphoproteomics of these resistant models demonstrated that AML cells can restore phosphorylated ERK (pERK) in the presence of SHP099, thus developing adaptive resistance. Mechanistically, SHP2 inhibition induced tyrosine phosphorylation and feedback-driven activation of the FLT3 receptor, which in turn phosphorylated SHP2 on tyrosine 62. This phosphorylation stabilized SHP2 in its open conformation, preventing SHP099 binding and conferring resistance. Combinatorial inhibition of SHP2 and MEK or FLT3 prevented pERK rebound and resistant cell growth. The same mechanism was observed in a FLT3-mutated B-ALL cell line and in the inv(16)/KitD816Y AML mouse model, but allosteric inhibition of Shp2 did not impair the clonogenic ability of normal bone marrow progenitors. Together, these results support the future use of SHP2 inhibitor combinations for clinical applications.
Collapse
Affiliation(s)
| | | | | | - Ilaria Piga
- Istituto Oncologico Veneto IOV - IRCCS, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Role of oncogenic KRAS in the prognosis, diagnosis and treatment of colorectal cancer. Mol Cancer 2021; 20:143. [PMID: 34742312 PMCID: PMC8571891 DOI: 10.1186/s12943-021-01441-4] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/04/2021] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease at the cellular and molecular levels. Kirsten rat sarcoma (KRAS) is a commonly mutated oncogene in CRC, with mutations in approximately 40% of all CRC cases; its mutations result in constitutive activation of the KRAS protein, which acts as a molecular switch to persistently stimulate downstream signaling pathways, including cell proliferation and survival, thereby leading to tumorigenesis. Patients whose CRC harbors KRAS mutations have a dismal prognosis. Currently, KRAS mutation testing is a routine clinical practice before treating metastatic cases, and the approaches developed to detect KRAS mutations have exhibited favorable sensitivity and accuracy. Due to the presence of KRAS mutations, this group of CRC patients requires more precise therapies. However, KRAS was historically thought to be an undruggable target until the development of KRASG12C allele-specific inhibitors. These promising inhibitors may provide novel strategies to treat KRAS-mutant CRC. Here, we provide an overview of the role of KRAS in the prognosis, diagnosis and treatment of CRC.
Collapse
|
26
|
The Q61H mutation decouples KRAS from upstream regulation and renders cancer cells resistant to SHP2 inhibitors. Nat Commun 2021; 12:6274. [PMID: 34725361 PMCID: PMC8560773 DOI: 10.1038/s41467-021-26526-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 09/23/2021] [Indexed: 12/31/2022] Open
Abstract
Cancer cells bearing distinct KRAS mutations exhibit variable sensitivity to SHP2 inhibitors (SHP2i). Here we show that cells harboring KRAS Q61H are uniquely resistant to SHP2i, and investigate the underlying mechanisms using biophysics, molecular dynamics, and cell-based approaches. Q61H mutation impairs intrinsic and GAP-mediated GTP hydrolysis, and impedes activation by SOS1, but does not alter tyrosyl phosphorylation. Wild-type and Q61H-mutant KRAS are both phosphorylated by Src on Tyr32 and Tyr64 and dephosphorylated by SHP2, however, SHP2i does not reduce ERK phosphorylation in KRAS Q61H cells. Phosphorylation of wild-type and Gly12-mutant KRAS, which are associated with sensitivity to SHP2i, confers resistance to regulation by GAP and GEF activities and impairs binding to RAF, whereas the near-complete GAP/GEF-resistance of KRAS Q61H remains unaltered, and high-affinity RAF interaction is retained. SHP2 can stimulate KRAS signaling by modulating GEF/GAP activities and dephosphorylating KRAS, processes that fail to regulate signaling of the Q61H mutant. SHP2 promotes RAS-driven MAPK signalling, but it is unclear why cancer cells with distinct KRAS mutations exhibit differential sensitivity to SHP2 inhibition. Here the authors show that KRAS Q61H is decoupled from SHP2- mediated upstream regulation, thus Q61H pancreatic cancer cells maintain MAPK signalling and are refractory to SHP2 inhibitors.
Collapse
|
27
|
Keshishian H, McDonald ER, Mundt F, Melanson R, Krug K, Porter DA, Wallace L, Forestier D, Rabasha B, Marlow SE, Jane‐Valbuena J, Todres E, Specht H, Robinson ML, Jean Beltran PM, Babur O, Olive ME, Golji J, Kuhn E, Burgess M, MacMullan MA, Rejtar T, Wang K, Mani DR, Satpathy S, Gillette MA, Sellers WR, Carr SA. A highly multiplexed quantitative phosphosite assay for biology and preclinical studies. Mol Syst Biol 2021; 17:e10156. [PMID: 34569154 PMCID: PMC8474009 DOI: 10.15252/msb.202010156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
Reliable methods to quantify dynamic signaling changes across diverse pathways are needed to better understand the effects of disease and drug treatment in cells and tissues but are presently lacking. Here, we present SigPath, a targeted mass spectrometry (MS) assay that measures 284 phosphosites in 200 phosphoproteins of biological interest. SigPath probes a broad swath of signaling biology with high throughput and quantitative precision. We applied the assay to investigate changes in phospho-signaling in drug-treated cancer cell lines, breast cancer preclinical models, and human medulloblastoma tumors. In addition to validating previous findings, SigPath detected and quantified a large number of differentially regulated phosphosites newly associated with disease models and human tumors at baseline or with drug perturbation. Our results highlight the potential of SigPath to monitor phosphoproteomic signaling events and to nominate mechanistic hypotheses regarding oncogenesis, response, and resistance to therapy.
