1
|
Le AV, Hartman MCT. Improved synthesis of the unnatural base NaM, and evaluation of its orthogonality in in vitro transcription and translation. RSC Chem Biol 2024; 5:d4cb00121d. [PMID: 39279876 PMCID: PMC11389374 DOI: 10.1039/d4cb00121d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/04/2024] [Indexed: 09/18/2024] Open
Abstract
Unnatural base pairs (UBP) promise to diversify cellular function through expansion of the genetic code. Some of the most successful UBPs are the hydrophobic base pairs 5SICS:NaM and TPT3:NaM developed by Romesberg. Much of the research on these UBPs has emphasized strategies to enable their efficient replication, transcription and translation in living organisms. These experiments have achieved spectacular success in certain cases; however, the complexity of working in vivo places strong constraints on the types of experiments that can be done to optimize and improve the system. Testing UBPs in vitro, on the other hand, offers advantages including minimization of scale, the ability to precisely control the concentration of reagents, and simpler purification of products. Here we investigate the orthogonality of NaM-containing base pairs in transcription and translation, looking at background readthrough of NaM codons by the native machinery. We also describe an improved synthesis of NaM triphosphate (NaM-TP) and a new assay for testing the purity of UBP containing RNAs.
Collapse
Affiliation(s)
- Anthony V Le
- Virginia Commonwealth University, Department of Chemistry 1001 W Main St. Richmond VA 23284 USA
- Virginia Commonwealth University, Massey Cancer Center 401 College St. Richmond VA 23219 USA
| | - Matthew C T Hartman
- Virginia Commonwealth University, Department of Chemistry 1001 W Main St. Richmond VA 23284 USA
- Virginia Commonwealth University, Massey Cancer Center 401 College St. Richmond VA 23219 USA
| |
Collapse
|
2
|
Dörrenhaus R, Wagner PK, Kath-Schorr S. Two are not enough: synthetic strategies and applications of unnatural base pairs. Biol Chem 2023; 404:883-896. [PMID: 37354104 DOI: 10.1515/hsz-2023-0169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/05/2023] [Indexed: 06/26/2023]
Abstract
Nucleic acid chemistry is a rapidly evolving field, and the need for novel nucleotide modifications and artificial nucleotide building blocks for diagnostic and therapeutic use, material science or for studying cellular processes continues unabated. This review focusses on the development and application of unnatural base pairs as part of an expanded genetic alphabet. Not only recent developments in "nature-like" artificial base pairs are presented, but also current synthetic methods to get access to C-glycosidic nucleotides. Wide-ranging viability in synthesis is a prerequisite for the successful use of unnatural base pairs in a broader spectrum and will be discussed.
Collapse
|
3
|
Berdis A. Nucleobase-modified nucleosides and nucleotides: Applications in biochemistry, synthetic biology, and drug discovery. Front Chem 2022; 10:1051525. [PMID: 36531317 PMCID: PMC9748101 DOI: 10.3389/fchem.2022.1051525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/08/2022] [Indexed: 09/29/2023] Open
Abstract
. DNA is often referred to as the "molecule of life" since it contains the genetic blueprint for all forms of life on this planet. The core building blocks composing DNA are deoxynucleotides. While the deoxyribose sugar and phosphate group are ubiquitous, it is the composition and spatial arrangement of the four natural nucleobases, adenine (A), cytosine (C), guanine (G), and thymine (T), that provide diversity in the coding information present in DNA. The ability of DNA to function as the genetic blueprint has historically been attributed to the formation of proper hydrogen bonding interactions made between complementary nucleobases. However, recent chemical and biochemical studies using nucleobase-modified nucleotides that contain "non-hydrogen bonding" functional groups have challenged many of the dogmatic views for the necessity of hydrogen-bonding interactions for DNA stability and function. Based on years of exciting research, this area has expanded tremendously and is thus too expansive to provide a comprehensive review on the topic. As such, this review article provides an opinion highlighting how nucleobase-modified nucleotides are being applied in diverse biomedical fields, focusing on three exciting areas of research. The first section addresses how these analogs are used as mechanistic probes for DNA polymerase activity and fidelity during replication. This section outlines the synthetic logic and medicinal chemistry approaches used to replace hydrogen-bonding functional groups to examine the contributions of shape/size, nucleobase hydrophobicity, and pi-electron interactions. The second section extends these mechanistic studies to provide insight into how nucleobase-modified nucleosides are used in synthetic biology. One example is through expansion of the genetic code in which changing the composition of DNA makes it possible to site-specifically incorporate unnatural amino acids bearing unique functional groups into enzymes and receptors. The final section describes results of pre-clinical studies using nucleobase-modified nucleosides as potential therapeutic agents against diseases such as cancer.
Collapse
Affiliation(s)
- Anthony Berdis
- Department of Chemistry, Cleveland State University, Cleveland, OH, United States
| |
Collapse
|
4
|
Method for Rapid Analysis of Mutant RNA Polymerase Activity on Templates Containing Unnatural Nucleotides. Int J Mol Sci 2021; 22:ijms22105186. [PMID: 34069057 PMCID: PMC8155940 DOI: 10.3390/ijms22105186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Pairs of unnatural nucleotides are used to expand the genetic code and create artificial DNA or RNA templates. In general, an approach is used to engineer orthogonal systems capable of reading codons comprising artificial nucleotides; however, DNA and RNA polymerases capable of recognizing unnatural nucleotides are required for amplification and transcription of templates. Under favorable conditions, in the presence of modified nucleotide triphosphates, DNA polymerases are able to synthesize unnatural DNA with high efficiency; however, the currently available RNA polymerases reveal high specificity to the natural nucleotides and may not easily recognize the unnatural nucleotides. Due to the absence of simple and rapid methods for testing the activity of mutant RNA polymerases, the development of RNA polymerase recognizing unnatural nucleotides is limited. To fill this gap, we developed a method for rapid analysis of mutant RNA polymerase activity on templates containing unnatural nucleotides. Herein, we optimized a coupled cell-free translation system and tested the ability of three unnatural nucleotides to be transcribed by different T7 RNA polymerase mutants, by demonstrating high sensitivity and simplicity of the developed method. This approach can be applied to various unnatural nucleotides and can be simultaneously scaled up to determine the activity of numerous polymerases on different templates. Due to the simplicity and small amounts of material required, the developed cell-free system provides a highly scalable and versatile tool to study RNA polymerase activity.
Collapse
|
5
|
Kimoto M, Hirao I. Genetic alphabet expansion technology by creating unnatural base pairs. Chem Soc Rev 2020; 49:7602-7626. [PMID: 33015699 DOI: 10.1039/d0cs00457j] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advancements in the creation of artificial extra base pairs (unnatural base pairs, UBPs) are opening the door to a new research area, xenobiology, and genetic alphabet expansion technologies. UBPs that function as third base pairs in replication, transcription, and/or translation enable the site-specific incorporation of novel components into DNA, RNA, and proteins. Here, we describe the UBPs developed by three research teams and their application in PCR-based diagnostics, high-affinity DNA aptamer generation, site-specific labeling of RNAs, semi-synthetic organism creation, and unnatural-amino-acid-containing protein synthesis.
