1
|
Zeinoun B, Teixeira MT, Barascu A. TERRA and Telomere Maintenance in the Yeast Saccharomyces cerevisiae. Genes (Basel) 2023; 14:genes14030618. [PMID: 36980890 PMCID: PMC10048448 DOI: 10.3390/genes14030618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Telomeres are structures made of DNA, proteins and RNA found at the ends of eukaryotic linear chromosomes. These dynamic nucleoprotein structures protect chromosomal tips from end-to-end fusions, degradation, activation of damage checkpoints and erroneous DNA repair events. Telomeres were thought to be transcriptionally silent regions because of their constitutive heterochromatin signature until telomeric long non-coding RNAs (LncRNAs) were discovered. One of them, TERRA (TElomeric Repeat-containing RNA), starts in the subtelomeric regions towards the chromosome ends from different telomeres and has been extensively studied in many evolutionarily distant eukaryotes. Changes in TERRA’s expression can lead to telomeric dysfunction, interfere with the replicative machinery and impact telomere length. TERRA also co-localizes in vivo with telomerase, and can form RNA:DNA hybrid structures called R-loops, which have been implicated in the onset of senescence and the alternative lengthening of telomere (ALT) pathway. Yet, the molecular mechanisms involving TERRA, as well as its function, remain elusive. Here, we review the current knowledge of TERRA transcription, structure, expression, regulation and its multiple telomeric and extra-telomeric functions in the budding yeast Saccharomyces cerevisiae.
Collapse
|
2
|
Global genomic instability caused by reduced expression of DNA polymerase ε in yeast. Proc Natl Acad Sci U S A 2022; 119:e2119588119. [PMID: 35290114 PMCID: PMC8944251 DOI: 10.1073/pnas.2119588119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceAlthough most studies of the genetic regulation of genome stability involve an analysis of mutations within the coding sequences of genes required for DNA replication or DNA repair, recent studies in yeast show that reduced levels of wild-type enzymes can also produce a mutator phenotype. By whole-genome sequencing and other methods, we find that reduced levels of the wild-type DNA polymerase ε in yeast greatly increase the rates of mitotic recombination, aneuploidy, and single-base mutations. The observed pattern of genome instability is different from those observed in yeast strains with reduced levels of the other replicative DNA polymerases, Pol α and Pol δ. These observations are relevant to our understanding of cancer and other diseases associated with genetic instability.
Collapse
|
3
|
Lalonde M, Chartrand P. TERRA, a Multifaceted Regulator of Telomerase Activity at Telomeres. J Mol Biol 2020; 432:4232-4243. [PMID: 32084415 DOI: 10.1016/j.jmb.2020.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
In eukaryotes, telomeres are repetitive sequences at the end of chromosomes, which are maintained in a constitutive heterochromatin state. It is now known that telomeres can be actively transcribed, leading to the production of a telomeric repeat-containing noncoding RNA called TERRA. Due to its sequence complementarity to the telomerase template, it was suggested early on that TERRA could be an inhibitor of telomerase. Since then, TERRA has been shown to be involved in heterochromatin formation at telomeres, to invade telomeric dsDNA and form R-loops, and even to promote telomerase recruitment at short telomeres. All these functions depend on the diverse capacities of this lncRNA to bind various cofactors, act as a scaffold, and promote higher-order complexes in cells. In this review, it will be highlighted as to how these properties of TERRA work together to regulate telomerase activity at telomeres.
Collapse
Affiliation(s)
- Maxime Lalonde
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Quebec, Canada
| | - Pascal Chartrand
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Quebec, Canada.
| |
Collapse
|
4
|
Monitoring of switches in heterochromatin-induced silencing shows incomplete establishment and developmental instabilities. Proc Natl Acad Sci U S A 2019; 116:20043-20053. [PMID: 31527269 DOI: 10.1073/pnas.1909724116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Position effect variegation (PEV) in Drosophila results from new juxtapositions of euchromatic and heterochromatic chromosomal regions, and manifests as striking bimodal patterns of gene expression. The semirandom patterns of PEV, reflecting clonal relationships between cells, have been interpreted as gene-expression states that are set in development and thereafter maintained without change through subsequent cell divisions. The rate of instability of PEV is almost entirely unexplored beyond the final expression of the modified gene; thus the origin of the expressivity and patterns of PEV remain unexplained. Many properties of PEV are not predicted from currently accepted biochemical and theoretical models. In this work we investigate the time at which expressivity of silencing is set, and find that it is determined before heterochromatin exists. We employ a mathematical simulation and a corroborating experimental approach to monitor switching (i.e., gains and losses of silencing) through development. In contrast to current views, we find that gene silencing is incompletely set early in embryogenesis, but nevertheless is repeatedly lost and gained in individual cells throughout development. Our data support an alternative to locus-specific "epigenetic" silencing at variegating gene promoters that more fully accounts for the final patterns of PEV.
Collapse
|
5
|
Mazzolini R, Gonzàlez N, Garcia-Garijo A, Millanes-Romero A, Peiró S, Smith S, García de Herreros A, Canudas S. Snail1 transcription factor controls telomere transcription and integrity. Nucleic Acids Res 2019; 46:146-158. [PMID: 29059385 PMCID: PMC5758914 DOI: 10.1093/nar/gkx958] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/16/2017] [Indexed: 02/06/2023] Open
Abstract
Besides controlling epithelial-to-mesenchymal transition (EMT) and cell invasion, the Snail1 transcriptional factor also provides cells with cancer stem cell features. Since telomere maintenance is essential for stemness, we have examined the control of telomere integrity by Snail1. Fluorescence in situ hybridization (FISH) analysis indicates that Snail1-depleted mouse mesenchymal stem cells (MSC) have both a dramatic increase of telomere alterations and shorter telomeres. Remarkably, Snail1-deficient MSC present higher levels of both telomerase activity and the long non-coding RNA called telomeric repeat-containing RNA (TERRA), an RNA that controls telomere integrity. Accordingly, Snail1 expression downregulates expression of the telomerase gene (TERT) as well as of TERRA 2q, 11q and 18q. TERRA and TERT are transiently downregulated during TGFβ-induced EMT in NMuMG cells, correlating with Snail1 expression. Global transcriptome analysis indicates that ectopic expression of TERRA affects the transcription of some genes induced during EMT, such as fibronectin, whereas that of TERT does not modify those genes. We propose that Snail1 repression of TERRA is required not only for telomere maintenance but also for the expression of a subset of mesenchymal genes.
Collapse
Affiliation(s)
- Rocco Mazzolini
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Núria Gonzàlez
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Andrea Garcia-Garijo
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Alba Millanes-Romero
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Sandra Peiró
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Susan Smith
- Kimmel Center for Biology and Medicine at the Skirball Institute, Department of Pathology, New York University School of Medicine, New York University, USA
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sílvia Canudas
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Unitat de Nutrició Humana, Facultat de Medicina i Ciències de la Salut, Institut d'Investigació Sanitaria Pere Virgili (IISPV), Reus, Spain.,CIBER Fisiología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
6
|
Wanat JJ, Logsdon GA, Driskill JH, Deng Z, Lieberman PM, Johnson FB. TERRA and the histone methyltransferase Dot1 cooperate to regulate senescence in budding yeast. PLoS One 2018; 13:e0195698. [PMID: 29649255 PMCID: PMC5896980 DOI: 10.1371/journal.pone.0195698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/27/2018] [Indexed: 01/27/2023] Open
Abstract
The events underlying senescence induced by critical telomere shortening are not fully understood. Here we provide evidence that TERRA, a non-coding RNA transcribed from subtelomeres, contributes to senescence in yeast lacking telomerase (tlc1Δ). Levels of TERRA expressed from multiple telomere ends appear elevated at senescence, and expression of an artificial RNA complementary to TERRA (anti-TERRA) binds TERRA in vivo and delays senescence. Anti-TERRA acts independently from several other mechanisms known to delay senescence, including those elicited by deletions of EXO1, TEL1, SAS2, and genes encoding RNase H enzymes. Further, it acts independently of the senescence delay provided by RAD52-dependent recombination. However, anti-TERRA delays senescence in a fashion epistatic to inactivation of the conserved histone methyltransferase Dot1. Dot1 associates with TERRA, and anti-TERRA disrupts this interaction in vitro and in vivo. Surprisingly, the anti-TERRA delay is independent of the C-terminal methyltransferase domain of Dot1 and instead requires only its N-terminus, which was previously found to facilitate release of telomeres from the nuclear periphery. Together, these data suggest that TERRA and Dot1 cooperate to drive senescence.
