1
|
Callen BP, Shearwin KE, Egan JB. Transcriptional interference between convergent promoters caused by elongation over the promoter. Mol Cell 2004; 14:647-56. [PMID: 15175159 DOI: 10.1016/j.molcel.2004.05.010] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 04/05/2004] [Accepted: 04/12/2004] [Indexed: 01/21/2023]
Abstract
Transcriptional interference with convergent transcription from face-to-face promoters is a potentially important form of gene regulation in all organisms. Using LacZ reporter studies, the mechanism of interference was determined for a pair of face-to-face prokaryotic promoters in which a strong promoter interferes 5.6-fold with a weak promoter, 62 bp away. The promoters were variously rearranged to test different models of interference. Terminating transcription from the strong promoter before it reached the weak promoter dramatically reduced interference, indicating a requirement for the passage of the converging RNAP over the weak promoter. Based on in vitro experiments showing a slow rate of escape for open complexes at the weak promoter and their sensitivity to head-on collisions with elongating RNAP, a "sitting duck" model of interference is proposed and supported with in vivo permanganate footprinting. The model is further supported by the analysis of a second set of prokaryotic face-to-face promoters.
Collapse
MESH Headings
- Gene Expression Regulation, Bacterial/genetics
- Genes, Regulator/genetics
- Models, Biological
- Prokaryotic Cells/metabolism
- Promoter Regions, Genetic/genetics
- Promoter Regions, Genetic/physiology
- RNA Interference/physiology
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Transcription, Genetic/genetics
- Transcription, Genetic/physiology
- Transcriptional Elongation Factors/genetics
Collapse
Affiliation(s)
- Benjamin P Callen
- School of Molecular and Biomedical Science (Biochemistry), University of Adelaide, South Australia 5005, Australia
| | | | | |
Collapse
|
2
|
Benoff B, Yang H, Lawson CL, Parkinson G, Liu J, Blatter E, Ebright YW, Berman HM, Ebright RH. Structural basis of transcription activation: the CAP-alpha CTD-DNA complex. Science 2002; 297:1562-6. [PMID: 12202833 DOI: 10.1126/science.1076376] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The Escherichia coli catabolite activator protein (CAP) activates transcription at P(lac), P(gal), and other promoters through interactions with the RNA polymerase alpha subunit carboxyl-terminal domain (alphaCTD). We determined the crystal structure of the CAP-alphaCTD-DNA complex at a resolution of 3.1 angstroms. CAP makes direct protein-protein interactions with alphaCTD, and alphaCTD makes direct protein-DNA interactions with the DNA segment adjacent to the DNA site for CAP. There are no large-scale conformational changes in CAP and alphaCTD, and the interface between CAP and alphaCTD is small. These findings are consistent with the proposal that activation involves a simple "recruitment" mechanism.
Collapse
Affiliation(s)
- Brian Benoff
- Waksman Institute and Department of Chemistry, Howard Hughes Medical Institute, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Wang S, Shi Y, Gorshkova I, Schwarz FP. RNA polymerase-cNMP-ligated cAMP receptor protein (CRP) mutant interactions in the enhancement of transcription by CRP mutants. J Biol Chem 2000; 275:33457-63. [PMID: 10934201 DOI: 10.1074/jbc.m004877200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enhancement of the transcription of three synthetic promoters by cNMP-ligated cAMP receptor protein (CRP)/mutant complexes was determined from the transcription yields of a short AAUU transcript in an abortive initiation in vitro transcription assay. The cNMP-ligated CRP and mutants were cAMP, cGMP, and cIMP ligated with CRP, T127L CRP, S128A CRP, and T127L/S128A CRP. The transcriptional activation of a 152-base pair lacUV5 promoter (synlac promoter) with a CRP consensus binding site sequence (syncon promoter) was enhanced by an average factor of 12.3 +/- 0.5 with the cAMP-ligated complexes of CRP/mutants and cGMP-ligated T127L, although their promoter binding site affinities varied by a factor of 5. However, in the presence of bound RNA polymerase, the binding affinities only ranged from 0.8 +/- 0.2 x 10(7) m(-)(1) for cAMP-ligated CRP* to 1.8 +/- 0. 3 x 10(7) m(-)(1) for cAMP-ligated CRP, indicating that the CRP/mutant interacts with the bound RNA polymerase, which would account for the near constancy of the enhancement factors. The corresponding enhancement factors for the synlac promoter and a promoter with a different CRP binding site sequence (syngal promoter) were also nearly the same, 7.2 +/- 0.7 and 6 +/- 1, respectively. The binding reaction of the syncon promoter to the RNA polymerase is exothermic, with a binding constant (K(b)) = 2.1 +/- 0. 2 x 10(7) m(-1).