Collapse
Affiliation(s)
- Michiko Kimoto
- Institute of Bioengineering and Nanotechnology, A*STAR, Singapore.
| | | |
Collapse
|
6
|
Mukba SA, Vlasov PK, Kolosov PM, Shuvalova EY, Egorova TV, Alkalaeva EZ. Expanding the Genetic Code: Unnatural Base Pairs in Biological Systems. Mol Biol 2020. [DOI: 10.1134/s0026893320040111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Ding T, Tang F, Ni G, Liu J, Zhao H, Chen Q. The development of isoguanosine: from discovery, synthesis, and modification to supramolecular structures and potential applications. RSC Adv 2020. [DOI: 10.1039/c9ra09427j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
First systematical review of isoguanosine, an unnatural base, as an isomer of guanosine shows significant differences in diverse properties.
Collapse
Affiliation(s)
- Tingting Ding
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management
- West China Hospital of Stomatology
- Sichuan University
| | - Fan Tang
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management
- West China Hospital of Stomatology
- Sichuan University
| | - Guangcheng Ni
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management
- West China Hospital of Stomatology
- Sichuan University
| | - Jiang Liu
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management
- West China Hospital of Stomatology
- Sichuan University
| | - Hang Zhao
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management
- West China Hospital of Stomatology
- Sichuan University
| | - Qianming Chen
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management
- West China Hospital of Stomatology
- Sichuan University
| |
Collapse
|
8
|
Kong D, Yeung W, Hili R. Generation of Synthetic Copolymer Libraries by Combinatorial Assembly on Nucleic Acid Templates. ACS COMBINATORIAL SCIENCE 2016; 18:355-70. [PMID: 27275512 DOI: 10.1021/acscombsci.6b00059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent advances in nucleic acid-templated copolymerization have expanded the scope of sequence-controlled synthetic copolymers beyond the molecular architectures witnessed in nature. This has enabled the power of molecular evolution to be applied to synthetic copolymer libraries to evolve molecular function ranging from molecular recognition to catalysis. This Review seeks to summarize different approaches available to generate sequence-defined monodispersed synthetic copolymer libraries using nucleic acid-templated polymerization. Key concepts and principles governing nucleic acid-templated polymerization, as well as the fidelity of various copolymerization technologies, will be described. The Review will focus on methods that enable the combinatorial generation of copolymer libraries and their molecular evolution for desired function.
Collapse
Affiliation(s)
- Dehui Kong
- Department of Chemistry, University of Georgia, 140 Cedar
Street, Athens, Georgia 30602, United States
| | - Wayland Yeung
- Department of Chemistry, University of Georgia, 140 Cedar
Street, Athens, Georgia 30602, United States
| | - Ryan Hili
- Department of Chemistry, University of Georgia, 140 Cedar
Street, Athens, Georgia 30602, United States
| |
Collapse
|
9
|
Mehta AP, Li H, Reed SA, Supekova L, Javahishvili T, Schultz PG. Replacement of Thymidine by a Modified Base in the Escherichia coli Genome. J Am Chem Soc 2016; 138:7272-5. [PMID: 27213685 DOI: 10.1021/jacs.6b03904] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prokaryotic and eukaryotic genomic DNA is comprised of the four building blocks A, G, C, and T. We have begun to explore the consequences of replacing a large fraction or all of a nucleoside in genomic DNA with a modified nucleoside. As a first step we have investigated the possibility of replacement of T by 2'-deoxy-5-(hydroxymethyl)uridine (5hmU) in the genomic DNA of Escherichia coli. Metabolic engineering with phage genes followed by random mutagenesis enabled us to achieve approximately 75% replacement of T by 5hmU in the E. coli genome and in plasmids.
Collapse
Affiliation(s)
- Angad P Mehta
- The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Han Li
- The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Sean A Reed
- The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lubica Supekova
- The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tsotne Javahishvili
- The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Peter G Schultz
- The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
10
|
Abstract
All biological information, since the last common ancestor of all life on Earth, has been encoded by a genetic alphabet consisting of only four nucleotides that form two base pairs. Long-standing efforts to develop two synthetic nucleotides that form a third, unnatural base pair (UBP) have recently yielded three promising candidates, one based on alternative hydrogen bonding, and two based on hydrophobic and packing forces. All three of these UBPs are replicated and transcribed with remarkable efficiency and fidelity, and the latter two thus demonstrate that hydrogen bonding is not unique in its ability to underlie the storage and retrieval of genetic information. This Review highlights these recent developments as well as the applications enabled by the UBPs, including the expansion of the evolution process to include new functionality and the creation of semi-synthetic life that stores increased information.
Collapse
Affiliation(s)
- Denis A Malyshev
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA).
| |
Collapse
|
11
|
|
12
|
Tarashima N, Komatsu Y, Furukawa K, Minakawa N. Faithful PCR Amplification of an Unnatural Base-Pair Analogue with Four Hydrogen Bonds. Chemistry 2015; 21:10688-95. [DOI: 10.1002/chem.201501484] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Indexed: 12/31/2022]
|
13
|
Rezzonico F. Nanopore-based instruments as biosensors for future planetary missions. ASTROBIOLOGY 2014; 14:344-351. [PMID: 24684166 DOI: 10.1089/ast.2013.1120] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Data from automated orbiters and landers have dashed humankind's hopes of finding complex life-forms elsewhere in the Solar System. The focus of exobiological research was thus forced to shift from the detection of life through simple visual imaging to complex biochemical experiments aimed at the detection of microbial activity. Searching for biosignatures over interplanetary distances is a formidable task and poses the dilemma of what are the proper experiments that can be performed on-site to maximize the chances of success if extraterrestrial life is present but not evident. Despite their astonishing morphological diversity, all known organisms on Earth share the same basic molecular architecture; thus the vast majority of our detection and identification techniques are b(i)ased on Terran biochemistry. There is, however, a distinct possibility that life may have emerged elsewhere by using other molecular building blocks, a fact that is likely to make the outcome of most of the current molecular biological and biochemical life-detection protocols difficult to interpret if not completely ineffective. Nanopore-based sensing devices allow the analysis of single molecules, including the sequence of informational biopolymers such as DNA or RNA, by measuring current changes across an electrically resistant membrane when the analyte flows through an embedded transmembrane protein or a solid-state nanopore. Under certain basic assumptions about their physical properties, this technology has the potential to discriminate and possibly analyze biopolymers, in particular genetic information carriers, without prior detailed knowledge of their fundamental chemistry and is sufficiently portable to be used for automated analysis in planetary exploration, all of which makes it the ideal candidate for the search for life signatures in remote watery environments such as Mars, Europa, or Enceladus.
Collapse
Affiliation(s)
- Fabio Rezzonico
- Research group Environmental Genomics and Systems Biology, Zurich University for Applied Sciences (ZHAW) , Wädenswil, Switzerland
| |
Collapse
|
14
|
Abstract
Although both the most popular form of synthetic biology (SB) and chemical synthetic biology (CSB) share the biotechnologically useful aim of making new forms of life, SB does so by using genetic manipulation of extant microorganism, while CSB utilises classic chemical procedures in order to obtain biological structures which are non-existent in nature. The main query concerning CSB is the philosophical question: why did nature do this, and not that? The idea then is to synthesise alternative structures in order to understand why nature operated in such a particular way. We briefly present here some various examples of CSB, including those cases of nucleic acids synthesised with pyranose instead of ribose, and proteins with a reduced alphabet of amino acids; also we report the developing research on the "never born proteins" (NBP) and "never born RNA" (NBRNA), up to the minimal cell project, where the issue is the preparation of semi-synthetic cells that can perform the basic functions of biological cells.
