1
|
Ball J, Bradley A, Le A, Tisdale JF, Uchida N. Current and future treatments for sickle cell disease: From hematopoietic stem cell transplantation to in vivo gene therapy. Mol Ther 2025; 33:2172-2191. [PMID: 40083162 DOI: 10.1016/j.ymthe.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025] Open
Abstract
Sickle cell disease (SCD) is a single-gene disorder caused by a point mutation of the β-globin gene, resulting in hemolytic anemia, acute pain, multiorgan damage, and early mortality. Hydroxyurea is a first-line drug therapy that switches sickle-globin to non-pathogenic γ-globin; however, it requires lifelong oral administration. Allogeneic hematopoietic stem cell (HSC) transplantation allows for a one-time cure for SCD, albeit with histocompatibility limitations. Therefore, autologous HSC gene therapy was developed to cure SCD in a single treatment, without HSC donors. Current HSC gene therapy is based on the ex vivo culture of patients' HSCs with lentiviral gene addition and gene editing, followed by autologous transplantation back to the patient. However, the complexity of the treatment process and high costs hinder the universal application of ex vivo gene therapy. Therefore, the development of in vivo HSC gene therapy, where gene therapy tools are directly administered to patients, is desirable to provide a more accessible, cost-effective solution that can cure SCD worldwide. In this review, we discuss current treatments, including drug therapies, HSC transplantation, and ex vivo gene therapy; the development of gene therapy tools; and progress toward curative in vivo gene therapy in SCD.
Collapse
Affiliation(s)
- Julia Ball
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Avery Bradley
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Anh Le
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - John F Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Naoya Uchida
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Williams DA, Kohn DB, Thrasher AJ. Ex vivo modification of hematopoietic stem and progenitor cells for gene therapy. Mol Ther 2025; 33:2141-2153. [PMID: 40176348 DOI: 10.1016/j.ymthe.2025.03.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025] Open
Abstract
The development of viral vectors has been particularly critical for genetic therapies of hematological diseases. Before the development of retrovirus vectors (RVVs), gene transfer into mammalian cells was accomplished by transduction of DNA plasmids by chemical means and later by electroporation. The main limitation of these methods is the inefficiency of transfer of intact sequences, and particularly with electroporation significant cell death of the manipulated cells. The earliest successful human gene therapy trials utilized γ-RVVs and many of the techniques developed in the 1980s. A breakthrough for the field was the exploitation and development of HIV for transfer vectors, termed lentivirus vectors. In this review, we highlight uses of retro- and lentivirus vectors in monogenic diseases in which hematopoietic stem cells are used in the autologous setting to treat immunodeficiencies, hemoglobinopathies and metabolic diseases. The three authors' perspective represent experiences in the field over four decades that encompasses both basic translational research and development and oversight of early and ongoing gene therapy trials utilizing viral vectors.
Collapse
Affiliation(s)
- David A Williams
- Boston Children's Hospital, Dana-Farber & Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02115 USA.
| | - Donald B Kohn
- Department of Pediatrics (Hematology/Oncology), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Adrian J Thrasher
- Molecular and Cellular Immunology, GOS Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
3
|
Hardouin G, Miccio A, Brusson M. Gene therapy for β-thalassemia: current and future options. Trends Mol Med 2025; 31:344-358. [PMID: 39794177 DOI: 10.1016/j.molmed.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 01/13/2025]
Abstract
Beta-thalassemia is a severe, hereditary blood disorder characterized by anemia, transfusion dependence, reduced life expectancy, and poor quality of life. Allogeneic transplantation of hematopoietic stem cells (HSCs) is the only curative treatment for transfusion-dependent β-thalassemia, but a lack of compatible donors prevents the use of this approach for most patients. Over the past 20 years, the rise of gene therapy and the development of lentiviral vectors and genome-editing tools has extended curative options to a broader range of patients. Here, we review breakthroughs in gene addition- and genome-editing-based therapies for β-thalassemia, the clinical outcomes enabling approval by regulatory agencies, and perspectives for further development.
Collapse
Affiliation(s)
- Giulia Hardouin
- Université Paris Cité, Imagine Institute, Laboratory of chromatin and gene regulation during development, INSERM UMR 1163, 75015, Paris, France.
| | - Annarita Miccio
- Université Paris Cité, Imagine Institute, Laboratory of chromatin and gene regulation during development, INSERM UMR 1163, 75015, Paris, France.
| | - Megane Brusson
- Université Paris Cité, Imagine Institute, Laboratory of chromatin and gene regulation during development, INSERM UMR 1163, 75015, Paris, France
| |
Collapse
|
4
|
Ballantine J, Tisdale JF. Gene therapy for sickle cell disease: recent advances, clinical trials and future directions. Cytotherapy 2024:S1465-3249(24)00925-3. [PMID: 39729054 DOI: 10.1016/j.jcyt.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/03/2024] [Indexed: 12/28/2024]
Abstract
Sickle cell disease (SCD) is the most common inherited blood disorder worldwide, impacting millions and imposing severe healthcare challenges, particularly in resource-limited regions. Current treatments have variable efficacy and require lifelong adherence. Allogeneic Hematopoietic Stem Cell Transplantation can be curative but comes with significant side effects and limited donor availability limits its widespread applicability. Gene therapy, by addressing the root genetic causes, offers a revolutionary alternative. This article discusses the molecular mechanisms of SCD and β-thalassemia and highlights advancements in gene therapy, such as gene addition via lentiviral vectors and gene editing with CRISPR/Cas9 technology. Clinical trials have brought about significant progress but challenges remain, including leukemogenesis, delivery efficiency and cost. Future efforts must focus on enhancing efficiency, reducing costs, developing nongenotoxic conditioning regimens and methods for in vivo application.