Collapse
Affiliation(s)
- S Wang
- Center for Advanced Research in Biotechnology/National Institute of Standards and Technology, Rockville, Maryland 20850, USA
| | | | | | | |
Collapse
|
4
|
Martin RG, Gillette WK, Rhee S, Rosner JL. Structural requirements for marbox function in transcriptional activation of mar/sox/rob regulon promoters in Escherichia coli: sequence, orientation and spatial relationship to the core promoter. Mol Microbiol 1999; 34:431-41. [PMID: 10564485 DOI: 10.1046/j.1365-2958.1999.01599.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The promoters of the mar/sox/rob regulon of Escherichia coli contain a binding site (marbox) for the homologous transcriptional activators MarA, SoxS and Rob. In spite of data from footprinting studies, the marbox has not been precisely defined because of its degeneracy and asymmetry and seemingly variable location with respect to the -10 and -35 hexamers for RNA polymerase (RNP) binding. Here, we use DNA retardation studies and hybrid promoters to identify optimally binding 20 bp minimal marboxes from a number of promoters. This has yielded a more defined marbox consensus sequence (AYnGCACnnWnnRYYAAAYn) and has led to the demonstration that some marboxes are inverted relative to others. Using transcriptional fusions to lacZ, we have found that only one marbox orientation is functional at a given location. Moreover, the functional orientation is determined by marbox location: marboxes that are 15 or more basepairs upstream of the -35 hexamer are oriented opposite those closer to the -35 hexamer. Marbox orientation and the spacing between marbox and signals for RNP binding are critical for transcriptional activation, presumably to align MarA with RNP.
Collapse
Affiliation(s)
- R G Martin
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, Bldg. 5, Rm. 333, NIH, Bethesda, MD 20892-0560, USA.
| | | | | | | |
Collapse
|
5
|
Abstract
Transcription activation by Escherichia coli catabolite activator protein (CAP) at each of two classes of simple CAP-dependent promoters is understood in structural and mechanistic detail. At class I CAP-dependent promoters, CAP activates transcription from a DNA site located upstream of the DNA site for RNA polymerase holoenzyme (RNAP); at these promoters, transcription activation involves protein-protein interactions between CAP and the RNAP alpha subunit C-terminal domain that facilitate binding of RNAP to promoter DNA to form the RNAP-promoter closed complex. At class II CAP-dependent promoters, CAP activates transcription from a DNA site that overlaps the DNA site for RNAP; at these promoters, transcription activation involves both: (i) protein-protein interactions between CAP and RNAP alpha subunit C-terminal domain that facilitate binding of RNAP to promoter DNA to form the RNAP-promoter closed complex; and (ii) protein-protein interactions between CAP and RNAP alpha subunit N-terminal domain that facilitates isomerization of the RNAP-promoter closed complex to the RNAP-promoter open complex. Straightforward combination of the mechanisms for transcription activation at class I and class II CAP-dependent promoters permits synergistic transcription activation by multiple molecules of CAP, or by CAP and other activators. Interference with determinants of CAP or RNAP involved in transcription activation at class I and class II CAP-dependent promoters permits "anti-activation" by negative regulators. Basic features of transcription activation at class I and class II CAP-dependent promoters appear to be generalizable to other activators.