Collapse
Affiliation(s)
| | - Pier Luigi Luisi
- Department of Materials, Swiss Federal Institute of Technology Zurich (ETHZ), University of Roma Tre, Italy
| |
Collapse
|
15
|
Kimoto M, Hikida Y, Hirao I. Site-Specific Functional Labeling of Nucleic Acids by In Vitro Replication and Transcription using Unnatural Base Pair Systems. Isr J Chem 2013. [DOI: 10.1002/ijch.201300013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Hirao I, Kimoto M, Yamashige R. Natural versus artificial creation of base pairs in DNA: origin of nucleobases from the perspectives of unnatural base pair studies. Acc Chem Res 2012; 45:2055-65. [PMID: 22263525 DOI: 10.1021/ar200257x] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Since life began on Earth, the four types of bases (A, G, C, and T(U)) that form two sets of base pairs have remained unchanged as the components of nucleic acids that replicate and transfer genetic information. Throughout evolution, except for the U to T modification, the four base structures have not changed. This constancy within the genetic code raises the question of how these complicated nucleotides were generated from the molecules in a primordial soup on the early Earth. At some prebiotic stage, the complementarity of base pairs might have accelerated the generation and accumulation of nucleotides or oligonucleotides. We have no clues whether one pair of nucleobases initially appeared on the early Earth during this process or a set of two base pairs appeared simultaneously. Recently, researchers have developed new artificial pairs of nucleobases (unnatural base pairs) that function alongside the natural base pairs. Some unnatural base pairs in duplex DNA can be efficiently and faithfully amplified in a polymerase chain reaction (PCR) using thermostable DNA polymerases. The addition of unnatural base pair systems could expand the genetic alphabet of DNA, thus providing a new mechanism for the generation novel biopolymers by the site-specific incorporation of functional components into nucleic acids and proteins. Furthermore, the process of unnatural base pair development might provide clues to the origin of the natural base pairs in a primordial soup on the early Earth. In this Account, we describe the development of three representative types of unnatural base pairs that function as a third pair of nucleobases in PCR and reconsider the origin of the natural nucleic acids. As researchers developing unnatural base pairs, they use repeated "proof of concept" experiments. As researchers design new base pairs, they improve the structures that function in PCR and eliminate those that do not. We expect that this process is similar to the one functioning in the chemical evolution and selection of the natural nucleobases. Interestingly, the initial structures designed by each research group were quite similar to those of the latest successful unnatural base pairs. In this regard, it is tempting to form a hypothesis that the base pairs on the primordial Earth, in which the natural purine bases, A and G, and pyrimidine bases, C and T(U), originated from structurally similar compounds, such as hypoxanthine for a purine base predecessor. Subsequently, the initial base pair evolved to the present two sets of base pairs via a keto-enol tautomerization of the initial compounds.
Collapse
Affiliation(s)
- Ichiro Hirao
- RIKEN Systems and Structural Biology Center (SSBC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- TagCyx Biotechnologies, 1-6-126 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Michiko Kimoto
- RIKEN Systems and Structural Biology Center (SSBC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- TagCyx Biotechnologies, 1-6-126 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Rie Yamashige
- RIKEN Systems and Structural Biology Center (SSBC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
17
|
Hirao I, Kimoto M. Unnatural base pair systems toward the expansion of the genetic alphabet in the central dogma. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2012; 88:345-67. [PMID: 22850726 PMCID: PMC3422687 DOI: 10.2183/pjab.88.345] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/01/2012] [Indexed: 05/30/2023]
Abstract
Toward the expansion of the genetic alphabet of DNA, several artificial third base pairs (unnatural base pairs) have been created. Synthetic DNAs containing the unnatural base pairs can be amplified faithfully by PCR, along with the natural A-T and G-C pairs, and transcribed into RNA. The unnatural base pair systems now have high potential to open the door to next generation biotechnology. The creation of unnatural base pairs is a consequence of repeating "proof of concept" experiments. In the process, initially designed base pairs were modified to address their weak points. Some of them were artificially evolved to ones with higher efficiency and selectivity in polymerase reactions, while others were eliminated from the analysis. Here, we describe the process of unnatural base pair development, as well as the tests of their applications.
Collapse
Affiliation(s)
- Ichiro Hirao
- RIKEN Systems and Structural Biology Center (SSBC), Yokohama, Japan.
| | | |
Collapse
|
18
|
Lavergne T, Malyshev DA, Romesberg FE. Major groove substituents and polymerase recognition of a class of predominantly hydrophobic unnatural base pairs. Chemistry 2011; 18:1231-9. [PMID: 22190386 DOI: 10.1002/chem.201102066] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Indexed: 11/10/2022]
Abstract
Expansion of the genetic alphabet with an unnatural base pair is a long-standing goal of synthetic biology. We have developed a class of unnatural base pairs, formed between d5SICS and analogues of dMMO2 that are efficiently and selectively replicated by the Klenow fragment (Kf) DNA polymerase. In an effort to further characterize and optimize replication, we report the synthesis of five new dMMO2 analogues bearing different substituents designed to be oriented into the developing major groove and an analysis of their insertion opposite d5SICS by Kf and Thermus aquaticus DNA polymerase I (Taq). We also expand the analysis of the previously optimized pair, dNaM-d5SICS, to include replication by Taq. Finally, the efficiency and fidelity of PCR amplification of the base pairs by Taq or Deep Vent polymerases was examined. The resulting structure-activity relationship data suggest that the major determinants of efficient replication are the minimization of desolvation effects and the introduction of favorable hydrophobic packing, and that Taq is more sensitive than Kf to structural changes. In addition, we identify an analogue (dNMO1) that is a better partner for d5SICS than any of the previously identified dMMO2 analogues with the exception of dNaM. We also found that dNaM-d5SICS is replicated by both Kf and Taq with rates approaching those of a natural base pair.
Collapse
Affiliation(s)
- Thomas Lavergne
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
19
|
Seo YJ, Malyshev DA, Lavergne T, Ordoukhanian P, Romesberg FE. Site-specific labeling of DNA and RNA using an efficiently replicated and transcribed class of unnatural base pairs. J Am Chem Soc 2011; 133:19878-88. [PMID: 21981600 PMCID: PMC3988912 DOI: 10.1021/ja207907d] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Site-specific labeling of enzymatically synthesized DNA or RNA has many potential uses in basic and applied research, ranging from facilitating biophysical studies to the in vitro evolution of functional nucleic acids and the construction of various nanomaterials and biosensors. As part of our efforts to expand the genetic alphabet, we have developed a class of unnatural base pairs, exemplified by d5SICS-dMMO2 and d5SICS-dNaM, which are efficiently replicated and transcribed, and which may be ideal for the site-specific labeling of DNA and RNA. Here, we report the synthesis and analysis of the ribo- and deoxyribo-variants, (d)5SICS and (d)MMO2, modified with free or protected propargylamine linkers that allow for the site-specific modification of DNA or RNA during or after enzymatic synthesis. We also synthesized and evaluated the α-phosphorothioate variant of d5SICSTP, which provides a route to backbone thiolation and an additional strategy for the postamplification site-specific labeling of DNA. The deoxynucleotides were characterized via steady-state kinetics and PCR, while the ribonucleosides were characterized by the transcription of both a short, model RNA as well as full length tRNA. The data reveal that while there are interesting nucleotide and polymerase-specific sensitivities to linker attachment, both (d)MMO2 and (d)5SICS may be used to produce DNA or RNA site-specifically modified with multiple, different functional groups with sufficient efficiency and fidelity for practical applications.