Collapse
Affiliation(s)
- Jennifer J. Wanat
- University of Pennsylvania School of Medicine, Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, United States of America
- Washington College, Department of Biology, Chestertown, Maryland, United States of America
| | - Glennis A. Logsdon
- University of Pennsylvania School of Medicine, Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jordan H. Driskill
- University of Pennsylvania School of Medicine, Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Zhong Deng
- The Wistar Institute, Gene Expression and Regulation, Philadelphia, Pennsylvania, United States of America
| | - Paul M. Lieberman
- The Wistar Institute, Gene Expression and Regulation, Philadelphia, Pennsylvania, United States of America
| | - F. Brad Johnson
- University of Pennsylvania School of Medicine, Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
7
|
TERRA RNA Antagonizes ATRX and Protects Telomeres. Cell 2017; 170:86-101.e16. [PMID: 28666128 DOI: 10.1016/j.cell.2017.06.017] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/26/2017] [Accepted: 06/09/2017] [Indexed: 12/20/2022]
Abstract
Through an integration of genomic and proteomic approaches to advance understanding of long noncoding RNAs, we investigate the function of the telomeric transcript, TERRA. By identifying thousands of TERRA target sites in the mouse genome, we demonstrate that TERRA can bind both in cis to telomeres and in trans to genic targets. We then define a large network of interacting proteins, including epigenetic factors, telomeric proteins, and the RNA helicase, ATRX. TERRA and ATRX share hundreds of target genes and are functionally antagonistic at these loci: whereas TERRA activates, ATRX represses gene expression. At telomeres, TERRA competes with telomeric DNA for ATRX binding, suppresses ATRX localization, and ensures telomeric stability. Depleting TERRA increases telomerase activity and induces telomeric pathologies, including formation of telomere-induced DNA damage foci and loss or duplication of telomeric sequences. We conclude that TERRA functions as an epigenomic modulator in trans and as an essential regulator of telomeres in cis.
Collapse
|
8
|
Yamada T, Yoshimura H, Shimada R, Hattori M, Eguchi M, Fujiwara TK, Kusumi A, Ozawa T. Spatiotemporal analysis with a genetically encoded fluorescent RNA probe reveals TERRA function around telomeres. Sci Rep 2016; 6:38910. [PMID: 27958374 PMCID: PMC5153658 DOI: 10.1038/srep38910] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/16/2016] [Indexed: 12/25/2022] Open
Abstract
Telomeric repeat-containing RNA (TERRA) controls the structure and length of telomeres through interactions with numerous telomere-binding proteins. However, little is known about the mechanism by which TERRA regulates the accessibility of the proteins to telomeres, mainly because of the lack of spatiotemporal information of TERRA and its-interacting proteins. We developed a fluorescent probe to visualize endogenous TERRA to investigate its dynamics in living cells. Single-particle fluorescence imaging revealed that TERRA accumulated in a telomere-neighboring region and trapped diffusive heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), thereby inhibiting hnRNPA1 localization to the telomere. These results suggest that TERRA regulates binding of hnRNPA1 to the telomere in a region surrounding the telomere, leading to a deeper understanding of the mechanism of TERRA function.
Collapse
Affiliation(s)
- Toshimichi Yamada
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideaki Yoshimura
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Rintaro Shimada
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuru Hattori
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masatoshi Eguchi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takahiro K Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan
| | - Akihiro Kusumi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
9
|
Jezek M, Gast A, Choi G, Kulkarni R, Quijote J, Graham-Yooll A, Park D, Green EM. The histone methyltransferases Set5 and Set1 have overlapping functions in gene silencing and telomere maintenance. Epigenetics 2016; 12:93-104. [PMID: 27911222 DOI: 10.1080/15592294.2016.1265712] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Genes adjacent to telomeres are subject to transcriptional repression mediated by an integrated set of chromatin modifying and remodeling factors. The telomeres of Saccharomyces cerevisiae have served as a model for dissecting the function of diverse chromatin proteins in gene silencing, and their study has revealed overlapping roles for many chromatin proteins in either promoting or antagonizing gene repression. The H3K4 methyltransferase Set1, which is commonly linked to transcriptional activation, has been implicated in telomere silencing. Set5 is an H4 K5, K8, and K12 methyltransferase that functions with Set1 to promote repression at telomeres. Here, we analyzed the combined role for Set1 and Set5 in gene expression control at native yeast telomeres. Our data reveal that Set1 and Set5 promote a Sir protein-independent mechanism of repression that may primarily rely on regulation of H4K5ac and H4K8ac at telomeric regions. Furthermore, cells lacking both Set1 and Set5 have highly correlated transcriptomes to mutants in telomere maintenance pathways and display defects in telomere stability, linking their roles in silencing to protection of telomeres. Our data therefore provide insight into and clarify potential mechanisms by which Set1 contributes to telomere silencing and shed light on the function of Set5 at telomeres.
Collapse
Affiliation(s)
- Meagan Jezek
- a Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Alison Gast
- a Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Grace Choi
- b Department of Mathematics and Statistics , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Rushmie Kulkarni
- a Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Jeremiah Quijote
- b Department of Mathematics and Statistics , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Andrew Graham-Yooll
- a Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , MD , USA
| | - DoHwan Park
- b Department of Mathematics and Statistics , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Erin M Green
- a Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , MD , USA
| |
Collapse
|
10
|
Moradi-Fard S, Sarthi J, Tittel-Elmer M, Lalonde M, Cusanelli E, Chartrand P, Cobb JA. Smc5/6 Is a Telomere-Associated Complex that Regulates Sir4 Binding and TPE. PLoS Genet 2016; 12:e1006268. [PMID: 27564449 PMCID: PMC5001636 DOI: 10.1371/journal.pgen.1006268] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 07/28/2016] [Indexed: 11/19/2022] Open
Abstract
SMC proteins constitute the core members of the Smc5/6, cohesin and condensin complexes. We demonstrate that Smc5/6 is present at telomeres throughout the cell cycle and its association with chromosome ends is dependent on Nse3, a subcomponent of the complex. Cells harboring a temperature sensitive mutant, nse3-1, are defective in Smc5/6 localization to telomeres and have slightly shorter telomeres. Nse3 interacts physically and genetically with two Rap1-binding factors, Rif2 and Sir4. Reduction in telomere-associated Smc5/6 leads to defects in telomere clustering, dispersion of the silencing factor, Sir4, and a loss in transcriptional repression for sub-telomeric genes and non-coding telomeric repeat-containing RNA (TERRA). SIR4 recovery at telomeres is reduced in cells lacking Smc5/6 functionality and vice versa. However, nse3-1/ sir4 Δ double mutants show additive defects for telomere shortening and TPE indicating the contribution of Smc5/6 to telomere homeostasis is only in partial overlap with SIR factor silencing. These findings support a role for Smc5/6 in telomere maintenance that is separate from its canonical role(s) in HR-mediated events during replication and telomere elongation.
Collapse
Affiliation(s)
- Sarah Moradi-Fard
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jessica Sarthi
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mireille Tittel-Elmer
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maxime Lalonde
- Département de Biochimie, Université de Montréal, Montréal, Quebec, Canada
| | - Emilio Cusanelli
- Département de Biochimie, Université de Montréal, Montréal, Quebec, Canada
| | - Pascal Chartrand
- Département de Biochimie, Université de Montréal, Montréal, Quebec, Canada
| | - Jennifer A. Cobb
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Moravec M, Wischnewski H, Bah A, Hu Y, Liu N, Lafranchi L, King MC, Azzalin CM. TERRA promotes telomerase-mediated telomere elongation in Schizosaccharomyces pombe. EMBO Rep 2016; 17:999-1012. [PMID: 27154402 DOI: 10.15252/embr.201541708] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 04/07/2016] [Indexed: 11/09/2022] Open
Abstract
Telomerase-mediated telomere elongation provides cell populations with the ability to proliferate indefinitely. Telomerase is capable of recognizing and extending the shortest telomeres in cells; nevertheless, how this mechanism is executed remains unclear. Here, we show that, in the fission yeast Schizosaccharomyces pombe, shortened telomeres are highly transcribed into the evolutionarily conserved long noncoding RNA TERRA A fraction of TERRA produced upon telomere shortening is polyadenylated and largely devoid of telomeric repeats, and furthermore, telomerase physically interacts with this polyadenylated TERRA in vivo We also show that experimentally enhanced transcription of a manipulated telomere promotes its association with telomerase and concomitant elongation. Our data represent the first direct evidence that TERRA stimulates telomerase recruitment and activity at chromosome ends in an organism with human-like telomeres.