Collapse
Affiliation(s)
- Hasmik Keshishian
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | | | - Filip Mundt
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
- Present address:
Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
- Present address:
Department of Oncology and PathologyScience for Life LaboratoryKarolinska InstitutetStockholmSweden
| | - Randy Melanson
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Dale A Porter
- Novartis Institute of Biomedical ResearchCambridgeMAUSA
- Present address:
Cedilla TherapeuticsCambridgeMAUSA
| | - Luke Wallace
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Dominique Forestier
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Bokang Rabasha
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Sara E Marlow
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Judit Jane‐Valbuena
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Ellen Todres
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Harrison Specht
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | | | | | - Ozgun Babur
- Computer Science DepartmentUniversity of Massachusetts BostonBostonMAUSA
| | - Meagan E Olive
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Javad Golji
- Novartis Institute of Biomedical ResearchCambridgeMAUSA
| | - Eric Kuhn
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Michael Burgess
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Melanie A MacMullan
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Tomas Rejtar
- Novartis Institute of Biomedical ResearchCambridgeMAUSA
| | - Karen Wang
- Novartis Institute of Biomedical ResearchCambridgeMAUSA
| | - DR Mani
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
- Division of Pulmonary and Critical Care MedicineMassachusetts General HospitalBostonMAUSA
| | - William R Sellers
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
- Department of Medical OncologyDana‐Farber Cancer Institute and Harvard Medical SchoolBostonMAUSA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| |
Collapse
|
28
|
Wu X, Wang L, Pearson NA, Renuse S, Cheng R, Liang Y, Mun DG, Madugundu AK, Xu Y, Gill PS, Pandey A. Quantitative Tyrosine Phosphoproteome Profiling of AXL Receptor Tyrosine Kinase Signaling Network. Cancers (Basel) 2021; 13:cancers13164234. [PMID: 34439388 PMCID: PMC8394654 DOI: 10.3390/cancers13164234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/15/2021] [Indexed: 11/28/2022] Open
Abstract
Simple Summary AXL is a receptor tyrosine kinase belonging to the TAM (Tyro3, Axl and Mer) family. The AXL protein plays an important role in promoting cancer development, such as proliferation, migration, invasion and survival of cancer cells. In this study, we used mass spectrometry-based proteomics to quantify the cancer signaling regulated by AXL activation. Our study identified more than 1000 phosphotyrosine sites and discovered that activation of AXL can upregulate multiple cancer-promoting and cell migration/invasion-related signaling pathways. We also observed significant crosstalk as evidenced by rapid phosphorylation of multiple receptor tyrosine kinases and protein tyrosine phosphatases, including PTPN11 and PTPRA, upon GAS6 stimulation. These discoveries should serve as a potentially useful resource for studying AXL functions as well as for the development of effective therapeutic options to target AXL. Abstract Overexpression and amplification of AXL receptor tyrosine kinase (RTK) has been found in several hematologic and solid malignancies. Activation of AXL can enhance tumor-promoting processes such as cancer cell proliferation, migration, invasion and survival. Despite the important role of AXL in cancer development, a deep and quantitative mapping of its temporal dynamic signaling transduction has not yet been reported. Here, we used a TMT labeling-based quantitative proteomics approach to characterize the temporal dynamics of the phosphotyrosine proteome induced by AXL activation. We identified >1100 phosphotyrosine sites and observed a widespread upregulation of tyrosine phosphorylation induced by GAS6 stimulation. We also detected several tyrosine sites whose phosphorylation levels were reduced upon AXL activation. Gene set enrichment-based pathway analysis indicated the activation of several cancer-promoting and cell migration/invasion-related signaling pathways, including RAS, EGFR, focal adhesion, VEGFR and cytoskeletal rearrangement pathways. We also observed a rapid induction of phosphorylation of protein tyrosine phosphatases, including PTPN11 and PTPRA, upon GAS6 stimulation. The novel molecules downstream of AXL identified in this study along with the detailed global quantitative map elucidating the temporal dynamics of AXL activation should not only help understand the oncogenic role of AXL, but also aid in developing therapeutic options to effectively target AXL.
Collapse
Affiliation(s)
- Xinyan Wu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (L.W.); (S.R.); (R.C.); (D.-G.M.); (A.K.M.); (Y.X.)
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA;
- Correspondence: (X.W.); (A.P.); Tel.: +1-507-293-9614 (X.W.); +1-507-773-9564 (A.P.)
| | - Li Wang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (L.W.); (S.R.); (R.C.); (D.-G.M.); (A.K.M.); (Y.X.)
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA;
| | - Nicole A. Pearson
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA;
| | - Santosh Renuse
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (L.W.); (S.R.); (R.C.); (D.-G.M.); (A.K.M.); (Y.X.)
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Ran Cheng
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (L.W.); (S.R.); (R.C.); (D.-G.M.); (A.K.M.); (Y.X.)
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA;
| | - Ye Liang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Dong-Gi Mun
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (L.W.); (S.R.); (R.C.); (D.-G.M.); (A.K.M.); (Y.X.)
| | - Anil K. Madugundu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (L.W.); (S.R.); (R.C.); (D.-G.M.); (A.K.M.); (Y.X.)
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Yaoyu Xu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (L.W.); (S.R.); (R.C.); (D.-G.M.); (A.K.M.); (Y.X.)
| | - Parkash S. Gill
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA;
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (L.W.); (S.R.); (R.C.); (D.-G.M.); (A.K.M.); (Y.X.)
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA;
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, Karnataka, India
- Correspondence: (X.W.); (A.P.); Tel.: +1-507-293-9614 (X.W.); +1-507-773-9564 (A.P.)
| |
Collapse
|
29
|
Double-edged roles of protein tyrosine phosphatase SHP2 in cancer and its inhibitors in clinical trials. Pharmacol Ther 2021; 230:107966. [PMID: 34403682 DOI: 10.1016/j.pharmthera.2021.107966] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022]
Abstract
Phosphorylation is a reversible post-translational modification regulated by phosphorylase and dephosphorylase to mediate important cellular events. Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) encoded by PTPN11 is the first identified oncogenic protein in protein tyrosine phosphatases family. Serving as a convergent node, SHP2 is involved in multiple cascade signaling pathways including Ras-Raf-MEK-ERK, PI3K-AKT, JAK-STAT and PD-1/PD-L1 pathways. Especially, the double-edged roles of SHP2 based on the substrate specificity in various biological contexts dramatically increase the effect complexity in different SHP2-associated diseases. Evidences suggest that by collaborating with other mutations in associated pathways, dysregulation of SHP2 contributes to the pathogenesis of different cancers, making SHP2 a promising therapeutic target for cancer treatment. SHP2 can either act as oncogenic factor or tumor suppressor in different diseases, and both the conserved catalytic dephosphorylation mechanism and the unique allosteric regulation mechanism of SHP2 provide opportunities for the development of SHP2 inhibitors and activators. To date, several small-molecule SHP2 inhibitors have advanced into clinical trials for mono- or combined therapy of cancers. Moreover, SHP2 activators and proteolysis-targeting chimera (PROTAC)-based degraders also display therapeutic promise. In this review, we comprehensively summarize the overall structures, regulation mechanisms, double-edged roles of SHP2 in both physiological and carcinogenic pathways, and SHP2 inhibitors in clinical trials. SHP2 activators and degraders are also briefly discussed. This review aims to provide in-depth understanding of the biological roles of SHP2 and highlight therapeutic potential of targeting SHP2.
Collapse
|
30
|
Heppner DE, Eck MJ. A structural perspective on targeting the RTK/Ras/MAP kinase pathway in cancer. Protein Sci 2021; 30:1535-1553. [PMID: 34008902 PMCID: PMC8284588 DOI: 10.1002/pro.4125] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023]
Abstract
Precision oncology is premised on identifying and drugging proteins and pathways that drive tumorigenesis or are required for survival of tumor cells. Across diverse cancer types, the signaling pathway emanating from receptor tyrosine kinases on the cell surface to RAS and the MAP kinase pathway is the most frequent target of oncogenic mutations, and key proteins in this signaling axis including EGFR, SHP2, RAS, BRAF, and MEK have long been a focus in cancer drug discovery. In this review, we provide an overview of historical and recent efforts to develop inhibitors targeting these nodes with an emphasis on the role that an understanding of protein structure and regulation has played in inhibitor discovery and characterization. Beyond its well-established role in structure-based drug design, structural biology has revealed mechanisms of allosteric regulation, distinct effects of activating oncogenic mutations, and other vulnerabilities that have opened new avenues in precision cancer drug discovery.
Collapse
Affiliation(s)
- David E. Heppner
- Department of ChemistryUniversity at Buffalo, State University of New YorkBuffaloNew YorkUSA
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Michael J. Eck
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
31
|
Nensi S, Ashton J. ALK-positive non-small cell lung cancer; potential combination drug treatments. Curr Cancer Drug Targets 2021; 21:737-748. [PMID: 34325640 DOI: 10.2174/1568009621666210729100647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
Advances in chromosomally rearranged ALK positive non-small cell lung cancer have been dramatic in only the last few years. Survival times have improved dramatically due to the introduction of ever more efficacious ALK inhibitors. These improvements have been due largely to improvements in blood-brain barrier penetration and the breadth of ligand binding pocket mutations against which the drugs are effective. However, the advances maybe slow as compared to the frequency of cancers with compound resistance mutations are appearing, suggesting the need to develop multiple ALK inhibitors to target different compound mutations.Another research area that promises to provide further gains is the use of drug combinations, with an ALK inhibitor combined with a drug targeting a "second driver" to overcome resistance. In this review, the range of secondary targets for ALK+ lung cancer and the potential for their clinical success are reviewed.