Collapse
Affiliation(s)
| | | | | | - Phillip Ordoukhanian
- Department of Chemistry and Center for Protein and Nucleic Acid Research, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California, 92037
| | - Floyd E. Romesberg
- Department of Chemistry and Center for Protein and Nucleic Acid Research, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California, 92037
| |
Collapse
|
20
|
Hutter D, Kim MJ, Karalkar N, Leal NA, Chen F, Guggenheim E, Visalakshi V, Olejnik J, Gordon S, Benner SA. Labeled nucleoside triphosphates with reversibly terminating aminoalkoxyl groups. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2011; 29:879-95. [PMID: 21128174 DOI: 10.1080/15257770.2010.536191] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nucleoside triphosphates having a 3'-ONH₂ blocking group have been prepared with and without fluorescent tags on their nucleobases. DNA polymerases were identified that accepted these, adding a single nucleotide to the 3'-end of a primer in a template-directed extension reaction that then stops. Nitrite chemistry was developed to cleave the 3'-ONH₂ group under mild conditions to allow continued primer extension. Extension-cleavage-extension cycles in solution were demonstrated with untagged nucleotides and mixtures of tagged and untagged nucleotides. Multiple extension-cleavage-extension cycles were demonstrated on an Intelligent Bio-Systems Sequencer, showing the potential of the 3'-ONH₂ blocking group in "next generation sequencing."
Collapse
Affiliation(s)
- Daniel Hutter
- Foundation for Applied Molecular Evolution, Gainesville, FL 32604, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- Ramon Kranaster
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
22
|
Urata H, Yamaguchi E, Funai T, Matsumura Y, Wada SI. Incorporation of thymine nucleotides by DNA polymerases through T-Hg(II)-T base pairing. Angew Chem Int Ed Engl 2011; 49:6516-9. [PMID: 20602391 DOI: 10.1002/anie.201002142] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hidehito Urata
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | | | | | | | | |
Collapse
|
23
|
Chen F, Yang Z, Yan M, Alvarado JB, Wang G, Benner SA. Recognition of an expanded genetic alphabet by type-II restriction endonucleases and their application to analyze polymerase fidelity. Nucleic Acids Res 2011; 39:3949-61. [PMID: 21245035 PMCID: PMC3089450 DOI: 10.1093/nar/gkq1274] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
To explore the possibility of using restriction enzymes in a synthetic biology based on artificially expanded genetic information systems (AEGIS), 24 type-II restriction endonucleases (REases) were challenged to digest DNA duplexes containing recognition sites where individual Cs and Gs were replaced by the AEGIS nucleotides Z and P [respectively, 6-amino-5-nitro-3-(1'-β-D-2'-deoxyribofuranosyl)-2(1H)-pyridone and 2-amino-8-(1'-β-D-2'-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one]. These AEGIS nucleotides implement complementary hydrogen bond donor-donor-acceptor and acceptor-acceptor-donor patterns. Results allowed us to classify type-II REases into five groups based on their performance, and to infer some specifics of their interactions with functional groups in the major and minor grooves of the target DNA. For three enzymes among these 24 where crystal structures are available (BcnI, EcoO109I and NotI), these interactions were modeled. Further, we applied a type-II REase to quantitate the fidelity polymerases challenged to maintain in a DNA duplex C:G, T:A and Z:P pairs through repetitive PCR cycles. This work thus adds tools that are able to manipulate this expanded genetic alphabet in vitro, provides some structural insights into the working of restriction enzymes, and offers some preliminary data needed to take the next step in synthetic biology to use an artificial genetic system inside of living bacterial cells.
Collapse
Affiliation(s)
- Fei Chen
- Foundation for Applied Molecular Evolution (FfAME), 720 SW 2nd Avenue, Suite 201, Gainesville, FL 32601, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Hoshika S, Chen F, Leal NA, Benner SA. Artificial genetic systems: self-avoiding DNA in PCR and multiplexed PCR. Angew Chem Int Ed Engl 2011; 49:5554-7. [PMID: 20586087 DOI: 10.1002/anie.201001977] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Shuichi Hoshika
- Foundation for Applied Molecular Evolution, The Westheimer Institute for Science and Technology, 720 SW 2nd Avenue, Suite 201, Gainesville, FL 32601, USA
| | | | | | | |
Collapse
|
25
|
Exploiting models of molecular evolution to efficiently direct protein engineering. J Mol Evol 2010; 72:193-203. [PMID: 21132281 DOI: 10.1007/s00239-010-9415-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
Abstract
Directed evolution and protein engineering approaches used to generate novel or enhanced biomolecular function often use the evolutionary sequence diversity of protein homologs to rationally guide library design. To fully capture this sequence diversity, however, libraries containing millions of variants are often necessary. Screening libraries of this size is often undesirable due to inaccuracies of high-throughput assays, costs, and time constraints. The ability to effectively cull sequence diversity while still generating the functional diversity within a library thus holds considerable value. This is particularly relevant when high-throughput assays are not amenable to select/screen for certain biomolecular properties. Here, we summarize our recent attempts to develop an evolution-guided approach, Reconstructing Evolutionary Adaptive Paths (REAP), for directed evolution and protein engineering that exploits phylogenetic and sequence analyses to identify amino acid substitutions that are likely to alter or enhance function of a protein. To demonstrate the utility of this technique, we highlight our previous work with DNA polymerases in which a REAP-designed small library was used to identify a DNA polymerase capable of accepting non-standard nucleosides. We anticipate that the REAP approach will be used in the future to facilitate the engineering of biopolymers with expanded functions and will thus have a significant impact on the developing field of 'evolutionary synthetic biology'.
Collapse
|
26
|
Urata H, Yamaguchi E, Funai T, Matsumura Y, Wada SI. Incorporation of Thymine Nucleotides by DNA Polymerases through T-HgII-T Base Pairing. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201002142] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Hoshika S, Chen F, Leal N, Benner S. Artificial Genetic Systems: Self-Avoiding DNA in PCR and Multiplexed PCR. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201001977] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
28
|
Reconstructed evolutionary adaptive paths give polymerases accepting reversible terminators for sequencing and SNP detection. Proc Natl Acad Sci U S A 2010; 107:1948-53. [PMID: 20080675 DOI: 10.1073/pnas.0908463107] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Any system, natural or human-made, is better understood if we analyze both its history and its structure. Here we combine structural analyses with a "Reconstructed Evolutionary Adaptive Path" (REAP) analysis that used the evolutionary and functional history of DNA polymerases to replace amino acids to enable polymerases to accept a new class of triphosphate substrates, those having their 3'-OH ends blocked as a 3(')-ONH(2) group (dNTP-ONH(2)). Analogous to widely used 2',3'-dideoxynucleoside triphosphates (ddNTPs), dNTP-ONH(2)s terminate primer extension. Unlike ddNTPs, however, primer extension can be resumed by cleaving an O-N bond to restore an -OH group to the 3'-end of the primer. REAP combined with crystallographic analyses identified 35 sites where replacements might improve the ability of Taq to accept dNTP-ONH(2)s. A library of 93 Taq variants, each having replacements at three or four of these sites, held eight variants having improved ability to accept dNTP-ONH(2) substrates. Two of these (A597T, L616A, F667Y, E745H, and E520G, K540I, L616A) performed notably well. The second variant incorporated both dNTP-ONH(2)sand ddNTPs faithfully and efficiently, supporting extension-cleavage-extension cycles applicable in parallel sequencing and in SNP detection through competition between reversible and irreversible terminators. Dissecting these results showed that one replacement (L616A), not previously identified, allows Taq to incorporate both reversible and irreversible terminators. Modeling showed how L616A might open space behind Phe-667, allowing it to move to accommodate the larger 3'-substituent. This work provides polymerases for DNA analyses and shows how evolutionary analyses help explore relationships between structure and function in proteins.