Collapse
Affiliation(s)
- Martin Moravec
- Institute of Biochemistry (IBC), Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Harry Wischnewski
- Institute of Biochemistry (IBC), Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Amadou Bah
- Institute of Biochemistry (IBC), Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Yan Hu
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Na Liu
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Lorenzo Lafranchi
- Institute of Biochemistry (IBC), Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Claus M Azzalin
- Institute of Biochemistry (IBC), Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| |
Collapse
|
12
|
Robin JD, Ludlow AT, Batten K, Gaillard MC, Stadler G, Magdinier F, Wright WE, Shay JW. SORBS2 transcription is activated by telomere position effect-over long distance upon telomere shortening in muscle cells from patients with facioscapulohumeral dystrophy. Genome Res 2015; 25:1781-90. [PMID: 26359233 PMCID: PMC4665000 DOI: 10.1101/gr.190660.115] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 09/09/2015] [Indexed: 01/05/2023]
Abstract
DNA is organized into complex three-dimensional chromatin structures, but how this spatial organization regulates gene expression remains a central question. These DNA/chromatin looping structures can range in size from 10-20 kb (enhancers/repressors) to many megabases during intra- and inter-chromosomal interactions. Recently, the influence of telomere length on chromatin organization prior to senescence has revealed the existence of long-distance chromatin loops that dictate the expression of genes located up to 10 Mb from the telomeres (Telomere Position Effect-Over Long Distances [TPE-OLD]). Here, we demonstrate the existence of a telomere loop at the 4q35 locus involving the sorbin and SH3 domain-containing protein 2 gene, SORBS2, a skeletal muscle protein using a modification of the chromosome conformation capture method. The loop reveals a cis-acting mechanism modifying SORBS2 transcription. The expression of this gene is altered by TPE-OLD in myoblasts from patients affected with the age-associated genetic disease, facioscapulohumeral muscular dystrophy (FSHD1A, MIM 158900). SORBS2 is expressed in FSHD myoblasts with short telomeres, while not detectable in FSHD myoblasts with long telomeres or in healthy myoblasts regardless of telomere length. This indicates that TPE-OLD may modify the regulation of the 4q35 locus in a pathogenic context. Upon differentiation, both FSHD and healthy myotubes express SORBS2, suggesting that SORBS2 is normally up-regulated by maturation/differentiation of skeletal muscle and is misregulated by TPE-OLD-dependent variegation in FSHD myoblasts. These findings provide additional insights for the complexity and age-related symptoms of FSHD.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Biopsy
- Chromosome Deletion
- Chromosomes, Human, Pair 4
- DNA Methylation
- Epistasis, Genetic
- Gene Expression Regulation
- Genetic Loci
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- In Situ Hybridization, Fluorescence
- Muscle Cells/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Facioscapulohumeral/genetics
- Muscular Dystrophy, Facioscapulohumeral/metabolism
- Muscular Dystrophy, Facioscapulohumeral/pathology
- MyoD Protein/genetics
- MyoD Protein/metabolism
- Myoblasts
- RNA-Binding Proteins
- Telomere/genetics
- Telomere Shortening
- Transcriptional Activation
Collapse
Affiliation(s)
- Jérôme D Robin
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Andrew T Ludlow
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kimberly Batten
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | - Guido Stadler
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | - Woodring E Wright
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jerry W Shay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA; Center for Excellence in Genomics Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
13
|
Azzalin CM, Lingner J. Telomere functions grounding on TERRA firma. Trends Cell Biol 2014; 25:29-36. [PMID: 25257515 DOI: 10.1016/j.tcb.2014.08.007] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/18/2014] [Accepted: 08/22/2014] [Indexed: 10/24/2022]
Abstract
Long noncoding telomeric repeat-containing RNAs - TERRAs - are transcribed in a regulated manner from telomeres throughout eukaryotes. TERRA molecules consist of chromosome end-specific subtelomeric sequences and telomeric repeats at their 3' ends. Recent work suggests that TERRA sustains several important functions at chromosome ends. TERRA can regulate telomere length through modulation of exonuclease 1 and telomerase, it may promote recruitment of chromatin modifiers to damaged telomeres and thereby enable DNA end-processing, and it may promote telomere protein composition changes during cell cycle progression. Furthermore, telomere transcription regulates chromosome-end mobility within the nucleus. We review how TERRA, by regulated expression and by providing a molecular scaffold for various protein enzymes, can support a large variety of vital functions.
Collapse
Affiliation(s)
- Claus M Azzalin
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich (ETHZ), 8093 Zürich, Switzerland.
| | - Joachim Lingner
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences (SV), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
14
|
Fojtová M, Fajkus J. Epigenetic Regulation of Telomere Maintenance. Cytogenet Genome Res 2014; 143:125-35. [DOI: 10.1159/000360775] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
15
|
Maicher A, Lockhart A, Luke B. Breaking new ground: digging into TERRA function. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:387-94. [PMID: 24698720 DOI: 10.1016/j.bbagrm.2014.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 11/30/2022]
Abstract
Despite the fact that telomeres carry chromatin marks typically associated with silent heterochromatin, they are actively transcribed into TElomeric Repeat containing RNA (TERRA). TERRA transcription is conserved from yeast to man, initiates in the subtelomeric region and proceeds through the telomeric tract of presumably each individual telomere. TERRA levels are increased in yeast survivors and in cancer cells employing ALT as a telomere maintenance mechanism (TMM). Thus, TERRA may be a promising biomarker and potential target in anti-cancer therapy. Interestingly, several recent publications implicate TERRA in regulatory processes including telomere end protection and the establishment of the heterochromatic state at telomeres. A picture is emerging whereby TERRA acts as a regulator of telomere length and hence the associated onset of replicative senescence in a cell. In this review we will summarize the latest results regarding TERRA transcription, localization and related function. A special focus will be set on the potential role of TERRA in the regulation of telomere length and replicative senescence. Possible implications of increased TERRA levels in yeast survivors and in ALT cancer cells will be discussed.
Collapse
Affiliation(s)
- André Maicher
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Arianna Lockhart
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Brian Luke
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
16
|
|
17
|
Telomeric transcripts stimulate telomere recombination to suppress senescence in cells lacking telomerase. Proc Natl Acad Sci U S A 2014; 111:3377-82. [PMID: 24550456 DOI: 10.1073/pnas.1307415111] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In human somatic cells or yeast cells lacking telomerase, telomeres are shortened upon each cell division. This gradual shortening of telomeres eventually leads to senescence. However, a small population of telomerase-deficient cells can survive by bypassing senescence through the activation of alternative recombination pathways to maintain their telomeres. Although genes involved in telomere recombination have been identified, mechanisms that trigger telomere recombination are less known. The THO (suppressor of the transcriptional defects of Hpr1 mutants by overexpression) complex is involved in transcription elongation and mRNA export. Here we demonstrate that mutations in THO complex components can stimulate early senescence and type II telomere recombination in cells lacking telomerase. The accumulation of telomere-associated noncoding telomere repeat-containing RNA (TERRA) is required for the observed telomere effects in THO complex mutants; reduced transcriptional efficiency, or overexpression of RNase H or C(1-3)A RNA can severely impair the type II telomere recombination. The results highlight a unique function for telomere-associated TERRA, in the formation of type II survivors. Moreover, because TERRA is a long noncoding RNA, these results reveal a function for long noncoding RNA in regulating recombination.
Collapse
|
18
|
Cusanelli E, Chartrand P. Telomeric noncoding RNA: telomeric repeat-containing RNA in telomere biology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:407-19. [PMID: 24523222 DOI: 10.1002/wrna.1220] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Telomeres are nucleoprotein structures that cap the ends of eukaryotic chromosomes, protecting them from degradation and activation of DNA damage response. For this reason, functional telomeres are vital to genome stability. For years, telomeres were assumed to be transcriptionally silent, because of their heterochromatic state. It was only recently shown that, in several organisms, telomeres are transcribed, giving rise to a long noncoding RNA (lncRNA) called telomeric repeat-containing RNA (TERRA). Several lines of evidence now indicate that TERRA molecules play crucial roles in telomere homeostasis and telomere functions. Recent studies have shown that the expression and regulation of TERRA are dynamically controlled by each chromosome end. TERRA has been involved in the regulation of telomere length, telomerase activity, and heterochromatin formation at telomeres. The correct regulation of the telomeric transcripts may be essential to genome stability, and altered TERRA levels associate with tumorigenesis and cellular senescence. Thus, the study of the molecular mechanisms of TERRA biogenesis and function may advance the understanding of telomere-related diseases, including cancer and aging.
Collapse
Affiliation(s)
- Emilio Cusanelli
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Canada
| | | |
Collapse
|
19
|
Balk B, Dees M, Bender K, Luke B. The differential processing of telomeres in response to increased telomeric transcription and RNA-DNA hybrid accumulation. RNA Biol 2014; 11:95-100. [PMID: 24525824 PMCID: PMC3973735 DOI: 10.4161/rna.27798] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Telomeres are protective nucleoprotein structures at the ends of eukaryotic chromosomes. Despite the heterochromatic state of telomeres they are transcribed, generating non-coding telomeric repeat-containing RNA (TERRA). Strongly induced TERRA transcription has been shown to cause telomere shortening and accelerated senescence in the absence of both telomerase and homology-directed repair (HDR). Moreover, it has recently been demonstrated that TERRA forms RNA–DNA hybrids at chromosome ends. The accumulation of RNA–DNA hybrids at telomeres also leads to rapid senescence and telomere loss in the absence of telomerase and HDR. Conversely, in the presence of HDR, telomeric RNA–DNA hybrid accumulation and increased telomere transcription promote telomere recombination, and hence, delayed senescence. Here, we demonstrate that despite these similar phenotypic outcomes, telomeres that are highly transcribed are not processed in the same manner as those that accumulate RNA–DNA hybrids.