Collapse
Affiliation(s)
- Shrestha Nensi
- Department of Pharmacology & Toxicology, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - John Ashton
- Department of Pharmacology & Toxicology, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
32
|
Zhang X, Maity TK, Ross KE, Qi Y, Cultraro CM, Bahta M, Pitts S, Keswani M, Gao S, Nguyen KDP, Cowart J, Kirkali F, Wu C, Guha U. Alterations in the Global Proteome and Phosphoproteome in Third Generation EGFR TKI Resistance Reveal Drug Targets to Circumvent Resistance. Cancer Res 2021; 81:3051-3066. [PMID: 33727228 PMCID: PMC8182571 DOI: 10.1158/0008-5472.can-20-2435] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/08/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
Lung cancer is the leading cause of cancer mortality worldwide. The treatment of patients with lung cancer harboring mutant EGFR with orally administered EGFR tyrosine kinase inhibitors (TKI) has been a paradigm shift. Osimertinib and rociletinib are third-generation irreversible EGFR TKIs targeting the EGFR T790M mutation. Osimertinib is the current standard of care for patients with EGFR mutations due to increased efficacy, lower side effects, and enhanced brain penetrance. Unfortunately, all patients develop resistance. Genomic approaches have primarily been used to interrogate resistance mechanisms. Here we characterized the proteome and phosphoproteome of a series of isogenic EGFR-mutant lung adenocarcinoma cell lines that are either sensitive or resistant to these drugs, comprising the most comprehensive proteomic dataset resource to date to investigate third generation EGFR TKI resistance in lung adenocarcinoma. Unbiased global quantitative mass spectrometry uncovered alterations in signaling pathways, revealed a proteomic signature of epithelial-mesenchymal transition, and identified kinases and phosphatases with altered expression and phosphorylation in TKI-resistant cells. Decreased tyrosine phosphorylation of key sites in the phosphatase SHP2 suggests its inhibition, resulting in subsequent inhibition of RAS/MAPK and activation of PI3K/AKT pathways. Anticorrelation analyses of this phosphoproteomic dataset with published drug-induced P100 phosphoproteomic datasets from the Library of Integrated Network-Based Cellular Signatures program predicted drugs with the potential to overcome EGFR TKI resistance. The PI3K/MTOR inhibitor dactolisib in combination with osimertinib overcame resistance both in vitro and in vivo. Taken together, this study reveals global proteomic alterations upon third generation EGFR TKI resistance and highlights potential novel approaches to overcome resistance. SIGNIFICANCE: Global quantitative proteomics reveals changes in the proteome and phosphoproteome in lung cancer cells resistant to third generation EGFR TKIs, identifying the PI3K/mTOR inhibitor dactolisib as a potential approach to overcome resistance.
Collapse
Affiliation(s)
- Xu Zhang
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| | - Tapan K Maity
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Karen E Ross
- Dept. of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C
| | - Yue Qi
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Constance M Cultraro
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Meriam Bahta
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Stephanie Pitts
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Meghana Keswani
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Shaojian Gao
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Khoa Dang P Nguyen
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Julie Cowart
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware
| | - Fatos Kirkali
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Cathy Wu
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
33
|
Marasco M, Kirkpatrick J, Nanna V, Sikorska J, Carlomagno T. Phosphotyrosine couples peptide binding and SHP2 activation via a dynamic allosteric network. Comput Struct Biotechnol J 2021; 19:2398-2415. [PMID: 34025932 PMCID: PMC8113834 DOI: 10.1016/j.csbj.2021.04.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 11/18/2022] Open
Abstract
SHP2 is a ubiquitous protein tyrosine phosphatase, whose activity is regulated by phosphotyrosine (pY)-containing peptides generated in response to extracellular stimuli. Its crystal structure reveals a closed, auto-inhibited conformation in which the N-terminal Src homology 2 (N-SH2) domain occludes the catalytic site of the phosphatase (PTP) domain. High-affinity mono-phosphorylated peptides promote catalytic activity by binding to N-SH2 and disrupting the interaction with the PTP. The mechanism behind this process is not entirely clear, especially because N-SH2 is incapable of accommodating complete peptide binding when SHP2 is in the auto-inhibited state. Here, we show that pY performs an essential role in this process; in addition to its contribution to overall peptide-binding energy, pY-recognition leads to enhanced dynamics of the N-SH2 EF and BG loops via an allosteric communication network, which destabilizes the N-SH2-PTP interaction surface and simultaneously generates a fully accessible binding pocket for the C-terminal half of the phosphopeptide. Subsequently, full binding of the phosphopeptide is associated with the stabilization of activated SHP2. We demonstrate that this allosteric network exists only in N-SH2, which is directly involved in the regulation of SHP2 activity, while the C-terminal SH2 domain (C-SH2) functions primarily to recruit high-affinity bidentate phosphopeptides.
Collapse
Affiliation(s)
- Michelangelo Marasco
- Leibniz University Hannover, Center of Biomolecular Drug Research and Institute of Organic Chemistry, Schneiderberg 38, 30167 Hannover, Germany
| | - John Kirkpatrick
- Leibniz University Hannover, Center of Biomolecular Drug Research and Institute of Organic Chemistry, Schneiderberg 38, 30167 Hannover, Germany
- Helmholtz Center for Infection Research, Group of NMR-based Structural Chemistry, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Vittoria Nanna
- Leibniz University Hannover, Center of Biomolecular Drug Research and Institute of Organic Chemistry, Schneiderberg 38, 30167 Hannover, Germany
| | - Justyna Sikorska
- Helmholtz Center for Infection Research, Group of NMR-based Structural Chemistry, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Teresa Carlomagno
- Leibniz University Hannover, Center of Biomolecular Drug Research and Institute of Organic Chemistry, Schneiderberg 38, 30167 Hannover, Germany
- Helmholtz Center for Infection Research, Group of NMR-based Structural Chemistry, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
34
|
Vemulapalli V, Chylek LA, Erickson A, Pfeiffer A, Gabriel KH, LaRochelle J, Subramanian K, Cao R, Stegmaier K, Mohseni M, LaMarche MJ, Acker MG, Sorger PK, Gygi SP, Blacklow SC. Time-resolved phosphoproteomics reveals scaffolding and catalysis-responsive patterns of SHP2-dependent signaling. eLife 2021; 10:64251. [PMID: 33755016 PMCID: PMC8024022 DOI: 10.7554/elife.64251] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/21/2021] [Indexed: 12/21/2022] Open
Abstract
SHP2 is a protein tyrosine phosphatase that normally potentiates intracellular signaling by growth factors, antigen receptors, and some cytokines, yet is frequently mutated in human cancer. Here, we examine the role of SHP2 in the responses of breast cancer cells to EGF by monitoring phosphoproteome dynamics when SHP2 is allosterically inhibited by SHP099. The dynamics of phosphotyrosine abundance at more than 400 tyrosine residues reveal six distinct response signatures following SHP099 treatment and washout. Remarkably, in addition to newly identified substrate sites on proteins such as occludin, ARHGAP35, and PLCγ2, another class of sites shows reduced phosphotyrosine abundance upon SHP2 inhibition. Sites of decreased phospho-abundance are enriched on proteins with two nearby phosphotyrosine residues, which can be directly protected from dephosphorylation by the paired SH2 domains of SHP2 itself. These findings highlight the distinct roles of the scaffolding and catalytic activities of SHP2 in effecting a transmembrane signaling response.