Collapse
|
29
|
Urban M, Joubert N, Hocek M, Alexander RE, Kuchta RD. Herpes simplex virus-1 DNA primase: a remarkably inaccurate yet selective polymerase. Biochemistry 2009; 48:10866-81. [PMID: 19835416 DOI: 10.1021/bi901476k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herpes simplex virus-1 primase misincorporates the natural NTPs at frequencies of around one error per 30 NTPs polymerized, making it one of the least accurate polymerases known. We used a series of nucleotide analogues to further test the hypothesis that primase requires Watson-Crick hydrogen bond formation to efficiently polymerize a NTP. Primase could not generate base pairs containing a complete set of hydrogen bonds in an altered arrangement (isoguanine.isocytosine) and did not efficiently polymerize dNTPs completely incapable of forming Watson-Crick hydrogen bonds opposite templating bases incapable of forming Watson-Crick hydrogen bonds. Similarly, primase did not incorporate most NTPs containing hydrophobic bases incapable of Watson-Crick hydrogen bonding opposite natural template bases. However, 2-pyridone NTP and 4-methyl-2-pyridone NTP provided striking exceptions to this rule. The effects of removing single Watson-Crick hydrogen bonding groups from either the NTP or templating bases varied from almost no effect to completely blocking polymerization depending both on the parental base pair (G.C vs A.T/U) and which base pair of the growing primer (second, third, or fourth) was examined. Thus, primase does not absolutely need to form Watson-Crick hydrogen bonds to efficiently polymerize a NTP. Additionally, we found that herpes primase can misincorporate nucleotides both by misreading the template and by a primer-template slippage mechanism. The mechanistic and biological implications of these results are discussed.
Collapse
Affiliation(s)
- Milan Urban
- Department of Chemistry and Biochemistry, University of Colorado, UCB 215, Boulder, Colorado 80309, USA
| | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Michal Hocek
- Department of Chemistry, WestChem, University of Glasgow, Glasgow G12 8QQ, United Kingdom, and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Center, CZ-16610 Prague 6, Czech Republic
| |
Collapse
|
31
|
Herdewijn P, Marlière P. Toward safe genetically modified organisms through the chemical diversification of nucleic acids. Chem Biodivers 2009; 6:791-808. [PMID: 19554563 DOI: 10.1002/cbdv.200900083] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It is argued that genetic proliferation should be rationally extended so as to enable the propagation in vivo of additional types of nucleic acids (XNA for 'xeno-nucleic acids'), whose chemical backbone motifs would differ from deoxyribose and ribose, and whose polymerization would not interfere with DNA and RNA biosynthesis. Because XNA building blocks do not occur in nature, they would have to be synthesized and supplied to cells which would be equipped with an appropriate enzymatic machinery for polymerizing them. The invasion of plants and animals with XNA replicons can be envisioned in the long run, but it is in microorganisms, and more specifically in bacteria, that the feasibility of such chemical systems and the establishment of genetic enclaves separated from DNA and RNA is more likely to take place. The introduction of expanded coding through additional or alternative pairing will be facilitated by the propagation of replicons based on alternative backbone motifs and leaving groups, as enabled by XNA polymerases purposefully evolved to this end.
Collapse
Affiliation(s)
- Piet Herdewijn
- Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, Minderbroedersstraat 10, B-3000 Leuven
| | | |
Collapse
|
32
|
Lee I, Berdis AJ. Non-natural nucleotides as probes for the mechanism and fidelity of DNA polymerases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1064-80. [PMID: 19733263 DOI: 10.1016/j.bbapap.2009.08.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Revised: 08/17/2009] [Accepted: 08/19/2009] [Indexed: 11/25/2022]
Abstract
DNA is a remarkable macromolecule that functions primarily as the carrier of the genetic information of organisms ranging from viruses to bacteria to eukaryotes. The ability of DNA polymerases to efficiently and accurately replicate genetic material represents one of the most fundamental yet complex biological processes found in nature. The central dogma of DNA polymerization is that the efficiency and fidelity of this biological process is dependent upon proper hydrogen-bonding interactions between an incoming nucleotide and its templating partner. However, the foundation of this dogma has been recently challenged by the demonstration that DNA polymerases can effectively and, in some cases, selectively incorporate non-natural nucleotides lacking classic hydrogen-bonding capabilities into DNA. In this review, we describe the results of several laboratories that have employed a variety of non-natural nucleotide analogs to decipher the molecular mechanism of DNA polymerization. The use of various non-natural nucleotides has lead to the development of several different models that can explain how efficient DNA synthesis can occur in the absence of hydrogen-bonding interactions. These models include the influence of steric fit and shape complementarity, hydrophobicity and solvation energies, base-stacking capabilities, and negative selection as alternatives to rules invoking simple recognition of hydrogen-bonding patterns. Discussions are also provided regarding how the kinetics of primer extension and exonuclease proofreading activities associated with high-fidelity DNA polymerases are influenced by the absence of hydrogen-bonding functional groups exhibited by non-natural nucleotides.
Collapse
Affiliation(s)
- Irene Lee
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | |
Collapse
|
33
|
Bergstrom DE. Unnatural nucleosides with unusual base pairing properties. ACTA ACUST UNITED AC 2009; Chapter 1:1.4.1-1.4.32. [PMID: 19488968 DOI: 10.1002/0471142700.nc0104s37] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Synthetic modified nucleosides designed to pair in unusual ways with natural nucleobases have many potential applications in biology and biotechnology. This overview lays the foundation for future protocol units on synthesis and application of unnatural bases, with particular emphasis on unnatural base analogs that mimic natural bases in size, shape, and biochemical processing. Topics covered include base pairs with alternative H-bonding schemes, dimensionally expanded base pairs, hydrophobic base pairs, metal-ligated bases, degenerate bases, universal nucleosides, and triplex constituents.
Collapse
|
34
|
Chelliserrykattil J, Lu H, Lee AHF, Kool ET. Polymerase amplification, cloning, and gene expression of benzo-homologous "yDNA" base pairs. Chembiochem 2008; 9:2976-80. [PMID: 19053129 PMCID: PMC2977970 DOI: 10.1002/cbic.200800339] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Indexed: 11/12/2022]
Abstract
A widened DNA base-pair architecture is studied in an effort to explore the possibility of whether new genetic system designs might possess some of the functions of natural DNA. In the "yDNA" system, pairs are homologated by addition of a benzene ring, which yields (in the present study) benzopyrimidines that are correctly paired with purines. Here we report initial tests of ability of the benzopyrimidines yT and yC to store and transfer biochemical and biological information in vitro and in bacterial cells. In vitro primer extension studies with two polymerases showed that the enzymes could insert the correct nucleotides opposite these yDNA bases, but with low selectivity. PCR amplifications with a thermostable polymerase resulted in correct pairings in 15-20 % of the cases, and more successfully when yT or yC were situated within the primers. Segments of DNA containing one or two yDNA bases were then ligated into a plasmid and tested for their ability to successfully lead the expression of an active protein in vivo. Although active at only a fraction of the activity of fully natural DNA, the unnatural bases encoded the correct codon bases in the majority of cases when singly substituted, and yielded functioning green fluorescent protein. Although the activities with native polymerases are modest with these large base pairs, this is the first example of encoding protein in vivo by an unnatural DNA base pair architecture.