Collapse
Affiliation(s)
- Bettina Balk
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH); Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance; Heidelberg, Germany
| | - Martina Dees
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH); Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance; Heidelberg, Germany
| | - Katharina Bender
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH); Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance; Heidelberg, Germany
| | - Brian Luke
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH); Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance; Heidelberg, Germany
| |
Collapse
|
20
|
Martín GM, King DA, Green EM, Garcia-Nieto PE, Alexander R, Collins SR, Krogan NJ, Gozani OP, Morrison AJ. Set5 and Set1 cooperate to repress gene expression at telomeres and retrotransposons. Epigenetics 2014; 9:513-22. [PMID: 24442241 DOI: 10.4161/epi.27645] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A complex interplay between multiple chromatin modifiers is critical for cells to regulate chromatin structure and accessibility during essential DNA-templated processes such as transcription. However, the coordinated activities of these chromatin modifiers in the regulation of gene expression are not fully understood. We previously determined that the budding yeast histone H4 methyltransferase Set5 functions together with Set1, the H3K4 methyltransferase, in specific cellular contexts. Here, we sought to understand the relationship between these evolutionarily conserved enzymes in the regulation of gene expression. We generated a comprehensive genetic interaction map of the functionally uncharacterized Set5 methyltransferase and expanded the existing genetic interactome of the global chromatin modifier Set1, revealing functional overlap of the two enzymes in chromatin-related networks, such as transcription. Furthermore, gene expression profiling via RNA-Seq revealed an unexpected synergistic role of Set1 and Set5 in repressing transcription of Ty transposable elements and genes located in subtelomeric regions. This study uncovers novel pathways in which the methyltransferase Set5 participates and, more importantly, reveals a partnership between Set1 and Set5 in transcriptional repression near repetitive DNA elements in budding yeast. Together, our results define a new functional relationship between histone H3 and H4 methyltransferases, whose combined activity may be implicated in preserving genomic integrity.
Collapse
Affiliation(s)
| | - Devin A King
- Department of Biology; Stanford University; Stanford, CA USA
| | - Erin M Green
- Department of Biology; Stanford University; Stanford, CA USA
| | | | - Richard Alexander
- Department of Cellular and Molecular Pharmacology; University of California San Francisco; San Francisco, CA USA
| | - Sean R Collins
- Department of Chemical and Systems Biology; Stanford University; Stanford, CA USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology; University of California San Francisco; San Francisco, CA USA
| | - Or P Gozani
- Department of Biology; Stanford University; Stanford, CA USA
| | | |
Collapse
|
21
|
Abstract
Transcription of telomeric DNA has long been thought to inhibit telomerase. Using live cell imaging, in this issue, Cusanelli et al. (2013) now reveal a different scenario: telomeric RNA is preferentially generated at short telomeres and delivers telomerase to the chromosome end from which the transcript originated.
Collapse
|
22
|
Telomeric RNA-DNA hybrids affect telomere-length dynamics and senescence. Nat Struct Mol Biol 2013; 20:1199-205. [DOI: 10.1038/nsmb.2662] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/06/2013] [Indexed: 12/27/2022]
|
23
|
Abstract
The mechanisms that maintain the stability of chromosome ends have broad impact on genome integrity in all eukaryotes. Budding yeast is a premier organism for telomere studies. Many fundamental concepts of telomere and telomerase function were first established in yeast and then extended to other organisms. We present a comprehensive review of yeast telomere biology that covers capping, replication, recombination, and transcription. We think of it as yeast telomeres—soup to nuts.
Collapse
|
24
|
Pfeiffer V, Lingner J. TERRA promotes telomere shortening through exonuclease 1-mediated resection of chromosome ends. PLoS Genet 2012; 8:e1002747. [PMID: 22719262 PMCID: PMC3375253 DOI: 10.1371/journal.pgen.1002747] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/18/2012] [Indexed: 01/30/2023] Open
Abstract
The long noncoding telomeric repeat containing RNA (TERRA) is expressed at chromosome ends. TERRA upregulation upon experimental manipulation or in ICF (immunodeficiency, centromeric instability, facial anomalies) patients correlates with short telomeres. To study the mechanism of telomere length control by TERRA in Saccharomyces cerevisiae, we mapped the transcriptional start site of TERRA at telomere 1L and inserted a doxycycline regulatable promoter upstream. Induction of TERRA transcription led to telomere shortening of 1L but not of other chromosome ends. TERRA interacts with the Exo1-inhibiting Ku70/80 complex, and deletion of EXO1 but not MRE11 fully suppressed the TERRA–mediated short telomere phenotype in presence and absence of telomerase. Thus TERRA transcription facilitates the 5′-3′ nuclease activity of Exo1 at chromosome ends, providing a means to regulate the telomere shortening rate. Thereby, telomere transcription can regulate cellular lifespan through modulation of chromosome end processing activities. Telomeres protect chromosome ends from end fusion and end degradation, and they regulate cellular lifespan. Telomerase, a reverse transcriptase, maintains telomere length. The end replication problem and the processing of DNA ends by nucleases cause telomere shortening. Telomeres are transcribed into a long noncoding RNA known as TERRA. ICF syndrome derived patient cells have short telomeres and enriched TERRA. TERRA inhibits telomerase activity in vitro. To analyze TERRA function in vivo, we used the model organism Saccharomyces cerevisiae. We identified the natural TERRA promoter at one chromosome end and replaced it with an artificial promoter to modulate TERRA transcription with a drug. TERRA induction leads to telomere shortening at this specific chromosome end. We show that telomere shortening is a consequence of increased activation of the 5′-3′ Exonuclease 1 at the transcribed telomere with no notable effects on telomerase recruitment and activity. The Ku protein controls Exonuclease 1 activity at chromosome ends. TERRA physically and genetically interacts with Ku and appears to interfere with its ability to inhibit Exonuclease 1. Thus, we demonstrate how TERRA expression controls telomere length through the regulation of the processing of chromosome ends. Therefore, telomere transcription can regulate cellular lifespan independently of telomerase.
Collapse
Affiliation(s)
| | - Joachim Lingner
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Frontiers in Genetics National Center of Competence in Research, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
25
|
Abstract
Telomere function is tightly regulated in order to maintain chromosomal stability. When telomeres become dysfunctional, the replicative capacity of cells diminishes and cellular senescence ensues. This can lead to impaired tissue replenishment and eventually degenerative disorders, referred to as telomere syndromes. Cancer can also develop as a result of the genomic instability associated with telomere dysfunction. TERRA (TElomeric Repeat containing RNA) is a long non-coding transcript that stems from sub-telomeric regions and continues into the telomeric tract and is therefore a hybrid of both sub-telomeric and telomeric sequence. In general, increased TERRA transcription is associated with telomere shortening and compromised telomere function. Here we will briefly outline the general principles behind telomere dysfunction-associated diseases. Furthermore, we will discuss the few known links that exist between telomere transcription (TERRA) and disease. Finally, we will speculate on how the understanding, and eventual manipulation, of TERRA transcription could potentially be used in terms of therapeutic strategies.
Collapse
Affiliation(s)
- André Maicher
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | | | | |
Collapse
|
26
|
Maicher A, Kastner L, Dees M, Luke B. Deregulated telomere transcription causes replication-dependent telomere shortening and promotes cellular senescence. Nucleic Acids Res 2012; 40:6649-59. [PMID: 22553368 PMCID: PMC3413150 DOI: 10.1093/nar/gks358] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Telomeres are transcribed into non-coding TElomeric Repeat containing RNAs (TERRA). We have employed a transcriptionally inducible telomere to investigate how telomere transcription affects telomere function in Saccharomyces cerevisiae. We report that telomere shortening resulting from high levels of telomere transcription stems from a DNA replication-dependent loss of telomere tracts, which can occur independent of both telomerase inhibition and homologous recombination. We show that in order for telomere loss to occur, transcription must pass through the telomere tract itself producing a TERRA molecule. We demonstrate that increased telomere transcription of a single telomere leads to a premature cellular senescence in the absence of a telomere maintenance mechanism (telomerase and homology directed repair). Similar rapid senescence and telomere shortening are also seen in sir2Δ cells with compromised telomere maintenance, where TERRA levels are increased at natural telomeres. These data suggest that telomere transcription must be tightly controlled to prevent telomere loss and early onset senescence.