Collapse
Affiliation(s)
- S Busby
- School of Biosciences, The University of Birmingham, Birmingham, B15 2TT, UK
| | | |
Collapse
|
6
|
Davis NA, Majee SS, Kahn JD. TATA box DNA deformation with and without the TATA box-binding protein. J Mol Biol 1999; 291:249-65. [PMID: 10438619 DOI: 10.1006/jmbi.1999.2947] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA ring closure methods have been applied to TATA box DNA and its complex with the TATA box-binding protein (TBP). The J factors for cyclization (effective concentrations of one DNA end about the other) have been measured using cyclization kinetics, with and without bound TBP, for 18 DNA constructs containing the adenovirus major late promoter TATA box (TATAAAAG) separated by a variable helical phasing adapter from sequence-induced A-tract DNA bends. Six phasing lengths were used at three overall DNA lengths each. Cyclization kinetics were also measured in the absence of protein for the same set of molecules bearing a mutant TATA box (TACAAAAG). The results suggest that the TATA box DNA itself is strongly bent and anisotropically flexible, in a direction opposite to the bend induced by TBP, and that the mutant TACA box is much less bent/flexible. The bending and flexibility of the free DNA may govern the energetics of recognition of different DNA sequences by TBP, and the intrinsic bend may act to repress transcription complex assembly in the absence of TBP. The cyclization kinetics of TBP-DNA complexes in solution predict a geometry generally consistent with crystal structures, which show dramatic bending and unwinding. The novel observation of TBP-induced topoisomers suggests that this minicircle approach is able to distinguish TBP-induced unwinding from writhe (these cancel out in larger DNA), and this in turn suggests that changes in supercoiling in small topological domains can control TBP binding.
Collapse
Affiliation(s)
- N A Davis
- College Park, University of Maryland, MD, 20742-2021, USA
| | | | | |
Collapse
|
7
|
Muiznieks I, Rostoks N, Schmitt R. Efficient control of raf gene expression by CAP and two Raf repressors that bend DNA in opposite directions. Biol Chem 1999; 380:19-29. [PMID: 10064133 DOI: 10.1515/bc.1999.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The plasmid-borne raf operon of Escherichia coli encodes proteins involved in the uptake and utilisation of the trisaccharide raffinose. The operon is subject to dual regulation; to negative control by the binding of RafR repressor to twin operators, O1 and O2, and to positive control by the cAMP-binding protein, CAP. We have identified the CAP binding site (CBS) as a 22 bp palindromic sequence with incomplete dyad symmetry by deletion analysis, DNasel footprinting and electrophoretic mobility shift assays (EMSA) of CAP-DNA complexes. The CBS is centred 60.5 bp upstream of the transcription start point and partially overlaps O1. In vivo, CAP increases rafA (alpha-galactosidase) gene expression up to 50-fold. The 28 bp spacing between the centres of CBS and the - 35 box is essential, since insertions of 4, 8, 12 or 16 bp completely eliminated rafA gene expression. In vitro binding studies revealed that the CBS, O1 and O2 sites, can be simultaneously occupied by their cognate proteins. However, no cooperativity between binding of CAP and RafR was detected. EMSA with circularly permuted DNA fragments demonstrated that CAP and RafR proteins bend raf promoter (rafP) DNA by 75 degrees +/- 5 degrees and 95 degrees +/- 5 degrees, respectively, in opposite directions. Among sugar catabolic operons, the compact arrangement of three protein-binding sites, a CBS and two operators bounding the - 35 promoter box, is unique and provides a sensitive and highly efficient device for transcriptional control.
Collapse
Affiliation(s)
- I Muiznieks
- Faculty of Biology, University of Latvia, Riga, Republic of Latvia
| | | | | |
Collapse
|
8
|
Ryu S, Fujita N, Ishihama A, Adhya S. GalR-mediated repression and activation of hybrid lacUV5 promoter: differential contacts with RNA polymerase. Gene 1998; 223:235-45. [PMID: 9858739 DOI: 10.1016/s0378-1119(98)00237-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The GalR repressor regulates expression of genes of the gal regulon in Escherichia coli. We studied the regulatory effect of GalR in vitro on a heterologous promoter, lacUV5, by placing the GalR-binding site, OE, at different locations upstream of this promoter. Despite the fact that the lacUV5 promoter is transcribed efficiently by RNA polymerase (RNP) alone, GalR modulated transcription from many of the PlacUV5 variants. Depending on the location of OE and the neighboring DNA sequence, GalR repressed, activated or had no effect on the promoter. Both repression and activation involved formation of GalR-RNP-DNA ternary complexes and required an intact c-domain of the alpha subunit of the holoenzyme. These results support the differential contact model of a regulator action, in which a regulator differentially binds to, and lowers the energy of, intermediates of transcription initiation either to hinder or to facilitate a step of initiation. The nature of the contacts depends upon the context, i.e. the geometry of the ternary complex. The observed repression and activation effect of GalR on a heterologous promoter also underscores the point that a regulator is not a dedicated protein for repression or for activation.