Collapse
Affiliation(s)
| | - Haige Lu
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080 (USA)
| | - Alex H. F. Lee
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080 (USA)
| | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080 (USA)
| |
Collapse
|
35
|
Abstract
As part of an effort to develop unnatural base pairs that are stable and replicable in DNA, we examined the ability of five different polymerases to replicate DNA containing four different unnatural nucleotides bearing predominantly hydrophobic nucleobase analogs. The unnatural pairs were developed based on intensive studies using the Klenow fragment of DNA polymerase I from E. coli (Kf) and found to be recognized to varying degrees. The five additional polymerases characterized here include family A polymerases from bacteriophage T7 and Thermus aquaticus, family B polymerases from Thermococcus litoralis and Thermococcus 9(o)N-7, and the family X polymerase, human polymerase beta. While we find that some aspects of unnatural base pair recognition are conserved among the polymerases, for example, the pair formed between two d3FB nucleotides is typically well recognized, the detailed recognition of most of the unnatural base pairs is generally polymerase dependent. In contrast, we find that the pair formed between d5SICS and dMMO2 is generally well recognized by all of the polymerases examined, suggesting that the determinants of efficient and general recognition are contained within the geometric and electronic structure of these unnatural nucleobases themselves. The data suggest that while the d3FB:d3FB pair is sufficiently well recognized by several of the polymerases for in vitro applications, the d5SICS:dMMO2 heteropair is likely uniquely promising for in vivo use. T7-mediated replication is especially noteworthy due to strong mispair discrimination.
Collapse
Affiliation(s)
- Gil Tae Hwang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037
| | - Floyd E. Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037
| |
Collapse
|
36
|
Sheriff A, Motea E, Lee I, Berdis AJ. Mechanism and dynamics of translesion DNA synthesis catalyzed by the Escherichia coli Klenow fragment. Biochemistry 2008; 47:8527-37. [PMID: 18652487 PMCID: PMC2692461 DOI: 10.1021/bi800324r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Translesion DNA synthesis represents the ability of a DNA polymerase to incorporate and extend beyond damaged DNA. In this report, the mechanism and dynamics by which the Escherichia coli Klenow fragment performs translesion DNA synthesis during the misreplication of an abasic site were investigated using a series of natural and non-natural nucleotides. Like most other high-fidelity DNA polymerases, the Klenow fragment follows the "A-rule" of translesion DNA synthesis by preferentially incorporating dATP opposite the noninstructional lesion. However, several 5-substituted indolyl nucleotides lacking classical hydrogen-bonding groups are incorporated approximately 100-fold more efficiently than the natural nucleotide. In general, analogues that contain large substituent groups in conjunction with significant pi-electron density display the highest catalytic efficiencies ( k cat/ K m) for incorporation. While the measured K m values depend upon the size and pi-electron density of the incoming nucleotide, k cat values are surprisingly independent of both biophysical features. As expected, the efficiency by which these non-natural nucleotides are incorporated opposite templating nucleobases is significantly reduced. This reduction reflects minimal increases in K m values coupled with large decreases in k cat values. The kinetic data obtained with the Klenow fragment are compared to that of the high-fidelity bacteriophage T4 DNA polymerase and reveal distinct differences in the dynamics by which these non-natural nucleotides are incorporated opposite an abasic site. These biophysical differences argue against a unified mechanism of translesion DNA synthesis and suggest that polymerases employ different catalytic strategies during the misreplication of damaged DNA.
Collapse
Affiliation(s)
- Asim Sheriff
- Departments of Pharmacology and Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA.
| | | | | | | |
Collapse
|
37
|
Pfaff DA, Clarke KM, Parr TA, Cole JM, Geierstanger BH, Tahmassebi DC, Dwyer TJ. Solution structure of a DNA duplex containing a guanine-difluorotoluene pair: a wobble pair without hydrogen bonding? J Am Chem Soc 2008; 130:4869-78. [PMID: 18341343 DOI: 10.1021/ja7103608] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The incorporation of synthetic nucleoside analogues into DNA duplexes provides a unique opportunity to probe both structure and function of nucleic acids. We used 1H and 19F NMR and molecular dynamics calculations to determine the solution structures of two similar DNA decamer duplexes, one containing a central G-T mismatched or "wobble" base pair, and one in which the thymine in this base pair is replaced by difluorotoluene (a thymine isostere) creating a G-F pair. Here, we show that the non-hydrogen-bonding G-F pair stacks relatively well into the helix and that the distortions caused by each non-Watson-Crick G-T or G-F base pair are quite localized to a three base pair site around the mismatch. A detailed structural analysis reveals that the absence of hydrogen bonding introduces more dynamic motion into the G-F pair relative to G-T and permits the G-F pair to exhibit stacking and conformational features characteristic of both a Watson-Crick base pair (on the guanine containing strand) and a wobble base pair (on the strand containing the difluorotoluene). We used these results to posit a rationale for recognition and repair of mismatch sites in DNA.
Collapse
Affiliation(s)
- Danielle A Pfaff
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, California 92110, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Havemann SA, Hoshika S, Hutter D, Benner SA. Incorporation of multiple sequential pseudothymidines by DNA polymerases and their impact on DNA duplex structure. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2008; 27:261-78. [PMID: 18260010 DOI: 10.1080/15257770701853679] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Thermal denaturation and circular dichroism studies suggested that multiple (up to 12), sequential pseudothymidines, a representative C-glycoside, do not perturb the structure of a representative DNA duplex. Further, various Family A and B DNA polymerases were found to extend a primer by incorporating four sequential pseudothymidine triphosphates, and then continue the extension to generate full-length product. Detailed studies showed that Taq polymerase incorporated up to five sequential C-glycosides, but not more. These results constrain architectures for sequencing, quantitating, and analyzing DNA analogs that exploit C-glycosides, and define better the challenge of creating a synthetic biology using these with natural polymerases.
Collapse
Affiliation(s)
- Stephanie A Havemann
- Department of Microbiology & Cell Science, Space Life Sciences Laboratory, Kennedy Space Center, University of Florida, FL, USA
| | | | | | | |
Collapse
|
39
|
Reha D, Hocek M, Hobza P. Exceptional thermodynamic stability of DNA duplexes modified by nonpolar base analogues is due to increased stacking interactions and favorable solvation: Correlated ab initio calculations and molecular dynamics simulations. Chemistry 2007; 12:3587-95. [PMID: 16502452 DOI: 10.1002/chem.200501126] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The geometries of DNA hexamer (5'-GGAACC-3') and DNA 13-mer (5'-GCGTACACATGCG-3') have been determined by molecular dynamics (MD) simulations using an empirical force field. The central canonical base pair was replaced by a pair of nonpolar base analogues, 2,2'-bipyridyl and 3-methylisocarbostyril. The stabilization energy of the model system (model A) consisting of a central base pair (base-analogue pair) and two neighboring base pairs was determined by the RI-MP2 method using an extended aug-cc-pVDZ basis set. The geometry of the model was averaged from structures determined by MD simulations. The role of the solvent was covered by the COSMO continuum solvent model and calculations were performed for a larger model system (model B) which also contained a sugar-phosphate backbone. The total stabilization energies of the unperturbed system and the system perturbed by a base-analogue pair (model A) were comparable to the stability of both duplexes experimentally determined. This is due to large stacking interaction energy of the base-analogue self-pair which compensates for the missing hydrogen-bonding energy of the replaced adenine...thymine base pair. The selectivity of the base-analogue pair was reproduced (model B) when their desolvation energy was included with the interaction energy of both strands determined by the approximate SCC-DFTB-D method.