Collapse
Affiliation(s)
- Vidyasiri Vemulapalli
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston, Boston, United States.,Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Lily A Chylek
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, United States
| | - Alison Erickson
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Anamarija Pfeiffer
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Khal-Hentz Gabriel
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston, Boston, United States.,Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Jonathan LaRochelle
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston, Boston, United States.,Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Kartik Subramanian
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, United States
| | - Ruili Cao
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston, Boston, United States
| | - Kimberley Stegmaier
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, United States
| | - Morvarid Mohseni
- Novartis Institutes for Biomedical Research, Cambridge, United States
| | | | - Michael G Acker
- Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Stephen C Blacklow
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston, Boston, United States.,Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
35
|
Yi JS, Perla S, Huang Y, Mizuno K, Giordano FJ, Vinks AA, Bennett AM. Low-dose Dasatinib Ameliorates Hypertrophic Cardiomyopathy in Noonan Syndrome with Multiple Lentigines. Cardiovasc Drugs Ther 2021; 36:589-604. [PMID: 33689087 PMCID: PMC9270274 DOI: 10.1007/s10557-021-07169-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2021] [Indexed: 11/24/2022]
Abstract
Purpose Noonan syndrome with multiple lentigines (NSML) is an autosomal dominant disorder presenting with hypertrophic cardiomyopathy (HCM). Up to 85% of NSML cases are caused by mutations in the PTPN11 gene that encodes for the Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 2 (SHP2). We previously showed that low-dose dasatinib protects from the development of cardiac fibrosis in a mouse model of NSML harboring a Ptpn11Y279C mutation. This study is performed to determine the pharmacokinetic (PK) and pharmacodynamic (PD) properties of a low-dose of dasatinib in NSML mice and to determine its effectiveness in ameliorating the development of HCM. Methods Dasatinib was administered intraperitoneally into NSML mice with doses ranging from 0.05 to 0.5 mg/kg. PK parameters of dasatinib in NSML mice were determined. PD parameters were obtained for biochemical analyses from heart tissue. Dasatinib-treated NSML mice (0.1 mg/kg) were subjected to echocardiography and assessment of markers of HCM by qRT-PCR. Transcriptome analysis was performed from the heart tissue of low-dose dasatinib-treated mice. Results Low-dose dasatinib exhibited PK properties that were linear across doses in NSML mice. Dasatinib treatment of between 0.05 and 0.5 mg/kg in NSML mice yielded an exposure-dependent inhibition of c-Src and PZR tyrosyl phosphorylation and inhibited AKT phosphorylation. We found that doses as low as 0.1 mg/kg of dasatinib prevented HCM in NSML mice. Transcriptome analysis identified differentially expressed HCM-associated genes in the heart of NSML mice that were reverted to wild type levels by low-dose dasatinib administration. Conclusion These data demonstrate that low-dose dasatinib exhibits desirable therapeutic PK properties that is sufficient for effective target engagement to ameliorate HCM progression in NSML mice. These data demonstrate that low-dose dasatinib treatment may be an effective therapy against HCM in NSML patients. Supplementary Information The online version contains supplementary material available at 10.1007/s10557-021-07169-z.
Collapse
Affiliation(s)
- Jae-Sung Yi
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Sravan Perla
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yan Huang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Kana Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Frank J Giordano
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Alexander A Vinks
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Anton M Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.,Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
36
|
Protein Tyrosine Phosphatase SHP2 Suppresses Host Innate Immunity against Influenza A Virus by Regulating EGFR-Mediated Signaling. J Virol 2021; 95:JVI.02001-20. [PMID: 33361428 DOI: 10.1128/jvi.02001-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/13/2020] [Indexed: 12/14/2022] Open
Abstract
Influenza A virus (IAV) is a highly contagious pathogen, causing acute respiratory illnesses in human beings and animals and frequently giving rise to epidemic outbreaks. Evasion by IAV of host immunity facilitates viral replication and spread, which can be initiated through various mechanisms, including epidermal growth factor receptor (EGFR) activation. However, how EGFR mediates the suppression of antiviral systems remains unclear. Here, we examined host innate immune responses and their relevant signaling to EGFR upon IAV infection. IAV was found to induce the phosphorylation of EGFR and extracellular signal-regulated kinase (ERK) at an early stage of infection. Inhibition of EGFR or ERK suppressed the viral replication but increased the expression of type I and type III interferons (IFNs) and interferon-stimulated genes (ISGs), supporting the idea that IAV escapes from antiviral innate immunity by activating EGFR/ERK signaling. Meanwhile, IAV infection also induced the activation of Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2). Pharmacological inhibition or small interfering RNA (siRNA)-based silencing of SHP2 enhanced the IFN-dependent antiviral activity and reduced virion production. Furthermore, knockdown of SHP2 attenuated the EGFR-mediated ERK phosphorylation triggered by viral infection or EGF stimulation. Conversely, ectopic expression of constitutively active SHP2 noticeably promoted ERK activation and viral replication, concomitant with diminished immune function. Altogether, the results indicate that SHP2 is crucial for IAV-induced activation of the EGFR/ERK pathway to suppress host antiviral responses.IMPORTANCE Viral immune evasion is the most important strategy whereby viruses evolve for their survival. This work shows that influenza A virus (IAV) suppressed the antiviral innate immunity through downregulation of IFNs and ISGs by activating EGFR/ERK signaling. Meanwhile, IAV also induced the activation of protein tyrosine phosphatase SHP2, which was found to be responsible for modulating the EGFR-mediated ERK activity and subsequent antiviral effectiveness both in vitro and in vivo The results suggest that SHP2 is a key signal transducer between EGFR and ERK and plays a crucial role in suppressing host innate immunity during IAV infection. The finding enhances our understanding of influenza immune evasion and provides a new therapeutic approach to viral infection.
Collapse
|
37
|
Tripathi RKP, Ayyannan SR. Emerging chemical scaffolds with potential SHP2 phosphatase inhibitory capabilities - A comprehensive review. Chem Biol Drug Des 2020; 97:721-773. [PMID: 33191603 DOI: 10.1111/cbdd.13807] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
The drug discovery panorama is cluttered with promising therapeutic targets that have been deserted because of inadequate authentication and screening failures. Molecular targets formerly tagged as "undruggable" are nowadays being more cautiously cross-examined, and whilst they stay intriguing, numerous targets are emerging more accessible. Protein tyrosine phosphatases (PTPs) excellently exemplifies a class of molecular targets that have transpired as druggable, with several small molecules and antibodies recently turned available for further development. In this respect, SHP2, a PTP, has emerged as one of the potential targets in the current pharmacological research, particularly for cancer, due to its critical role in various signalling pathways. Recently, few molecules with excellent potency have entered clinical trials, but none could reach the clinic. Consequently, search for novel, non-toxic, and specific SHP2 inhibitors are on purview. In this review, general aspects of SHP2 including its structure and mechanistic role in carcinogenesis have been presented. It also sheds light on the development of novel molecular architectures belonging to diverse chemical classes that have been proposed as SHP2-specific inhibitors along with their structure-activity relationships (SARs), stemming from chemical, mechanism-based and computer-aided studies reported since January 2015 to July 2020 (excluding patents), focusing on their potency and selectivity. The encyclopedic facts and discussions presented herein will hopefully facilitate researchers to design new ligands with better efficacy and selectivity against SHP2.