Collapse
Affiliation(s)
- André Maicher
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
27
|
Farnung BO, Brun CM, Arora R, Lorenzi LE, Azzalin CM. Telomerase efficiently elongates highly transcribing telomeres in human cancer cells. PLoS One 2012; 7:e35714. [PMID: 22558207 PMCID: PMC3338753 DOI: 10.1371/journal.pone.0035714] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 03/20/2012] [Indexed: 11/18/2022] Open
Abstract
RNA polymerase II transcribes the physical ends of linear eukaryotic chromosomes into a variety of long non-coding RNA molecules including telomeric repeat-containing RNA (TERRA). Since TERRA discovery, advances have been made in the characterization of TERRA biogenesis and regulation; on the contrary its associated functions remain elusive. Most of the biological roles so far proposed for TERRA are indeed based on in vitro experiments carried out using short TERRA-like RNA oligonucleotides. In particular, it has been suggested that TERRA inhibits telomerase activity. We have exploited two alternative cellular systems to test whether TERRA and/or telomere transcription influence telomerase-mediated telomere elongation in human cancer cells. In cells lacking the two DNA methyltransferases DNMT1 and DNMT3b, TERRA transcription and steady-state levels are greatly increased while telomerase is able to elongate telomeres normally. Similarly, telomerase can efficiently elongate transgenic inducible telomeres whose transcription has been experimentally augmented. Our data challenge the current hypothesis that TERRA functions as a general inhibitor of telomerase and suggest that telomere length homeostasis is maintained independently of TERRA and telomere transcription.
Collapse
Affiliation(s)
- Benjamin O. Farnung
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Catherine M. Brun
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Rajika Arora
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Luca E. Lorenzi
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Claus M. Azzalin
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| |
Collapse
|
28
|
Bah A, Wischnewski H, Shchepachev V, Azzalin CM. The telomeric transcriptome of Schizosaccharomyces pombe. Nucleic Acids Res 2011; 40:2995-3005. [PMID: 22139915 PMCID: PMC3326308 DOI: 10.1093/nar/gkr1153] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic telomeres are transcribed into telomeric repeat-containing RNA (TERRA). Telomeric transcription has been documented in mammals, birds, zebra fish, plants and budding yeast. Here we show that the chromosome ends of Schizosaccharomyces pombe produce distinct RNA species. As with budding yeast and mammals, S. pombe contains G-rich TERRA molecules and subtelomeric RNA species transcribed in the opposite direction of TERRA (ARRET). Moreover, fission yeast chromosome ends produce two novel RNA species: C-rich telomeric repeat-containing transcripts (ARIA) and subtelomeric transcripts complementary to ARRET (αARRET). RNA polymerase II (RNAPII) associates with pombe chromosome ends in vivo and the telomeric factor Rap1 negatively regulates this association, as well as the cellular accumulation of RNA emanating from chromosome ends. We also show that the RNAPII subunit Rpb7 and the non-canonical poly(A) polymerases Cid12 and Cid14 are involved in the regulation of TERRA, ARIA, ARRET and αARRET transcripts. We confirm the evolutionary conservation of telomere transcription, and reveal intriguing similarities and differences in the composition and regulation of telomeric transcripts among model organisms.
Collapse
Affiliation(s)
- Amadou Bah
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich, Schafmattstrasse 18, CH-8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
29
|
Greenwood J, Cooper JP. Non-coding telomeric and subtelomeric transcripts are differentially regulated by telomeric and heterochromatin assembly factors in fission yeast. Nucleic Acids Res 2011; 40:2956-63. [PMID: 22139922 PMCID: PMC3326310 DOI: 10.1093/nar/gkr1155] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
While telomere repeat-containing non-coding RNA has been identified in a variety of eukaryotes, its biological role is not yet clear. We have identified telomeric transcripts in fission yeast, a model system that combines precise genetic manipulability with telomeres remarkably similar to those of human. Like human and budding yeast, fission yeast harbours a population of telomeric RNA molecules containing G-rich telomeric repeats transcribed from the subtelomere to the telomere. In addition, we detect substantial levels of C-rich telomeric RNA whose appearance is independent of the RNA-dependent RNA polymerase, suggesting that the telomere repeats themselves serve as promoter sites; multiple distinct subtelomeric RNAs are also present. The regulation of these transcripts depends on the telomere-associated proteins Taz1 and Rap1, as deletion of taz1+ or rap1+ leads to increased levels of both telomere repeat-containing and subtelomeric transcripts. In contrast, loss of the heterochromatin proteins Swi6 or Clr4 or the telomerase regulator Rif1 results in elevated subtelomeric RNA levels while telomere-repeat containing transcript levels remain repressed. Coupled with the large body of knowledge surrounding the functions of telomeric and heterochromatin factors in fission yeast, these in vivo analyses suggest testable models for the roles of TERRA in telomere function.
Collapse
Affiliation(s)
- Jessica Greenwood
- Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | |
Collapse
|
30
|
Subtelomeric repetitive elements determine TERRA regulation by Rap1/Rif and Rap1/Sir complexes in yeast. EMBO Rep 2011; 12:587-93. [PMID: 21525956 DOI: 10.1038/embor.2011.73] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 03/23/2011] [Accepted: 03/30/2011] [Indexed: 01/28/2023] Open
Abstract
Telomeric repeat-containing RNA (TERRA) has been implicated in the control of heterochromatin and telomerase. We demonstrate that yeast TERRA is regulated by telomere-binding proteins in a chromosome-end-specific manner that is dependent on subtelomeric repetitive DNA elements. At telomeres that contain only X-elements, the Rap1 carboxy-terminal domain recruits the Sir2/3/4 and Rif1/2 complexes to repress transcription in addition to promoting Rat1-nuclease-dependent TERRA degradation. At telomeres that contain Y' elements, however, Rap1 represses TERRA through recruitment of Rif1 and Rif2. Our work emphasizes the importance of subtelomeric DNA in the control of telomeric protein composition and telomere transcription.
Collapse
|
31
|
Arora R, Brun CMC, Azzalin CM. TERRA: Long Noncoding RNA at Eukaryotic Telomeres. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 51:65-94. [PMID: 21287134 DOI: 10.1007/978-3-642-16502-3_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Telomeres protect the ends of linear eukaryotic chromosomes from being recognized as DNA double-stranded breaks, thereby maintaining the stability of our genome. The highly heterochromatic nature of telomeres had, for a long time, reinforced the idea that telomeres were transcriptionally silent. Since a few years, however, we know that DNA-dependent RNA polymerase II transcribes telomeric DNA into TElomeric Repeat-containing RNA (TERRA) molecules in a large variety of eukaryotes. In this chapter, we summarize the current knowledge of telomere structure and function and extensively review data accumulated on TERRA biogenesis and regulation. We also discuss putative functions of TERRA in preserving telomere stability and propose future directions for research encompassing this novel and exciting aspect of telomere biology.
Collapse
Affiliation(s)
- Rajika Arora
- Institute of Biochemistry, ETHZ-Eidgenössische Technische Hochschule Zürich, CH-8093, Zürich, Switzerland
| | | | | |
Collapse
|
32
|
Molecular dissection of telomeric repeat-containing RNA biogenesis unveils the presence of distinct and multiple regulatory pathways. Mol Cell Biol 2010; 30:4808-17. [PMID: 20713443 DOI: 10.1128/mcb.00460-10] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Telomeres are transcribed into telomeric repeat-containing RNA (TERRA), large, heterogeneous, noncoding transcripts which form part of the telomeric heterochromatin. Despite a large number of functions that have been ascribed to TERRA, little is known about its biogenesis. Here, we present the first comprehensive analysis of the molecular structure of TERRA. We identify biochemically distinct TERRA complexes, and we describe TERRA regulation during the cell cycle. Moreover, we demonstrate that TERRA 5' ends contain 7-methylguanosine cap structures and that the poly(A) tail, present on a fraction of TERRA transcripts, contributes to their stability. Poly(A)(-) TERRA, but not poly(A)(+) TERRA, is associated with chromatin, possibly reflecting distinct biological roles of TERRA ribonucleoprotein complexes. In support of this idea, poly(A)(-) and poly(A)(+) TERRA molecules end with distinct sequence registers. We also determine that the bulk of 3'-terminal UUAGGG repeats have an average length of 200 bases, indicating that the length heterogeneity of TERRA likely stems from its subtelomeric regions. Finally, we find that TERRA is regulated during the cell cycle, being lowest in late S phase and peaking in early G(1). Our analyses offer the basis for investigating multiple regulatory pathways that affect TERRA synthesis, processing, turnover, and function.