Collapse
Affiliation(s)
- David Reha
- The Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | | | | |
Collapse
|
40
|
|
41
|
Krueger AT, Lu H, Lee AHF, Kool ET. Synthesis and properties of size-expanded DNAs: toward designed, functional genetic systems. Acc Chem Res 2007; 40:141-50. [PMID: 17309194 PMCID: PMC2539066 DOI: 10.1021/ar068200o] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe the design, synthesis, and properties of DNA-like molecules in which the base pairs are expanded by benzo homologation. The resulting size-expanded genetic helices are called xDNA ("expanded DNA") and yDNA ("wide DNA"). The large component bases are fluorescent, and they display high stacking affinity. When singly substituted into natural DNA, they are destabilizing because the benzo-expanded base pair size is too large for the natural helix. However, when all base pairs are expanded, xDNA and yDNA form highly stable, sequence-selective double helices. The size-expanded DNAs are candidates for components of new, functioning genetic systems. In addition, the fluorescence of expanded DNA bases makes them potentially useful in probing nucleic acids.
Collapse
Affiliation(s)
| | - Haige Lu
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Alex H. F. Lee
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305
| |
Collapse
|
42
|
Bernstein M. Prebiotic materials from on and off the early Earth. Philos Trans R Soc Lond B Biol Sci 2006; 361:1689-700; discussion 1700-2. [PMID: 17008210 PMCID: PMC1664678 DOI: 10.1098/rstb.2006.1913] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One of the greatest puzzles of all time is how did life arise? It has been universally presumed that life arose in a soup rich in carbon compounds, but from where did these organic molecules come? In this article, I will review proposed terrestrial sources of prebiotic organic molecules, such as Miller-Urey synthesis (including how they would depend on the oxidation state of the atmosphere) and hydrothermal vents and also input from space. While the former is perhaps better known and more commonly taught in school, we now know that comet and asteroid dust deliver tons of organics to the Earth every day, therefore this flux of reduced carbon from space probably also played a role in making the Earth habitable. We will compare and contrast the types and abundances of organics from on and off the Earth given standard assumptions. Perhaps each process provided specific compounds (amino acids, sugars, amphiphiles) that were directly related to the origin or early evolution of life. In any case, whether planetary, nebular or interstellar, we will consider how one might attempt to distinguish between abiotic organic molecules from actual signs of life as part of a robotic search for life in the Solar System.
Collapse
|
43
|
Abstract
Endonuclease V, encoded by the nfi gene, initiates removal of the base analogs hypoxanthine and xanthine from DNA, acting to prevent mutagenesis from purine base deamination within the DNA. On the other hand, the RdgB nucleotide hydrolase in Escherichia coli is proposed to prevent hypoxanthine and xanthine incorporation into DNA by intercepting the noncanonical DNA precursors dITP and dXTP. Because many base analogs are mutagenic when incorporated into DNA, it is intuitive to think of RdgB as acting to prevent similar mutagenesis from deaminated purines in the DNA precursor pools. To test this idea, we used a set of Claire Cupples' strains to detect changes in spontaneous mutagenesis spectra, as well as in nitrous acid-induced mutagenesis spectra, in wild-type cells and in rdgB single, nfi single, and rdgB nfi double mutants. We found neither a significant increase in spontaneous mutagenesis in rdgB and nfi single mutants or the double mutant nor any changes in nitrous acid-induced mutagenesis for rdgB mutant strains. We conclude that incorporation of deaminated purines into DNA is nonmutagenic.
Collapse
Affiliation(s)
- Brian Budke
- B103 C&LSL, 601 South Goodwin Ave., Urbana, IL 61801-3709, USA
| | | |
Collapse
|
44
|
Kincaid K, Kuchta RD. A mass spectrometry-based approach for identifying novel DNA polymerase substrates from a pool of dNTP analogues. Nucleic Acids Res 2006; 34:e109. [PMID: 16945949 PMCID: PMC1636374 DOI: 10.1093/nar/gkl632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
There has been a long-standing interest in the discovery of unnatural nucleotides that can be incorporated into DNA by polymerases. However, it is difficult to predict which nucleotide analogs will prove to have biological relevance. Therefore, we have developed a new screening method to identify novel substrates for DNA polymerases. This technique uses the polymerase itself to select a dNTP from a pool of potential substrates via incorporation onto a short oligonucleotide. The unnatural nucleotide(s) is then identified by high-resolution mass spectrometry. By using a DNA polymerase as a selection tool, only the biologically relevant members of a small nucleotide library can be quickly determined. We have demonstrated that this method can be used to discover unnatural base pairs in DNA with a detection threshold of ≤10% incorporation.
Collapse
Affiliation(s)
| | - Robert D. Kuchta
- To whom correspondence should be addressed. Tel: +1 303 492 7027; Fax: +1 303 492 5894;
| |
Collapse
|
45
|
Matsuda S, Henry AA, Romesberg FE. Optimization of unnatural base pair packing for polymerase recognition. J Am Chem Soc 2006; 128:6369-75. [PMID: 16683801 PMCID: PMC2536690 DOI: 10.1021/ja057575m] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As part of an effort to expand the genetic alphabet, we have been examining the ability of predominately hydrophobic nucleobase analogues to pair in duplex DNA and during polymerase-mediated replication. We previously reported the synthesis and thermal stability of unnatural base pairs formed between nucleotides bearing simple methyl-substituted phenyl ring nucleobase analogues. Several of these pairs are virtually as stable and selective as natural base pairs in the same sequence context. Here, we report the characterization of polymerase-mediated replication of the same unnatural base pairs. We find that every facet of replication, including correct and incorrect base pair synthesis, as well as continued primer extension beyond the unnatural base pair, is sensitive to the specific methyl substitution pattern of the nucleobase analogue. The results demonstrate that neither hydrogen bonding nor large aromatic surface area is required for polymerase recognition, and that interstrand interactions between small aromatic rings may be optimized for replication. Combined with our previous results, these studies suggest that appropriately derivatized phenyl nucleobase analogues represent a promising approach toward developing a third base pair and expanding the genetic alphabet.
Collapse
Affiliation(s)
- Shigeo Matsuda
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California, 92037
| | - Allison A. Henry
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California, 92037
| | - Floyd E. Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California, 92037
| |
Collapse
|
46
|
Sismour AM, Benner SA. The use of thymidine analogs to improve the replication of an extra DNA base pair: a synthetic biological system. Nucleic Acids Res 2005; 33:5640-6. [PMID: 16192575 PMCID: PMC1236980 DOI: 10.1093/nar/gki873] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Synthetic biology based on a six-letter genetic alphabet that includes the two non-standard nucleobases isoguanine (isoG) and isocytosine (isoC), as well as the standard A, T, G and C, is known to suffer as a consequence of a minor tautomeric form of isoguanine that pairs with thymine, and therefore leads to infidelity during repeated cycles of the PCR. Reported here is a solution to this problem. The solution replaces thymidine triphosphate by 2-thiothymidine triphosphate (2-thioTTP). Because of the bulk and hydrogen bonding properties of the thione unit in 2-thioT, 2-thioT does not mispair effectively with the minor tautomer of isoG. To test whether this might allow PCR amplification of a six-letter artificially expanded genetic information system, we examined the relative rates of misincorporation of 2-thioTTP and TTP opposite isoG using affinity electrophoresis. The concentrations of isoCTP and 2-thioTTP were optimal to best support PCR amplification using thermostable polymerases of a six-letter alphabet that includes the isoC–isoG pair. The fidelity-per-round of amplification was found to be ∼98% in trial PCRs with this six-letter DNA alphabet. The analogous PCR employing TTP had a fidelity-per-round of only ∼93%. Thus, the A, 2-thioT, G, C, isoC, isoG alphabet is an artificial genetic system capable of Darwinian evolution.