Collapse
Affiliation(s)
- S Ryu
- Laboratory of Molecular Biology, National Cancer Institute, Bldg. 37/2E16, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
9
|
Travers A, Muskhelishvili G. DNA microloops and microdomains: a general mechanism for transcription activation by torsional transmission. J Mol Biol 1998; 279:1027-43. [PMID: 9642081 DOI: 10.1006/jmbi.1998.1834] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prokaryotic transcriptional activation often involves the formation of DNA microloops upstream of the polymerase binding site. There is substantial evidence that these microloops function to bring activator and polymerase into close spatial proximity. However additional functions are suggested by the ability of certain activators, of which FIS is the best characterised example, to facilitate polymerase binding, promoter opening and polymerase escape. We review here the evidence for the concept that the topology of the microloop formed by such activators is tightly coupled to the structural transitions in DNA mediated by RNA polymerase. In this process, which we term torsional transmission, a major function of the activator is to act as a local topological homeostat. We argue that the same mechanism may also be employed in site-specific DNA inversion.
Collapse
Affiliation(s)
- A Travers
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, England
| | | |
Collapse
|
10
|
Roy S, Garges S, Adhya S. Activation and repression of transcription by differential contact: two sides of a coin. J Biol Chem 1998; 273:14059-62. [PMID: 9603899 DOI: 10.1074/jbc.273.23.14059] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- S Roy
- Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | |
Collapse
|
11
|
Abstract
Most bacterial transcription activators function by making direct contact with RNA polymerase at target promoters. Some activators contact the carboxy-terminal domain of the RNA polymerase alpha subunit, some contact region 4 of the sigma70 subunit, whilst others interact with other contact sites. A number of activators are ambidextrous and can, apparently simultaneously, contact more than one target site on RNA polymerase. Expression from many promoters is co-dependent on two or more activators. There are several different mechanisms for coupling promoter activity to more than one activator: in one such mechanism, the different activators make independent contacts with different target sites on RNA polymerase.
Collapse
Affiliation(s)
- V A Rhodius
- School of Biochemistry, The University of Birmingham, Birmingham, B15 2TT, UK
| | | |
Collapse
|
12
|
Czarniecki D, Noel RJ, Reznikoff WS. The -45 region of the Escherichia coli lac promoter: CAP-dependent and CAP-independent transcription. J Bacteriol 1997; 179:423-9. [PMID: 8990294 PMCID: PMC178712 DOI: 10.1128/jb.179.2.423-429.1997] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The lactose (lac) operon promoter is positively regulated by the catabolite gene activator-cyclic AMP complex (CAP) that binds to the DNA located 61.5 bp upstream of the transcription start site. Between the CAP binding site and the core promoter sequence is a 13-bp sequence (from -38 to -50 [the -45 region]). The possible roles of the -45 region in determining the CAP-independent level of lac expression and in the CAP activation process were studied by isolating and characterizing random multisite mutations. Only a small percentage of mutants have dramatic effects on lac promoter activity. Among the mutations that did affect expression, a 26-fold range in lac promoter activity in vivo was observed in the CAP-independent activity. The highest level of CAP-independent lac expression (13-fold the level of the wild-type lac promoter) correlated with changes in the -40 to -45 sequence and required an intact RNA polymerase alpha subunit for in vitro expression, as expected for an upstream DNA recognition element. Mutant promoters varied in their ability to be stimulated by CAP in vivo, with levels ranging from 2-fold to the wild-type level of 22-fold. Only a change of twofold in responsiveness to CAP could be attributed to direct DNA sequence effects. The -40 to -45 sequence-dependent enhancement of promoter activity and CAP stimulation of promoter activity did not act additively. The mutant promoters also displayed other characteristics, such as the activation of nascent promoter-like activities overlapping lac P1 and, in one case, replicon-dependent changes in promoter activity.