Collapse
|
33
|
Feuerhahn S, Iglesias N, Panza A, Porro A, Lingner J. TERRA biogenesis, turnover and implications for function. FEBS Lett 2010; 584:3812-8. [PMID: 20655916 DOI: 10.1016/j.febslet.2010.07.032] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 07/19/2010] [Accepted: 07/20/2010] [Indexed: 11/30/2022]
Abstract
Telomeres are heterochromatic structures at the ends of eukaryotic chromosomes. As other heterochromatin regions, telomeres are transcribed, from the subtelomeric region towards chromosome ends into the long non-coding RNA TERRA. Telomere transcription is a widespread phenomenon as it has been observed in species belonging to several kingdoms of the eukaryotic domain. TERRA is part of telomeric heterochromatin in addition to being present in the nucleoplasm. Here, we review the current knowledge of TERRA structure, biogenesis and turnover. In addition, we discuss presumed roles of this RNA during replication of telomeric DNA, heterochromatin formation and the regulation of telomerase.
Collapse
Affiliation(s)
- Sascha Feuerhahn
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Frontiers in Genetics National Center of Competence in Research, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
34
|
Paeschke K, McDonald KR, Zakian VA. Telomeres: structures in need of unwinding. FEBS Lett 2010; 584:3760-72. [PMID: 20637196 DOI: 10.1016/j.febslet.2010.07.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 06/25/2010] [Accepted: 07/02/2010] [Indexed: 11/26/2022]
Abstract
Telomeres protect the ends of eukaryotic chromosomes from being recognized and processed as double strand breaks. In most organisms, telomeric DNA is highly repetitive with a high GC-content. Moreover, the G residues are concentrated in the strand running 3'-5' from the end of the chromosome towards its center. This G-rich strand is extended to form a 3' single-stranded tail that can form unusual secondary structures such as T-loops and G-quadruplex DNA. Both the duplex repeats and the single-stranded G-tail are assembled into stable protein-DNA complexes. The unique architecture, high GC content, and multi-protein association create particularly stable protein-DNA complexes that are a challenge for replication, recombination, and transcription. Helicases utilize the energy of nucleotide hydrolysis to unwind base paired nucleic acids and, in some cases, to displace proteins from them. The telomeric functions of helicases from the RecQ, Pifl, FANCJ, and DNA2 families are reviewed in this article. We summarize data showing that perturbation of their telomere activities can lead to telomere dysfunction and genome instability and in some cases human disease.
Collapse
Affiliation(s)
- Katrin Paeschke
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
35
|
Chen LL, Carmichael GG. Long noncoding RNAs in mammalian cells: what, where, and why? WILEY INTERDISCIPLINARY REVIEWS. RNA 2010; 1:2-21. [PMID: 21956903 DOI: 10.1002/wrna.5] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Not all long, polyadenylated cellular RNAs encode polypeptides. In recent years, it has become apparent that a number of organisms express abundant amounts of transcripts that lack open reading frames or that are retained in the nucleus. Rather than accumulating silently in the cell, we now know that many of these long noncoding RNAs (lncRNAs) play important roles in nuclear architecture or in the regulation of gene expression. Here, we discuss some recent progress in our understanding of the functions of a number of important lncRNAs in mammalian cells.
Collapse
Affiliation(s)
- Ling-Ling Chen
- Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | | |
Collapse
|
36
|
Redon S, Reichenbach P, Lingner J. The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res 2010; 38:5797-806. [PMID: 20460456 PMCID: PMC2943627 DOI: 10.1093/nar/gkq296] [Citation(s) in RCA: 281] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Telomeres, the physical ends of eukaryotes chromosomes are transcribed into telomeric repeat containing RNA (TERRA), a large non-coding RNA of unknown function, which forms an integral part of telomeric heterochromatin. TERRA molecules resemble in sequence the telomeric DNA substrate as they contain 5′-UUAGGG-3′ repeats near their 3′-end which are complementary to the template sequence of telomerase RNA. Here we demonstrate that endogenous TERRA is bound to human telomerase in cell extracts. Using in vitro reconstituted telomerase and synthetic TERRA molecules we demonstrate that the 5′-UUAGGG-3′ repeats of TERRA base pair with the RNA template of the telomerase RNA moiety (TR). In addition TERRA contacts the telomerase reverse transcriptase (TERT) protein subunit independently of hTR. In vitro studies further demonstrate that TERRA is not used as a telomerase substrate. Instead, TERRA acts as a potent competitive inhibitor for telomeric DNA in addition to exerting an uncompetitive mode of inhibition. Our data identify TERRA as a telomerase ligand and natural direct inhibitor of human telomerase. Telomerase regulation by the telomere substrate may be mediated via its transcription.
Collapse
Affiliation(s)
- Sophie Redon
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Frontiers in Genetics National Center of Competence in Research, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | | |
Collapse
|
37
|
Irizar A, Yu Y, Reed SH, Louis EJ, Waters R. Silenced yeast chromatin is maintained by Sir2 in preference to permitting histone acetylations for efficient NER. Nucleic Acids Res 2010; 38:4675-86. [PMID: 20385597 PMCID: PMC2919727 DOI: 10.1093/nar/gkq242] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Very little is currently known about how nucleotide excision repair (NER) functions at the ends of chromosomes. To examine this, we introduced the URA3 gene into either transcriptionally active or repressed subtelomeric regions of the yeast genome. This enabled us to examine the repair of ultraviolet (UV)-induced cyclobutane pyrimidine dimers (CPDs) in identical sequences under both circumstances. We found that NER is significantly more efficient in the non-repressed subtelomere than the repressed one. At the non-repressed subtelomere, UV radiation stimulates both histones H3 and H4 acetylation in a similar fashion to that seen at other regions of the yeast genome. These modifications occur regardless of the presence of the Sir2 histone deacetylase. On the other hand, at the repressed subtelomere, where repair is much less efficient, UV radiation is unable to stimulate histone H4 or H3 acetylation in the presence of Sir2. In the absence of Sir2 both of these UV-induced modifications are detected, resulting in a significant increase in NER efficiency in the region. Our experiments reveal that there are instances in the yeast genome where the maintenance of the existing chromatin structures dominates over the action of chromatin modifications associated with efficient NER.
Collapse
Affiliation(s)
- Agurtzane Irizar
- Department of Pathology, School of Medicine, Cardiff University, Cardiff, UK
| | | | | | | | | |
Collapse
|
38
|
Acetylation of H3 K56 is required for RNA polymerase II transcript elongation through heterochromatin in yeast. Mol Cell Biol 2010; 30:1467-77. [PMID: 20065036 DOI: 10.1128/mcb.01151-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In Saccharomyces cerevisiae SIR proteins mediate transcriptional silencing, forming heterochromatin structures at repressed loci. Although recruitment of transcription initiation factors can occur even to promoters packed in heterochromatin, it is unclear whether heterochromatin inhibits RNA polymerase II (RNAPII) transcript elongation. To clarify this issue, we recruited SIR proteins to the coding region of an inducible gene and characterized the effects of the heterochromatic structure on transcription. Surprisingly, RNAPII is fully competent for transcription initiation and elongation at the locus, leading to significant loss of heterochromatin proteins from the region. A search for auxiliary factors required for transcript elongation through the heterochromatic locus revealed that two proteins involved in histone H3 lysine 56 acetylation, Rtt109 and Asf1, are needed for efficient transcript elongation by RNAPII. The efficiency of transcription through heterochromatin is also impaired in a strain carrying the K56R mutation in histone H3. Our results show that H3 K56 modification is required for efficient transcription of heterochromatic locus by RNAPII, and we propose that transcription-coupled incorporation of H3 acetylated K56 (acK56) into chromatin is needed for efficient opening of heterochromatic loci for transcription.
Collapse
|
39
|
Luke B, Lingner J. TERRA: telomeric repeat-containing RNA. EMBO J 2009; 28:2503-10. [PMID: 19629047 PMCID: PMC2722245 DOI: 10.1038/emboj.2009.166] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 05/25/2009] [Indexed: 02/06/2023] Open
Abstract
Telomeres, the physical ends of eukaryotic chromosomes, consist of tandem arrays of short DNA repeats and a large set of specialized proteins. A recent analysis has identified telomeric repeat-containing RNA (TERRA), a large non-coding RNA in animals and fungi, which forms an integral component of telomeric heterochromatin. TERRA transcription occurs at most or all chromosome ends and it is regulated by RNA surveillance factors and in response to changes in telomere length. TERRA functions that are emerging suggest important roles in the regulation of telomerase and in orchestrating chromatin remodelling throughout development and cellular differentiation. The accumulation of TERRA at telomeres can also interfere with telomere replication, leading to a sudden loss of telomere tracts. Such a phenotype can be observed upon impairment of the RNA surveillance machinery or in cells from ICF (Immunodeficiency, Centromeric region instability, Facial anomalies) patients, in which TERRA is upregulated because of DNA methylation defects in the subtelomeric region. Thus, TERRA may mediate several crucial functions at the telomeres, a region of the genome that had been considered to be transcriptionally silent.