Collapse
Affiliation(s)
- A Michael Sismour
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA.
| | | |
Collapse
|
47
|
Mulder BA, Anaya S, Yu P, Lee KW, Nguyen A, Murphy J, Willson R, Briggs JM, Gao X, Hardin SH. Nucleotide modification at the gamma-phosphate leads to the improved fidelity of HIV-1 reverse transcriptase. Nucleic Acids Res 2005; 33:4865-73. [PMID: 16141194 PMCID: PMC1197130 DOI: 10.1093/nar/gki779] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mechanism by which HIV-1 reverse transcriptase (HIV-RT) discriminates between the correct and incorrect nucleotide is not clearly understood. Chemically modified nucleotides containing 1-aminonaphthalene-5-sulfonate (ANS) attached to their gamma-phosphate were synthesized and used to probe nucleotide selection by this error prone polymerase. Primer extension reactions provide direct evidence that the polymerase is able to incorporate the gamma-modified nucleotides. Forward mutation assays reveal a 6-fold reduction in the mutational frequency with the modified nucleotides, and specific base substitutions are dramatically reduced or eliminated. Molecular modeling illustrates potential interactions between critical residues within the polymerase active site and the modified nucleotides. Our data demonstrate that the fidelity of reverse transcriptase is improved using modified nucleotides, and we suggest that specific modifications to the gamma-phosphate may be useful in designing new antiviral therapeutics or, more generally, as a tool for defining the structural role that the polymerase active site has on nucleotide selectivity.
Collapse
Affiliation(s)
- Brent A. Mulder
- Department of Biology and Biochemistry, University of HoustonHouston TX 77204-5001, USA
- VisiGen Biotechnologies, Inc.2575 West Bellfort, Suite 250, Houston, TX 77054, USA
| | - Steve Anaya
- Department of Biology and Biochemistry, University of HoustonHouston TX 77204-5001, USA
| | - Peilin Yu
- Department of Chemistry, University of HoustonHouston TX 77204-5003, USA
| | - Keun Woo Lee
- Department of Biology and Biochemistry, University of HoustonHouston TX 77204-5001, USA
| | - Anvy Nguyen
- Department of Biology and Biochemistry, University of HoustonHouston TX 77204-5001, USA
- VisiGen Biotechnologies, Inc.2575 West Bellfort, Suite 250, Houston, TX 77054, USA
| | - Jason Murphy
- Department of Chemical Engineering, University of HoustonHouston, TX 77204-4004, USA
| | - Richard Willson
- Department of Biology and Biochemistry, University of HoustonHouston TX 77204-5001, USA
- Department of Chemical Engineering, University of HoustonHouston, TX 77204-4004, USA
- VisiGen Biotechnologies, Inc.2575 West Bellfort, Suite 250, Houston, TX 77054, USA
| | - James M. Briggs
- Department of Biology and Biochemistry, University of HoustonHouston TX 77204-5001, USA
- VisiGen Biotechnologies, Inc.2575 West Bellfort, Suite 250, Houston, TX 77054, USA
| | - Xiaolian Gao
- Department of Biology and Biochemistry, University of HoustonHouston TX 77204-5001, USA
- Department of Chemistry, University of HoustonHouston TX 77204-5003, USA
| | - Susan H. Hardin
- Department of Biology and Biochemistry, University of HoustonHouston TX 77204-5001, USA
- VisiGen Biotechnologies, Inc.2575 West Bellfort, Suite 250, Houston, TX 77054, USA
- To whom correspondence should be addressed. Tel: +1 713 743 2686; Fax: +1 713 743 2636;
| |
Collapse
|
48
|
Huertas O, Blas JR, Soteras I, Orozco M, Luque FJ. Benzoderivatives of Nucleic Acid Bases as Modified DNA Building Blocks. J Phys Chem A 2005; 110:510-8. [PMID: 16405323 DOI: 10.1021/jp052126u] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The tautomeric properties of benzoderivatives of the canonical nucleic acid bases have been studied by using different computational approaches. Attention has been paid to the impact of the benzene group in altering the tautomeric preferences of the canonical bases both in the gas phase and in aqueous solution. To this end, relative solvation free energies of the tautomers determined from Self-Consistent Reaction Field continuum calculations and Monte Carlo-Free Energy Perturbation are combined with gas-phase tautomerization free energies determined from quantum mechanical calculations. The results provide a detailed picture of the tautomeric preferences of the benzoderivatives of nucleic acid bases. This information is used to examine the recognition properties of the preferred tautomers of the benzo-fused derivatives, paying particular attention to the ability to form Watson-Crick hydrogen-bonding and stacking interactions as well as to the hydrophobic nature of the modified bases. The implications of present results on the potential use of benzo-fused bases as potential building blocks in modified DNA duplexes are examined.
Collapse
Affiliation(s)
- Oscar Huertas
- Departament de Fisicoquímica, Facultat de Farmacia, Universitat de Barcelona, Avgda Diagonal 643, Barcelona 08028, Spain
| | | | | | | | | |
Collapse
|
49
|
Hirao I, Harada Y, Kimoto M, Mitsui T, Fujiwara T, Yokoyama S. A two-unnatural-base-pair system toward the expansion of the genetic code. J Am Chem Soc 2005; 126:13298-305. [PMID: 15479084 DOI: 10.1021/ja047201d] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Toward the site-specific incorporation of amino acid analogues into proteins, a two-unnatural-base-pair system was developed for coupled transcription-translation systems with the expanded genetic code. A previously designed unnatural base pair between 2-amino-6-(2-thienyl)purine (denoted by s) and pyridin-2-one (denoted by y) was used for the site-specific incorporation of yTP into RNA opposite s in templates by T7 RNA polymerase. For the site-specific incorporation of sTP into RNA, a newly developed unnatural base, imidazolin-2-one (denoted by z), is superior to y as a template base for pairing with s in T7 transcription. The combination of the s-y and s-z pairs provides a powerful tool to prepare both y-containing mRNA and s-containing tRNA for efficient coupled transcription-translation systems, in which the genetic code is expanded by the codon-anticodon interactions mediated by the s-y pair. In addition, the nucleoside of s is strongly fluorescent, and thus the s-z pair enables the site-specific fluorescent labeling of RNA molecules. These unnatural-base-pair studies provide valuable information for understanding the mechanisms of replication and transcription.
Collapse
Affiliation(s)
- Ichiro Hirao
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
| | | | | | | | | | | |
Collapse
|
50
|
Matsuda S, Romesberg FE. Optimization of interstrand hydrophobic packing interactions within unnatural DNA base pairs. J Am Chem Soc 2004; 126:14419-27. [PMID: 15521761 DOI: 10.1021/ja047291m] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As part of an effort to expand the genetic alphabet, we have evaluated a large number of predominantly hydrophobic unnatural base pairs. We now report the synthesis and stability of unnatural base pairs formed between simple phenyl rings modified at different positions with methyl groups. Surprisingly, several of the unnatural base pairs are virtually as stable as a natural base pair in the same sequence context. The results show that neither hydrogen-bonding nor large aromatic surface area are required for base pair stability within duplex DNA and that interstrand interactions between small aromatic rings may be optimized for both stability and selectivity. These smaller nucleobases are not expected to induce the distortions in duplex DNA or at the primer terminus that seem to limit replication of larger unnatural base pairs, and they therefore represent a promising approach to the expansion of the genetic alphabet.
Collapse
Affiliation(s)
- Shigeo Matsuda
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|