Collapse
Affiliation(s)
- Rati Kailash Prasad Tripathi
- Department of Pharmaceutical Science, Sushruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar, Assam, India.,Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
38
|
Marshall CB, KleinJan F, Gebregiworgis T, Lee KY, Fang Z, Eves BJ, Liu NF, Gasmi-Seabrook GMC, Enomoto M, Ikura M. NMR in integrated biophysical drug discovery for RAS: past, present, and future. JOURNAL OF BIOMOLECULAR NMR 2020; 74:531-554. [PMID: 32804298 DOI: 10.1007/s10858-020-00338-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Mutations in RAS oncogenes occur in ~ 30% of human cancers, with KRAS being the most frequently altered isoform. RAS proteins comprise a conserved GTPase domain and a C-terminal lipid-modified tail that is unique to each isoform. The GTPase domain is a 'switch' that regulates multiple signaling cascades that drive cell growth and proliferation when activated by binding GTP, and the signal is terminated by GTP hydrolysis. Oncogenic RAS mutations disrupt the GTPase cycle, leading to accumulation of the activated GTP-bound state and promoting proliferation. RAS is a key target in oncology, however it lacks classic druggable pockets and has been extremely challenging to target. RAS signaling has thus been targeted indirectly, by harnessing key downstream effectors as well as upstream regulators, or disrupting the proper membrane localization required for signaling, by inhibiting either lipid modification or 'carrier' proteins. As a small (20 kDa) protein with multiple conformers in dynamic equilibrium, RAS is an excellent candidate for NMR-driven characterization and screening for direct inhibitors. Several molecules have been discovered that bind RAS and stabilize shallow pockets through conformational selection, and recent compounds have achieved substantial improvements in affinity. NMR-derived insight into targeting the RAS-membrane interface has revealed a new strategy to enhance the potency of small molecules, while another approach has been development of peptidyl inhibitors that bind through large interfaces rather than deep pockets. Remarkable progress has been made with mutation-specific covalent inhibitors that target the thiol of a G12C mutant, and these are now in clinical trials. Here we review the history of RAS inhibitor development and highlight the utility of NMR and integrated biophysical approaches in RAS drug discovery.
Collapse
Affiliation(s)
- Christopher B Marshall
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada.
| | - Fenneke KleinJan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Teklab Gebregiworgis
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Ki-Young Lee
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Zhenhao Fang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Ben J Eves
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Ningdi F Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | | | - Masahiro Enomoto
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada.
| |
Collapse
|
39
|
Gillette MA, Satpathy S, Cao S, Dhanasekaran SM, Vasaikar SV, Krug K, Petralia F, Li Y, Liang WW, Reva B, Krek A, Ji J, Song X, Liu W, Hong R, Yao L, Blumenberg L, Savage SR, Wendl MC, Wen B, Li K, Tang LC, MacMullan MA, Avanessian SC, Kane MH, Newton CJ, Cornwell M, Kothadia RB, Ma W, Yoo S, Mannan R, Vats P, Kumar-Sinha C, Kawaler EA, Omelchenko T, Colaprico A, Geffen Y, Maruvka YE, da Veiga Leprevost F, Wiznerowicz M, Gümüş ZH, Veluswamy RR, Hostetter G, Heiman DI, Wyczalkowski MA, Hiltke T, Mesri M, Kinsinger CR, Boja ES, Omenn GS, Chinnaiyan AM, Rodriguez H, Li QK, Jewell SD, Thiagarajan M, Getz G, Zhang B, Fenyö D, Ruggles KV, Cieslik MP, Robles AI, Clauser KR, Govindan R, Wang P, Nesvizhskii AI, Ding L, Mani DR, Carr SA. Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma. Cell 2020; 182:200-225.e35. [PMID: 32649874 PMCID: PMC7373300 DOI: 10.1016/j.cell.2020.06.013] [Citation(s) in RCA: 475] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/06/2020] [Accepted: 06/03/2020] [Indexed: 12/24/2022]
Abstract
To explore the biology of lung adenocarcinoma (LUAD) and identify new therapeutic opportunities, we performed comprehensive proteogenomic characterization of 110 tumors and 101 matched normal adjacent tissues (NATs) incorporating genomics, epigenomics, deep-scale proteomics, phosphoproteomics, and acetylproteomics. Multi-omics clustering revealed four subgroups defined by key driver mutations, country, and gender. Proteomic and phosphoproteomic data illuminated biology downstream of copy number aberrations, somatic mutations, and fusions and identified therapeutic vulnerabilities associated with driver events involving KRAS, EGFR, and ALK. Immune subtyping revealed a complex landscape, reinforced the association of STK11 with immune-cold behavior, and underscored a potential immunosuppressive role of neutrophil degranulation. Smoking-associated LUADs showed correlation with other environmental exposure signatures and a field effect in NATs. Matched NATs allowed identification of differentially expressed proteins with potential diagnostic and therapeutic utility. This proteogenomics dataset represents a unique public resource for researchers and clinicians seeking to better understand and treat lung adenocarcinomas.
Collapse
Affiliation(s)
- Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, 02115, USA.
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| | - Song Cao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | | - Suhas V Vasaikar
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yize Li
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Wen-Wei Liang
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Boris Reva
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jiayi Ji
- Department of Population Health Science and Policy; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xiaoyu Song
- Department of Population Health Science and Policy; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wenke Liu
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Runyu Hong
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Lijun Yao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Lili Blumenberg
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael C Wendl
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kai Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lauren C Tang
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Melanie A MacMullan
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Shayan C Avanessian
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - M Harry Kane
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | | | - MacIntosh Cornwell
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ramani B Kothadia
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seungyeul Yoo
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rahul Mannan
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pankaj Vats
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Emily A Kawaler
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Tatiana Omelchenko
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Antonio Colaprico
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Yosef E Maruvka
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | | | - Maciej Wiznerowicz
- Poznan University of Medical Sciences, Poznań, 61-701, Poland; International Institute for Molecular Oncology, Poznań, 60-203, Poland
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rajwanth R Veluswamy
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - David I Heiman
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Matthew A Wyczalkowski
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Qing Kay Li
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, 21224, USA
| | - Scott D Jewell
- Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Kelly V Ruggles
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Marcin P Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Ramaswamy Govindan
- Division of Oncology and Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Li Ding
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
40
|
Abstract
RAS (KRAS, NRAS and HRAS) is the most frequently mutated gene family in cancers, and, consequently, investigators have sought an effective RAS inhibitor for more than three decades. Even 10 years ago, RAS inhibitors were so elusive that RAS was termed 'undruggable'. Now, with the success of allele-specific covalent inhibitors against the most frequently mutated version of RAS in non-small-cell lung cancer, KRASG12C, we have the opportunity to evaluate the best therapeutic strategies to treat RAS-driven cancers. Mutation-specific biochemical properties, as well as the tissue of origin, are likely to affect the effectiveness of such treatments. Currently, direct inhibition of mutant RAS through allele-specific inhibitors provides the best therapeutic approach. Therapies that target RAS-activating pathways or RAS effector pathways could be combined with these direct RAS inhibitors, immune checkpoint inhibitors or T cell-targeting approaches to treat RAS-mutant tumours. Here we review recent advances in therapies that target mutant RAS proteins and discuss the future challenges of these therapies, including combination strategies.