Collapse
Affiliation(s)
- D Czarniecki
- Department of Biochemistry, University of Wisconsin-Madison, 53706, USA
| | | | | |
Collapse
|
13
|
Déthiollaz S, Eichenberger P, Geiselmann J. Influence of DNA geometry on transcriptional activation in Escherichia coli. EMBO J 1996; 15:5449-58. [PMID: 8895588 PMCID: PMC452287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Transcription from many Escherichia coli promoters can be activated by the cAMP-CRP complex bound at different locations upstream of the promoter. At some locations the mechanism of activation involves direct protein-protein contacts between CRP and the RNA polymerase. We positioned the CRP binding site at various distances from the transcription start site of the malT promoter and measured the in vivo activities of these promoter variants. From the activation profiles we deduce that the protein-protein interactions involved in transcriptional activation are rather rigid. A heterologous protein (IHF) that bends the DNA to a similar degree as does CRP activates transcription when bound at sites equivalent to activating positions for CRP. DNA geometry makes a major contribution to the process of transcriptional activation and DNA upstream of the activator binding site participates in this process. Removal of this DNA decreases the capacity of the malT promoter to be activated by CRP in vitro. We conclude that both DNA topology and direct protein-protein contacts contribute to transcriptional activation and that the relative importance of these two modes of activation depends on the nature of the activator and on the location of the activator binding site.
Collapse
Affiliation(s)
- S Déthiollaz
- Département de Biologie Moléculaire, Université de Genève, Switzerland
| | | | | |
Collapse
|
14
|
Artsimovitch I, Kahmeyer-Gabbe M, Howe MM. Distortion in the spacer region of Pm during activation of middle transcription of phage Mu. Proc Natl Acad Sci U S A 1996; 93:9408-13. [PMID: 8790343 PMCID: PMC38441 DOI: 10.1073/pnas.93.18.9408] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Transcription from the middle promoter, Pm, of phage Mu is initiated by Escherichia coli RNA polymerase holoenzyme (E sigma 70; RNAP) and the phage-encoded activator, Mor. Point mutations in the spacer region between the -10 hexamer and the Mor binding site result in changes of promoter activity in vivo. These mutations are located at the junction between a rigid T-tract and adjacent, potentially deformable G + C-rich DNA segment, suggesting that deformation of the spacer region may play a role in the transcriptional activation of Pm. This prediction was tested by using dimethyl sulfate and potassium permanganate footprinting analyses. Helical distortion involving strand separation was detected at positions -32 to -34, close to the predicted interface between Mor and RNAP. Promoter mutants in which this distortion was not detected exhibited a lack of melting in the -12 to -1 region and reduced promoter activity in vivo. We propose that complexes containing the distortion represent stressed intermediates rather than stable open complexes and thus can be envisaged as a transition state in the kinetic pathway of Pm activation in which stored torsional energy could be used to facilitate melting around the transcription start point.
Collapse
Affiliation(s)
- I Artsimovitch
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163, USA
| | | | | |
Collapse
|
15
|
Flatow U, Rajendrakumar GV, Garges S. Analysis of the spacer DNA between the cyclic AMP receptor protein binding site and the lac promoter. J Bacteriol 1996; 178:2436-9. [PMID: 8636052 PMCID: PMC177959 DOI: 10.1128/jb.178.8.2436-2439.1996] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The role of the spacer region DNA between the cyclic AMP receptor protein (CRP) site and the RNA polymerase in the lac promoter was examined. We wanted to determine whether the wild-type DNA sequence of this region was an absolute requirement for CRP activation of lac transcription. The sequence of a 9-bp stretch of the spacer, from -41 to -49 relative to the start of transcription, was randomized, and the effect of randomization on lac expression was investigated in vitro and in vivo. We found that the spacer contains no specific sequence determinants for CRP activation of lac transcription; fewer than 1% of the mutants displayed greater than a 50% decrease in CRP activation of lac transcription.