Collapse
Affiliation(s)
- Brian Luke
- EPFL-Ecole Polytechnique Fédérale de Lausanne, ISREC-Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| | | |
Collapse
|
40
|
Abstract
Epigenetic regulation is important in many facets of eukaryotic biology. Recent work has suggested that the basic mechanisms underlying epigenetic regulation extend to eukaryotic parasites. The identification of post-translational histone modifications and chromatin-modifying enzymes is beginning to reveal both common and novel functions for chromatin in these parasites. In this Review, we compare the role of epigenetics in African trypanosomes and humans in several biological processes. We discuss how the study of trypanosome chromatin might help us to better understand the evolution of epigenetic processes.
Collapse
|
41
|
Luke B, Panza A, Redon S, Iglesias N, Li Z, Lingner J. The Rat1p 5' to 3' exonuclease degrades telomeric repeat-containing RNA and promotes telomere elongation in Saccharomyces cerevisiae. Mol Cell 2009; 32:465-77. [PMID: 19026778 DOI: 10.1016/j.molcel.2008.10.019] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 07/21/2008] [Accepted: 10/28/2008] [Indexed: 10/21/2022]
Abstract
Vertebrate telomeres are transcribed into telomeric repeat-containing RNA (TERRA) that associates with telomeres and may be important for telomere function. Here, we demonstrate that telomeres are also transcribed in Saccharomyces cerevisiae by RNA polymerase II (RNAPII). Yeast TERRA is polyadenylated and stabilized by Pap1p and regulated by the 5' to 3' exonuclease, Rat1p. rat1-1 mutant cells accumulate TERRA and harbor short telomeres because of defects in telomerase-mediated telomere elongation. Overexpression of RNaseH overcomes telomere elongation defects in rat1-1 cells, indicating that RNA/DNA hybrids inhibit telomerase function at chromosome ends in these mutants. Thus, telomeric transcription combined with Rat1p-dependent TERRA degradation is important for regulating telomerase in yeast. Telomere transcription is conserved in different kingdoms of the eukaryotic domain.
Collapse
Affiliation(s)
- Brian Luke
- Ecole Polytechnique Fédérale de Lausanne, Swiss Institute for Experimental Cancer Research (ISREC), CH-1066 Epalinges, Switzerland
| | | | | | | | | | | |
Collapse
|
42
|
Yehezkel S, Segev Y, Viegas-Péquignot E, Skorecki K, Selig S. Hypomethylation of subtelomeric regions in ICF syndrome is associated with abnormally short telomeres and enhanced transcription from telomeric regions. Hum Mol Genet 2008; 17:2776-89. [PMID: 18558631 DOI: 10.1093/hmg/ddn177] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Telomeres and adjacent subtelomeric regions are packaged as heterochromatin in many organisms. The heterochromatic features include DNA methylation, histones H3-Lys9 (Lysine 9) and H4-Lys20 (Lysine 20) methylation and heterochromatin protein1 alpha binding. Subtelomeric DNA is hypomethylated in human sperm and ova, and these regions are subjected to de novo methylation during development. In mice this activity is carried out by DNA methyltransferase 3b (Dnmt3b). Mutations in DNMT3B in humans lead to the autosomal-recessive ICF (immunodeficiency, centromeric region instability, facial anomalies) syndrome. Here we show that, in addition to several satellite and non-satellite repeats, the subtelomeric regions in lymphoblastoid and fibroblast cells of ICF patients are also hypomethylated to similar levels as in sperm. Furthermore, the telomeres are abnormally short in both the telomerase-positive and -negative cells, and many chromosome ends lack detectable telomere fluorescence in situ hybridization signals from either one or both sister-chromatids. In contrast to Dnmt3a/b(-/-) mouse embryonic stem cells, increased telomere sister-chromatid exchange was not observed in ICF cells. Hypomethylation of subtelomeric regions was associated in the ICF cells with advanced telomere replication timing and elevated levels of transcripts emanating from telomeric regions, known as TERRA (telomeric-repeat-containing RNA) or TelRNA. The current findings provide a mechanistic explanation for the abnormal telomeric phenotype observed in ICF syndrome and highlights the link between TERRA/TelRNA and structural telomeric integrity.
Collapse
Affiliation(s)
- Shiran Yehezkel
- Department of Nephrology and Laboratory of Molecular Medicine, Rambam Medical Center and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | | | | | | | | |
Collapse
|
43
|
McCord RA, Broccoli D. Telomeric chromatin: roles in aging, cancer and hereditary disease. Mutat Res 2008; 647:86-93. [PMID: 18778718 DOI: 10.1016/j.mrfmmm.2008.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/30/2008] [Accepted: 08/07/2008] [Indexed: 01/03/2023]
Abstract
Over the last several years there has been an explosion in our understanding of the organization of telomeric chromatin in mammals. As in other regions of the genome, chromatin composition at the telomere regulates structure, which defines function. Mammalian telomeres, similar to what has been demonstrated for telomeres of other eukaryotes, carry marks of heterochromatin and alteration in this underlying epigenetic code has effects on telomere replication and recombination. Experiments aimed at determining links between changes in telomeric chromatin and possible roles in aging and disease are beginning to emerge. The rapid refinement of our knowledge of the structure and alterations in telomeric chromatin over the last several years makes it likely that we are just seeing the tip of the iceberg.
Collapse
Affiliation(s)
- R A McCord
- Stanford University School of Medicine, Department of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
44
|
Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 2007; 318:798-801. [PMID: 17916692 DOI: 10.1126/science.1147182] [Citation(s) in RCA: 978] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Telomeres, the DNA-protein complexes located at the end of linear eukaryotic chromosomes, are essential for chromosome stability. Until now, telomeres have been considered to be transcriptionally silent. We demonstrate that mammalian telomeres are transcribed into telomeric repeat-containing RNA (TERRA). TERRA molecules are heterogeneous in length, are transcribed from several subtelomeric loci toward chromosome ends, and localize to telomeres. We also show that suppressors with morphogenetic defects in genitalia (SMG) proteins, which are effectors of nonsense-mediated messenger RNA decay, are enriched at telomeres in vivo, negatively regulate TERRA association with chromatin, and protect chromosome ends from telomere loss. Thus, telomeres are actively transcribed into TERRA, and SMG factors represent a molecular link between TERRA regulation and the maintenance of telomere integrity.
Collapse
Affiliation(s)
- Claus M Azzalin
- Swiss Institute for Experimental Cancer Research (ISREC), CH-1066 Epalinges, Switzerland
| | | | | | | | | |
Collapse
|
45
|
Glover L, Horn D. Repression of polymerase I-mediated gene expression at Trypanosoma brucei telomeres. EMBO Rep 2006; 7:93-9. [PMID: 16311518 PMCID: PMC1369228 DOI: 10.1038/sj.embor.7400575] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 09/15/2005] [Accepted: 10/10/2005] [Indexed: 02/08/2023] Open
Abstract
The African trypanosome, Trypanosoma brucei, is a flagellated pathogenic protozoan that branched early from the eukaryotic lineage. Unusually, it uses RNA polymerase I (Pol I) for mono-telomeric expression of variant surface glycoprotein (VSG) genes in bloodstream-form cells. Many other subtelomeric VSG genes are reversibly repressed, but no repressive DNA sequence has been identified in any trypanosomatid. Here, we show that artificially seeded de novo telomeres repress Pol I-dependent gene expression in mammalian bloodstream and insect life-cycle stages of T. brucei. In a telomeric VSG expression site, repression spreads further along the chromosome and this effect is specific to the bloodstream stage. We also show that de novo telomere extension is telomerase dependent and that the rate of extension correlates with the expression level of the adjacent gene. Our results show constitutive telomeric repression in T. brucei and indicate that an enhanced, developmental stage-specific repression mechanism controls antigenic variation.
Collapse
Affiliation(s)
- Lucy Glover
- London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - David Horn
- London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
- Tel: +44 20 7927 2352; Fax: +44 20 7636 8739; E-mail:
| |
Collapse
|
46
|
Hediger F, Berthiau AS, van Houwe G, Gilson E, Gasser SM. Subtelomeric factors antagonize telomere anchoring and Tel1-independent telomere length regulation. EMBO J 2006; 25:857-67. [PMID: 16467853 PMCID: PMC1383557 DOI: 10.1038/sj.emboj.7600976] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 01/09/2006] [Indexed: 11/09/2022] Open
Abstract
Yeast telomeres are anchored at the nuclear envelope (NE) through redundant pathways that require the telomere-binding factors yKu and Sir4. Significant variation is observed in the efficiency with which different telomeres are anchored, however, suggesting that other forces influence this interaction. Here, we show that subtelomeric elements and the insulator factors that bind them antagonize the association of telomeres with the NE. This is detectable when the redundancy in anchoring pathways is compromised. Remarkably, these same conditions lead to a reduction in steady-state telomere length in the absence of the ATM-kinase homologue Tel1. Both the delocalization of telomeres and reduction in telomere length can be induced by targeting of Tbf1 or Reb1, or the viral transactivator VP16, to a site 23 kb away from the TG repeat. This correlation suggests that telomere anchoring and a Tel1-independent pathway of telomere length regulation are linked, lending a functional significance to the association of yeast telomeres with the NE.