Collapse
|
41
|
Ahmed TA, Adamopoulos C, Karoulia Z, Wu X, Sachidanandam R, Aaronson SA, Poulikakos PI. SHP2 Drives Adaptive Resistance to ERK Signaling Inhibition in Molecularly Defined Subsets of ERK-Dependent Tumors. Cell Rep 2020; 26:65-78.e5. [PMID: 30605687 PMCID: PMC6396678 DOI: 10.1016/j.celrep.2018.12.013] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/08/2018] [Accepted: 12/03/2018] [Indexed: 02/04/2023] Open
Abstract
Pharmacologic targeting of components of ERK signaling in ERK-dependent tumors is often limited by adaptive resistance, frequently mediated by feedback-activation of RTK signaling and rebound of ERK activity. Here, we show that combinatorial pharmacologic targeting of ERK signaling and the SHP2 phosphatase prevents adaptive resistance in defined subsets of ERK-dependent tumors. In each tumor that was sensitive to combined treatment, p(Y542)SHP2 induction was observed in response to ERK signaling inhibition. The strategy was broadly effective in TNBC models and tumors with RAS mutations at G12, whereas tumors with RAS(G13D) or RAS(Q61X) mutations were resistant. In addition, we identified a subset of BRAF(V600E) tumors that were resistant to the combined treatment, in which FGFR was found to drive feedback-induced RAS activation, independently of SHP2. Thus, we identify molecular determinants of response to combined ERK signaling and SHP2 inhibition in ERK-dependent tumors.
Collapse
Affiliation(s)
- Tamer A Ahmed
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Dermatology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christos Adamopoulos
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Dermatology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zoi Karoulia
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Dermatology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xuewei Wu
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Dermatology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ravi Sachidanandam
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stuart A Aaronson
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Poulikos I Poulikakos
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Dermatology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
42
|
Yuan Y, Fan Y, Gao Z, Sun X, Zhang H, Wang Z, Cui Y, Song W, Wang Z, Zhang F, Niu R. SHP2 promotes proliferation of breast cancer cells through regulating Cyclin D1 stability via the PI3K/AKT/GSK3β signaling pathway. Cancer Biol Med 2020; 17:707-725. [PMID: 32944401 PMCID: PMC7476086 DOI: 10.20892/j.issn.2095-3941.2020.0056] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
Objective: The tyrosine phosphatase SHP2 has a dual role in cancer initiation and progression in a tissue type-dependent manner. Several studies have linked SHP2 to the aggressive behavior of breast cancer cells and poorer outcomes in people with cancer. Nevertheless, the mechanistic details of how SHP2 promotes breast cancer progression remain largely undefined. Methods: The relationship between SHP2 expression and the prognosis of patients with breast cancer was investigated by using the TCGA and GEO databases. The expression of SHP2 in breast cancer tissues was analyzed by immunohistochemistry. CRISPR/Cas9 technology was used to generate SHP2-knockout breast cancer cells. Cell-counting kit-8, colony formation, cell cycle, and EdU incorporation assays, as well as a tumor xenograft model were used to examine the function of SHP2 in breast cancer proliferation. Quantitative RT-PCR, western blotting, immunofluorescence staining, and ubiquitination assays were used to explore the molecular mechanism through which SHP2 regulates breast cancer proliferation. Results: High SHP2 expression is correlated with poor prognosis in patients with breast cancer. SHP2 is required for the proliferation of breast cancer cells in vitro and tumor growth in vivo through regulation of Cyclin D1 abundance, thereby accelerating cell cycle progression. Notably, SHP2 modulates the ubiquitin-proteasome-dependent degradation of Cyclin D1 via the PI3K/AKT/GSK3β signaling pathway. SHP2 knockout attenuates the activation of PI3K/AKT signaling and causes the dephosphorylation and resultant activation of GSK3β. GSK3β then mediates phosphorylation of Cyclin D1 at threonine 286, thereby promoting the translocation of Cyclin D1 from the nucleus to the cytoplasm and facilitating Cyclin D1 degradation through the ubiquitin-proteasome system. Conclusions: Our study uncovered the mechanism through which SHP2 regulates breast cancer proliferation. SHP2 may therefore potentially serve as a therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Yanling Fan
- Department of Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Zicong Gao
- Department of Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Xuan Sun
- Department of Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - He Zhang
- Department of Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Zhiyong Wang
- Department of Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Yanfen Cui
- Department of Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Weijie Song
- Department of Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Zhaosong Wang
- Department of Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Fei Zhang
- Department of Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Ruifang Niu
- Department of Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| |
Collapse
|
43
|
Yang F, Xu M, Wang S, Song L, Yu D, Li Y, Cao R, Xiong Z, Chen Z, Zhang Q, Zhao B, Wang S. Gain-Of-Function E76K-Mutant SHP2 Promotes Cell Proliferation, Metastasis, And Tumor Growth In Glioblastoma Through Activation Of The ERK/CREB Pathway. Onco Targets Ther 2019; 12:9435-9447. [PMID: 31807022 PMCID: PMC6844267 DOI: 10.2147/ott.s222881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/21/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose The aim of this study was to investigate the effects of gain-of-function (GOF) E76K-mutant Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) on the biological behaviors of glioblastoma (GBM) cells, and explore the molecular mechanisms of GBM progression. Methods Firstly, a negative control vector and vectors overexpressing SHP2 and E76K-mutant SHP2 were transduced into GBM cells (U87 and A172) using a lentivirus. The effect of GOF-mutant SHP2 on proliferation was measured using the MTT assay, flow cytometry, colony formation assay, and soft agar assay. Moreover, the migration and invasion of GBM cells were determined through the transwell assay. Related proteins of the extracellular signal-regulated kinase/cAMP response element binding protein (ERK/CREB) pathway were detected by Western blotting analysis. A xenograft model was established to confirm the tumor-promoting effect of GOF-mutant SHP2 in vivo. Finally, ERK was inhibited using a mitogen-activated protein kinase/ERK kinase inhibitor (U0126) to further explore the molecular mechanism of GOF-mutant SHP2 affecting GBM cells. Results After transduction, the expression of SHP2 in the SHP2-mutant and SHP2-overexpression groups was higher than that observed in the control and normal groups. Our data indicated that GOF-mutant SHP2 enhanced the abilities of GBM cells for proliferation, migration, and invasion in vitro, and promoted tumor growth in vivo. Mechanistically, the ERK/CREB pathway was activated, and the levels of relevant proteins were increased in the SHP2-mutant group. Furthermore, following inhibition of ERK in the GOF-SHP2 mutant group, the activation of CREB was also depressed, and the malignant biological behaviors were weakened accordingly. Conclusion The GOF-mutant SHP2 promoted GBM cell proliferation, metastasis, and tumor growth through the ERK/CREB pathway, providing a promising target for the treatment of GBM.
Collapse
Affiliation(s)
- Fan Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China.,Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Mo Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China
| | - Shiqing Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China
| | - Le Song
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China
| | - Dandan Yu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China
| | - Yao Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China
| | - Rui Cao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China
| | - Zhang Xiong
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China.,Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Zhijun Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China
| | - Qian Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Siying Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
44
|
Niogret C, Birchmeier W, Guarda G. SHP-2 in Lymphocytes' Cytokine and Inhibitory Receptor Signaling. Front Immunol 2019; 10:2468. [PMID: 31708921 PMCID: PMC6823243 DOI: 10.3389/fimmu.2019.02468] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
Somewhat counterintuitively, the tyrosine phosphatase SHP-2 (SH2 domain-containing protein tyrosine phosphatase-2) is crucial for the activation of extracellular signal-regulated kinase (ERK) downstream of various growth factor receptors, thereby exerting essential developmental functions. This phosphatase also deploys proto-oncogenic functions and specific inhibitors have recently been developed. With respect to the immune system, the role of SHP-2 in the signaling of cytokines relevant for myelopoiesis and myeloid malignancies has been intensively studied. The function of this phosphatase downstream of cytokines important for lymphocytes is less understood, though multiple lines of evidence suggest its importance. In addition, SHP-2 has been proposed to mediate the suppressive effects of inhibitory receptors (IRs) that sustain a dysfunctional state in anticancer T cells. Molecules involved in IR signaling are of potential pharmaceutical interest as blockade of these inhibitory circuits leads to remarkable clinical benefit. Here, we discuss the dichotomy in the functions ascribed to SHP-2 downstream of cytokine receptors and IRs, with a focus on T and NK lymphocytes. Further, we highlight the importance of broadening our understanding of SHP-2′s relevance in lymphocytes, an essential step to inform on side effects and unanticipated benefits of its therapeutic blockade.