Collapse
Affiliation(s)
- U Flatow
- Developmental Genetics Section, Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892-4255, USA
| | | | | |
Collapse
|
16
|
Ryu S, Ramseier TM, Michotey V, Saier MH, Garges S. Effect of the FruR regulator on transcription of the pts operon in Escherichia coli. J Biol Chem 1995; 270:2489-96. [PMID: 7852310 DOI: 10.1074/jbc.270.6.2489] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The promoters of the pts operon of Escherichia coli are controlled by the cyclic AMP receptor protein (CRP) complexed with cAMP (CRP.cAMP). In addition, glucose stimulates pts operon expression in vivo. The pts promoter region has a fructose repressor (FruR)-binding site (the FruR box) that partially overlaps with one of the CRP.cAMP-binding sites. The effects of the pleiotropic transcriptional regulator FruR on pts operon expression were studied to determine whether the in vivo glucose effect on pts operon expression is mediated by FruR. In vitro, FruR can repress P1b transcription, which is activated by CRP.cAMP, and restore P1a transcription, which is repressed by CRP.cAMP. FruR can displace CRP.cAMP from its binding site in the presence of RNA polymerase even though FruR and CRP.cAMP can bind simultaneously to their partially overlapping binding sites in the absence of RNA polymerase. FruR had very little effect on the transcription of the P0 promoter, which is most important for regulation by glucose. Consistent with the in vitro results, pts P0 transcription did not increase as much in cells grown in the presence of fructose or in fruR- mutant cells as in cells grown in the presence of glucose. These results suggest that FruR alone does not mediate the in vivo glucose effect on pts operon expression.
Collapse
Affiliation(s)
- S Ryu
- Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892-4255
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Adhya S, Ryu S, Garges S. Role of allosteric changes in cyclic AMP receptor protein function. Subcell Biochem 1995; 24:303-21. [PMID: 7900180 DOI: 10.1007/978-1-4899-1727-0_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- S Adhya
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
19
|
Tang H, Severinov K, Goldfarb A, Fenyo D, Chait B, Ebright RH. Location, structure, and function of the target of a transcriptional activator protein. Genes Dev 1994; 8:3058-67. [PMID: 8001824 DOI: 10.1101/gad.8.24.3058] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have isolated and characterized single-amino-acid substitution mutants of RNA polymerase alpha subunit defective in CAP-dependent transcription at the lac promoter but not defective in CAP-independent transcription. Our results establish that (1) amino acids 258-265 of alpha constitute an "activation target" essential for CAP-dependent transcription at the lac promoter but not essential for CAP-independent transcription, (2) amino acid 261 is the most critical amino acid of the activation target, (3) amino acid 261 is distinct from the determinants for alpha-DNA interaction, and (4) the activation target may fold as a surface amphipathic alpha-helix. We propose a model for transcriptional activation at the lac promoter that integrates these and other recent results regarding transcriptional activation and RNA polymerase structure and function.
Collapse
Affiliation(s)
- H Tang
- Department of Chemistry, Rutgers University, New Brunswick, New Jersey 08855
| | | | | | | | | | | |
Collapse
|
20
|
Blatter EE, Ross W, Tang H, Gourse RL, Ebright RH. Domain organization of RNA polymerase alpha subunit: C-terminal 85 amino acids constitute a domain capable of dimerization and DNA binding. Cell 1994; 78:889-96. [PMID: 8087855 DOI: 10.1016/s0092-8674(94)90682-3] [Citation(s) in RCA: 194] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Using limited proteolysis, we show that the Escherichia coli RNA polymerase alpha subunit consists of an N-terminal domain comprised of amino acids 8-241, a C-terminal domain comprised of amino acids 249-329, and an unstructured and/or flexible interdomain linker. We have carried out a detailed structural and functional analysis of an 85 amino acid proteolytic fragment corresponding to the C-terminal domain (alpha CTD-2). Our results establish that alpha CTD-2 has a defined secondary structure (approximately 40% alpha helix, approximately 0% beta sheet). Our results further establish that alpha CTD-2 is a dimer and that alpha CTD-2 exhibits sequence-specific DNA binding activity. Our results suggest a model for the mechanism of involvement of alpha in transcription activation by promoter upstream elements and upstream-binding activator proteins.
Collapse
Affiliation(s)
- E E Blatter
- Department of Chemistry, Rutgers University, New Brunswick, New Jersey 08855
| | | | | | | | | |
Collapse
|