Collapse
Affiliation(s)
- Florence Hediger
- Department of Molecular Biology and NCCR Frontiers in Genetics, University of Geneva, Geneva, Switzerland
| | - Anne-Sophie Berthiau
- Laboratoire de Biologie Moléculaire de la Cellule de l'Ecole Normale Supérieure de Lyon, CNRS UMR5161, Lyon, France
| | - Griet van Houwe
- Department of Molecular Biology and NCCR Frontiers in Genetics, University of Geneva, Geneva, Switzerland
| | - Eric Gilson
- Laboratoire de Biologie Moléculaire de la Cellule de l'Ecole Normale Supérieure de Lyon, CNRS UMR5161, Lyon, France
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel CH-4058, Switzerland. Tel.: +41 61 697 7255; Fax: +41 61 697 3976; E-mail:
| |
Collapse
|
47
|
Berthiau AS, Yankulov K, Bah A, Revardel E, Luciano P, Wellinger RJ, Géli V, Gilson E. Subtelomeric proteins negatively regulate telomere elongation in budding yeast. EMBO J 2006; 25:846-56. [PMID: 16467854 PMCID: PMC1383556 DOI: 10.1038/sj.emboj.7600975] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 01/09/2006] [Indexed: 11/09/2022] Open
Abstract
The Tbf1 and Reb1 proteins are present in yeast subtelomeric regions. We establish in this work that they inhibit telomerase-dependent lengthening of telomere. For example, tethering the N-terminal domain of Tbf1 and Reb1 in a subtelomeric region shortens that telomere proportionally to the number of domains bound. We further identified a 90 amino-acid long sequence within the N-terminal domain of Tbf1 that is necessary but not sufficient for its length regulation properties. The role of the subtelomeric factors in telomere length regulation is antagonized by TEL1 and does not correlate with a global telomere derepression. We show that the absence of TEL1 induces an alteration in the structure of telomeric chromatin, as defined biochemically by an increased susceptibility to nucleases and a greater heterogeneity of products. We propose that the absence of TEL1 modifies the organization of the telomeres, which allows Tbf1 and Reb1 to cis-inhibit telomerase. The involvement of subtelomeric factors in telomere length regulation provides a possible mechanism for the chromosome-specific length setting observed at yeast and human telomeres.
Collapse
Affiliation(s)
- Anne-Sophie Berthiau
- Laboratoire de Biologie Moléculaire de la Cellule de l'Ecole Normale Supérieure de Lyon, CNRS UMR5161, IFR 128, Lyon, France
| | - Krassimir Yankulov
- Laboratoire de Biologie Moléculaire de la Cellule de l'Ecole Normale Supérieure de Lyon, CNRS UMR5161, IFR 128, Lyon, France
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Amadou Bah
- Laboratoire de Biologie Moléculaire de la Cellule de l'Ecole Normale Supérieure de Lyon, CNRS UMR5161, IFR 128, Lyon, France
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Universite de Sherbrooke 3001, Sherbrooke, Quebec, Canada
| | - Emmanuelle Revardel
- Laboratoire de Biologie Moléculaire de la Cellule de l'Ecole Normale Supérieure de Lyon, CNRS UMR5161, IFR 128, Lyon, France
| | - Pierre Luciano
- Laboratoire d'Instabilité Génétique et Cancérogenèse (IGC), CNRS, Marseille, France
| | - Raymund J Wellinger
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Universite de Sherbrooke 3001, Sherbrooke, Quebec, Canada
| | - Vincent Géli
- Laboratoire d'Instabilité Génétique et Cancérogenèse (IGC), CNRS, Marseille, France
| | - Eric Gilson
- Laboratoire de Biologie Moléculaire de la Cellule de l'Ecole Normale Supérieure de Lyon, CNRS UMR5161, IFR 128, Lyon, France
- Laboratoire de Biologie Moléculaire et Cellulaire, Ecole Normale Supérieure, UMR5161 CNRS/ENSL, 46 Allee d'italie, 69364 Lyon Cedex 07, France. Tel.: +33 472 728 453; Fax: +33 472 728 686; E-mail:
| |
Collapse
|
48
|
Lahue E, Heckathorn J, Meyer Z, Smith J, Wolfe C. TheSaccharomyces cerevisiae Sub2 protein suppresses heterochromatic silencing at telomeres and subtelomeric genes. Yeast 2005; 22:537-51. [PMID: 15942929 DOI: 10.1002/yea.1231] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We show that overexpression of Sub2p, a multifunctional Saccharomyces cerevisiae helicase family member that is involved in mRNA elongation and transport, also suppresses heterochromatic silencing at telomeres. Genetic assays show cells that overexpress SUB2 from a high copy plasmid exhibit increased survival rates when selecting for a telomere-silenced URA3 reporter. Two temperature-sensitive sub2 mutations that affect different helicase domains were also examined at the permissive temperature; these mutants also overcome silencing of the URA3 reporter. The degree to which silencing is suppressed correlates with SUB2 RNA and protein levels. Additionally, we find that Sub2p localizes to the telomeres, as determined by chromatin immunoprecipitation assays, suggesting that Sub2p has a direct effect at telomeres. Genome-wide analysis of transcripts was used to assess whether Sub2p overproduction affects only the silenced URA3 reporter gene, or whether other subtelomeric genes are also affected. Of the 70 RNA transcripts elevated in the Sub2p overexpressing cells, 28% are encoded by subtelomeric genes that are located within 5 Kbp of a core X or Y' repeat. The remainder of the transcripts clustered into several functional groups, including the iron homeostasis pathway, purine nucleotide metabolism, and miscellaneous transport genes, among others. These results suggest a targeted effect of Sub2p on transcription. Our results also confirm that Sub2p affects heterochromatic gene expression, similar to that observed with the Drosophila Hel25E homologue. The above observations imply that Sub2p affects chromatin structure in addition to, or in parallel with, its functions in transcription elongation, splicing and mRNA transport.
Collapse
Affiliation(s)
- Elaine Lahue
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, USA.
| | | | | | | | | |
Collapse
|
49
|
Fisher TS, Taggart AKP, Zakian VA. Cell cycle-dependent regulation of yeast telomerase by Ku. Nat Struct Mol Biol 2004; 11:1198-205. [PMID: 15531893 DOI: 10.1038/nsmb854] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Accepted: 10/04/2004] [Indexed: 11/08/2022]
Abstract
The heterodimeric Ku complex affects telomere structure in diverse organisms. We report here that in the absence of Ku, the catalytic subunit of telomerase, Est2p, was not telomere-associated in G1 phase, and its association in late S phase was decreased. The telomere association of Est1p, a telomerase component that binds telomeres only in late S phase, was also reduced in the absence of Ku. The effects of Ku on telomerase binding require a 48-nucleotide (nt) stem-loop region of TLC1 telomerase RNA. Ku interacts with TLC1 RNA via this 48-nt region throughout the cell cycle, but this interaction was reduced after telomere replication. These data support a model in which Ku recruits telomerase to telomeres in G1 phase when telomerase is inactive and promotes telomerase-mediated telomere lengthening in late S phase.
Collapse
Affiliation(s)
- Timothy S Fisher
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
50
|
Dahlén M, Sunnerhagen P, Wang TSF. Replication proteins influence the maintenance of telomere length and telomerase protein stability. Mol Cell Biol 2003; 23:3031-42. [PMID: 12697806 PMCID: PMC153188 DOI: 10.1128/mcb.23.9.3031-3042.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2002] [Revised: 09/09/2002] [Accepted: 02/09/2003] [Indexed: 11/20/2022] Open
Abstract
We investigated the effects of fission yeast replication genes on telomere length maintenance and identified 20 mutant alleles that confer lengthening or shortening of telomeres. The telomere elongation was telomerase dependent in the replication mutants analyzed. Furthermore, the telomerase catalytic subunit, Trt1, and the principal initiation and lagging-strand synthesis DNA polymerase, Polalpha, were reciprocally coimmunoprecipitated, indicating these proteins physically coexist as a complex in vivo. In a polalpha mutant that exhibited abnormal telomere lengthening and slightly reduced telomere position effect, the cellular level of the Trt1 protein was significantly lower and the coimmunoprecipitation of Trt1 and Polalpha was severely compromised compared to those in the wild-type polalpha cells. Interestingly, ectopic expression of wild-type polalpha in this polalpha mutant restored the cellular Trt1 protein to the wild-type level and shortened the telomeres to near-wild-type length. These results suggest that there is a close physical relationship between the replication and telomerase complexes. Thus, mutation of a component of the replication complex can affect the telomeric complex in maintaining both telomere length equilibrium and telomerase protein stability.
Collapse
Affiliation(s)
- Maria Dahlén
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5324, USA
| | | | | |
Collapse
|