Collapse
Affiliation(s)
- Charlène Niogret
- Department of Biochemistry, University of Lausanne, Épalinges, Switzerland
| | - Walter Birchmeier
- Max-Delbrueck-Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Greta Guarda
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|
45
|
Kano Y, Gebregiworgis T, Marshall CB, Radulovich N, Poon BPK, St-Germain J, Cook JD, Valencia-Sama I, Grant BMM, Herrera SG, Miao J, Raught B, Irwin MS, Lee JE, Yeh JJ, Zhang ZY, Tsao MS, Ikura M, Ohh M. Tyrosyl phosphorylation of KRAS stalls GTPase cycle via alteration of switch I and II conformation. Nat Commun 2019; 10:224. [PMID: 30644389 PMCID: PMC6333830 DOI: 10.1038/s41467-018-08115-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/17/2018] [Indexed: 12/27/2022] Open
Abstract
Deregulation of the RAS GTPase cycle due to mutations in the three RAS genes is commonly associated with cancer development. Protein tyrosine phosphatase SHP2 promotes RAF-to-MAPK signaling pathway and is an essential factor in RAS-driven oncogenesis. Despite the emergence of SHP2 inhibitors for the treatment of cancers harbouring mutant KRAS, the mechanism underlying SHP2 activation of KRAS signaling remains unclear. Here we report tyrosyl-phosphorylation of endogenous RAS and demonstrate that KRAS phosphorylation via Src on Tyr32 and Tyr64 alters the conformation of switch I and II regions, which stalls multiple steps of the GTPase cycle and impairs binding to effectors. In contrast, SHP2 dephosphorylates KRAS, a process that is required to maintain dynamic canonical KRAS GTPase cycle. Notably, Src- and SHP2-mediated regulation of KRAS activity extends to oncogenic KRAS and the inhibition of SHP2 disrupts the phosphorylation cycle, shifting the equilibrium of the GTPase cycle towards the stalled ‘dark state’. Deregulation of the RAS GTPase cycle due to mutations in RAS genes is commonly associated with cancer development. Here authors use NMR and mass spectrometry to shows that KRAS phosphorylation via Src alters the conformation of switch I and II regions and thereby impacts the GTPase cycle.
Collapse
Affiliation(s)
- Yoshihito Kano
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada.,Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Teklab Gebregiworgis
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Christopher B Marshall
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Nikolina Radulovich
- Princess Margaret Cancer Centre, University Health Network and Department of Pathology, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Betty P K Poon
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Jonathan St-Germain
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Jonathan D Cook
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Ivette Valencia-Sama
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada.,Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, 5G OA4, Canada
| | - Benjamin M M Grant
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Silvia Gabriela Herrera
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jinmin Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, USA
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Meredith S Irwin
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, 5G OA4, Canada
| | - Jeffrey E Lee
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Jen Jen Yeh
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.,Department of Surgery, University of North Carolina, Chapel Hill, NC, 27599, USA.,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, USA
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network and Department of Pathology, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Michael Ohh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada. .,Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
46
|
Dinsmore CJ, Soriano P. MAPK and PI3K signaling: At the crossroads of neural crest development. Dev Biol 2018; 444 Suppl 1:S79-S97. [PMID: 29453943 PMCID: PMC6092260 DOI: 10.1016/j.ydbio.2018.02.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 02/08/2023]
Abstract
Receptor tyrosine kinase-mediated growth factor signaling is essential for proper formation and development of the neural crest. The many ligands and receptors implicated in these processes signal through relatively few downstream pathways, frequently converging on the MAPK and PI3K pathways. Despite decades of study, there is still considerable uncertainty about where and when these signaling pathways are required and how they elicit particular responses. This review summarizes our current understanding of growth factor-induced MAPK and PI3K signaling in the neural crest.
Collapse
Affiliation(s)
- Colin J Dinsmore
- Department of Cell, Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA.
| |
Collapse
|
47
|
Fedele C, Ran H, Diskin B, Wei W, Jen J, Geer M, Araki K, Ozerdem U, Simeone DM, Miller G, Neel BG, Tang KH. SHP2 Inhibition Prevents Adaptive Resistance to MEK Inhibitors in Multiple Cancer Models. Cancer Discov 2018; 8:1237-1249. [PMID: 30045908 PMCID: PMC6170706 DOI: 10.1158/2159-8290.cd-18-0444] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/16/2018] [Accepted: 07/23/2018] [Indexed: 01/04/2023]
Abstract
Adaptive resistance to MEK inhibitors (MEKi) typically occurs via induction of genes for different receptor tyrosine kinases (RTK) and/or their ligands, even in tumors of the same histotype, making combination strategies challenging. SHP2 (PTPN11) is required for RAS/ERK pathway activation by most RTKs and might provide a common resistance node. We found that combining the SHP2 inhibitor SHP099 with a MEKi inhibited the proliferation of multiple cancer cell lines in vitro PTPN11 knockdown/MEKi treatment had similar effects, whereas expressing SHP099 binding-defective PTPN11 mutants conferred resistance, demonstrating that SHP099 is on-target. SHP099/trametinib was highly efficacious in xenograft and/or genetically engineered models of KRAS-mutant pancreas, lung, and ovarian cancers and in wild-type RAS-expressing triple-negative breast cancer. SHP099 inhibited activation of KRAS mutants with residual GTPase activity, impeded SOS/RAS/MEK/ERK1/2 reactivation in response to MEKi, and blocked ERK1/2-dependent transcriptional programs. We conclude that SHP099/MEKi combinations could have therapeutic utility in multiple malignancies.Significance: MEK inhibitors show limited efficacy as single agents, in part because of the rapid development of adaptive resistance. We find that SHP2/MEK inhibitor combinations prevent adaptive resistance in multiple cancer models expressing mutant and wild-type KRAS. Cancer Discov; 8(10); 1237-49. ©2018 AACR. See related commentary by Torres-Ayuso and Brognard, p. 1210 This article is highlighted in the In This Issue feature, p. 1195.
Collapse
Affiliation(s)
- Carmine Fedele
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, New York,Corresponding Authors:Benjamin G Neel, Address: 522 First Avenue, Smilow Building 12th Floor, Suite 1201, New York, NY 10016, , Kwan Ho Tang, Address: 522 First Avenue, Smilow Building 7th Floor, Suite 707, New York, NY 10016, , Carmine Fedele, Address: 522 First Avenue, Smilow Building 7th Floor, Suite 707, New York, NY 10016,
| | - Hao Ran
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, New York
| | - Brian Diskin
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, NYU Langone Health, New York, New York
| | - Wei Wei
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, New York
| | - Jayu Jen
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, New York
| | - Mitchell Geer
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, New York
| | - Kiyomi Araki
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, New York
| | - Ugur Ozerdem
- Department of Pathology, New York University School of Medicine, NYU Langone Health, New York, New York
| | - Diane M Simeone
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, New York
| | - George Miller
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, NYU Langone Health, New York, New York
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, New York,Corresponding Authors:Benjamin G Neel, Address: 522 First Avenue, Smilow Building 12th Floor, Suite 1201, New York, NY 10016, , Kwan Ho Tang, Address: 522 First Avenue, Smilow Building 7th Floor, Suite 707, New York, NY 10016, , Carmine Fedele, Address: 522 First Avenue, Smilow Building 7th Floor, Suite 707, New York, NY 10016,
| | - Kwan Ho Tang
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, New York,Corresponding Authors:Benjamin G Neel, Address: 522 First Avenue, Smilow Building 12th Floor, Suite 1201, New York, NY 10016, , Kwan Ho Tang, Address: 522 First Avenue, Smilow Building 7th Floor, Suite 707, New York, NY 10016, , Carmine Fedele, Address: 522 First Avenue, Smilow Building 7th Floor, Suite 707, New York, NY 10016,
| |
Collapse
|
48
|
Tsutsumi R, Ran H, Neel BG. Off-target inhibition by active site-targeting SHP2 inhibitors. FEBS Open Bio 2018; 8:1405-1411. [PMID: 30186742 PMCID: PMC6120237 DOI: 10.1002/2211-5463.12493] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/19/2018] [Accepted: 06/05/2018] [Indexed: 01/04/2023] Open
Abstract
Due to the involvement of SHP2 (SH2 domain-containing protein-tyrosine phosphatase) in human disease, including Noonan syndrome and cancer, several inhibitors targeting SHP2 have been developed. Here, we report that the commonly used SHP2 inhibitor NSC-87877 does not exhibit robust inhibitory effects on growth factor-dependent MAPK (mitogen-activated protein kinase) pathway activation and that the recently developed active site-targeting SHP2 inhibitors IIB-08, 11a-1, and GS-493 show off-target effects on ligand-evoked activation/trans-phosphorylation of the PDGFRβ (platelet-derived growth factor receptor β). GS-493 also inhibits purified human PDGFRβ and SRC in vitro, whereas PDGFRβ inhibition by IIB-08 and 11a-1 occurs only in the cellular context. Our results argue for extreme caution in inferring specific functions for SHP2 based on studies using these inhibitors.
Collapse
Affiliation(s)
- Ryouhei Tsutsumi
- Laura and Isaac Perlmutter Cancer CenterNYU Langone HealthNew YorkNYUSA
| | - Hao Ran
- Laura and Isaac Perlmutter Cancer CenterNYU Langone HealthNew YorkNYUSA
| | - Benjamin G. Neel
- Laura and Isaac Perlmutter Cancer CenterNYU Langone HealthNew YorkNYUSA
| |
Collapse
|
49
|
Fedele C, Ran H, Diskin B, Wei W, Jen J, Geer MJ, Araki K, Ozerdem U, Simeone DM, Miller G, Neel BG, Tang KH. SHP2 Inhibition Prevents Adaptive Resistance to MEK Inhibitors in Multiple Cancer Models. Cancer Discov 2018. [PMID: 30045908 DOI: 10.1158/2159-8290.cd-18-0444] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adaptive resistance to MEK inhibitors (MEKi) typically occurs via induction of genes for different receptor tyrosine kinases (RTK) and/or their ligands, even in tumors of the same histotype, making combination strategies challenging. SHP2 (PTPN11) is required for RAS/ERK pathway activation by most RTKs and might provide a common resistance node. We found that combining the SHP2 inhibitor SHP099 with a MEKi inhibited the proliferation of multiple cancer cell lines in vitro PTPN11 knockdown/MEKi treatment had similar effects, whereas expressing SHP099 binding-defective PTPN11 mutants conferred resistance, demonstrating that SHP099 is on-target. SHP099/trametinib was highly efficacious in xenograft and/or genetically engineered models of KRAS-mutant pancreas, lung, and ovarian cancers and in wild-type RAS-expressing triple-negative breast cancer. SHP099 inhibited activation of KRAS mutants with residual GTPase activity, impeded SOS/RAS/MEK/ERK1/2 reactivation in response to MEKi, and blocked ERK1/2-dependent transcriptional programs. We conclude that SHP099/MEKi combinations could have therapeutic utility in multiple malignancies.Significance: MEK inhibitors show limited efficacy as single agents, in part because of the rapid development of adaptive resistance. We find that SHP2/MEK inhibitor combinations prevent adaptive resistance in multiple cancer models expressing mutant and wild-type KRAS. Cancer Discov; 8(10); 1237-49. ©2018 AACR. See related commentary by Torres-Ayuso and Brognard, p. 1210 This article is highlighted in the In This Issue feature, p. 1195.
Collapse
Affiliation(s)
- Carmine Fedele
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, New York.
| | - Hao Ran
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, New York
| | - Brian Diskin
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, NYU Langone Health, New York, New York
| | - Wei Wei
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, New York
| | - Jayu Jen
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, New York
| | - Mitchell J Geer
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, New York
| | - Kiyomi Araki
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, New York
| | - Ugur Ozerdem
- Department of Pathology, New York University School of Medicine, NYU Langone Health, New York, New York
| | - Diane M Simeone
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, New York
| | - George Miller
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, NYU Langone Health, New York, New York
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, New York.
| | - Kwan Ho Tang
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, New York.
| |
Collapse
|
50
|
Lillico DME, Pemberton JG, Stafford JL. Selective Regulation of Cytoskeletal Dynamics and Filopodia Formation by Teleost Leukocyte Immune-Type Receptors Differentially Contributes to Target Capture During the Phagocytic Process. Front Immunol 2018; 9:1144. [PMID: 30002653 PMCID: PMC6032007 DOI: 10.3389/fimmu.2018.01144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/07/2018] [Indexed: 01/08/2023] Open
Abstract
Phagocytosis evolved from a fundamental nutrient acquisition mechanism in primitive unicellular amoeboids, into a dynamic and complex component of innate immunity in multicellular organisms. To better understand the cellular mechanisms contributing to phagocytic processes across vertebrates, our research has focused on characterizing the involvement of innate immune proteins originally identified in channel catfish (Ictalurus punctatus) called leukocyte immune-type receptors (IpLITRs). These unique teleost proteins share basic structural as well as distant phylogenetic relationships with several immunoregulatory proteins within the mammalian immunoglobulin superfamily. In the present study, we use a combination of live-cell confocal imaging and high-resolution scanning electron microscopy to further examine the classical immunoreceptor tyrosine-based activation motif (ITAM)-dependent phagocytic pathway mediated by the chimeric construct IpLITR 2.6b/IpFcRγ-L and the functionally diverse immunoreceptor tyrosine-based inhibitory motif-containing receptor IpLITR 1.1b. Results demonstrate that IpLITR 1.1b-expressing cells can uniquely generate actin-dense filopodia-like protrusions during the early stages of extracellular target interactions. In addition, we observed that these structures retract after contacting extracellular targets to secure captured microspheres on the cell surface. This activity was often followed by the generation of robust secondary waves of actin polymerization leading to the formation of stabilized phagocytic cups. At depressed temperatures of 27°C, IpLITR 2.6b/IpFcRγ-L-mediated phagocytosis was completely blocked, whereas IpLITR 1.1b-expressing cells continued to generate dynamic actin-dense filopodia at this lower temperature. Overall, these results provide new support for the hypothesis that IpLITR 1.1b, but not IpLITR 2.6b/IpFcRγ-L, directly triggers filopodia formation when expressed in representative myeloid cells. This also offers new information regarding the directed ability of immunoregulatory receptor-types to initiate dynamic membrane structures and provides insights into an alternative ITAM-independent target capture pathway that is functionally distinct from the classical phagocytic pathways.
Collapse
Affiliation(s)
- Dustin M E Lillico
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Joshua G Pemberton
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|