Collapse
Affiliation(s)
- Josiah Ballantine
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA.
| | - John F Tisdale
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Hart KL, Liu B, Brown D, Campo-Fernandez B, Tam K, Orr K, Hollis RP, Brendel C, Williams DA, Kohn DB. A novel high-titer, bifunctional lentiviral vector for autologous hematopoietic stem cell gene therapy of sickle cell disease. Mol Ther Methods Clin Dev 2024; 32:101254. [PMID: 38745893 PMCID: PMC11091523 DOI: 10.1016/j.omtm.2024.101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
A major limitation of gene therapy for sickle cell disease (SCD) is the availability and access to a potentially curative one-time treatment, due to high treatment costs. We have developed a high-titer bifunctional lentiviral vector (LVV) in a vector backbone that has reduced size, high vector yields, and efficient gene transfer to human CD34+ hematopoietic stem and progenitor cells (HSPCs). This LVV contains locus control region cores expressing an anti-sickling βAS3-globin gene and two microRNA-adapted short hairpin RNA simultaneously targeting BCL11A and ZNF410 transcripts to maximally induce fetal hemoglobin (HbF) expression. This LVV induces high levels of anti-sickling hemoglobins (HbAAS3 + HbF), while concurrently decreasing sickle hemoglobin (HbS). The decrease in HbS and increased anti-sickling hemoglobin impedes deoxygenated HbS polymerization and red blood cell sickling at low vector copy per cell in transduced SCD patient CD34+ cells differentiated into erythrocytes. The dual alterations in red cell hemoglobins ameliorated the SCD phenotype in the SCD Berkeley mouse model in vivo. With high titer and enhanced transduction of HSPC at a low multiplicity of infection, this LVV will increase the number of patient doses of vector from production lots to decrease costs and help improve accessibility to gene therapy for SCD.
Collapse
Affiliation(s)
- Kevyn L. Hart
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Boya Liu
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Devin Brown
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Beatriz Campo-Fernandez
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kevin Tam
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Katherine Orr
- CSUN-UCLA Stem Cell Scientist Training Program, California State University, Northridge, Northridge, CA 91330, USA
| | - Roger P. Hollis
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christian Brendel
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138, USA
| | - David A. Williams
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138, USA
| | - Donald B. Kohn
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
- The Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Rostami T, Rad S, Rostami MR, Mirhosseini SA, Alemi H, Khavandgar N, Janbabai G, Kiumarsi A, Kasaeian A, Mousavi SA. Hematopoietic Stem Cell Transplantation in Sickle Cell Disease: A Multidimentional Review. Cell Transplant 2024; 33:9636897241246351. [PMID: 38680015 PMCID: PMC11057353 DOI: 10.1177/09636897241246351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 05/01/2024] Open
Abstract
While exagamglogene autotemcel (Casgevy) and lovotibeglogene autotemcel (Lyfgenia) have been approved by the US Food and Drug Administration (FDA) as the first cell-based gene therapies for the treatment of patients 12 years of age and older with sickle cell disease (SCD), this treatment is not universally accessible. Allogeneic hematopoietic stem cell transplant (HSCT) has the potential to eradicate the symptoms of patients with SCD, but a significant obstacle in HSCT for SCD is the availability of suitable donors, particularly human leukocyte antigen (HLA)-matched related donors. Furthermore, individuals with SCD face an elevated risk of complications during stem cell transplantation due to SCD-related tissue damage, endothelial activation, and inflammation. Therefore, it is imperative to consider optimal conditioning regimens and investigate HSCT from alternative donors. This review encompasses information on the use of HSCT in patients with SCD, including the indications for HSCT, conditioning regimens, alternative donors, and posttransplant outcomes.
Collapse
Affiliation(s)
- Tahereh Rostami
- Hematologic Malignancies Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Soroush Rad
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Rostami
- Hematologic Malignancies Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seied Amirhossein Mirhosseini
- Department of Internal Medicine, School of Medicine, Imam Ali Hospital, Alborz University of Medical Sciences, Tehran, Iran
| | - Hediyeh Alemi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Naghmeh Khavandgar
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghasem Janbabai
- Hematologic Malignancies Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Kiumarsi
- Department of Pediatrics, School of Medicine, Childrens Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Kasaeian
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seied Asadollah Mousavi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Segura EER, Ayoub PG, Hart KL, Kohn DB. Gene Therapy for β-Hemoglobinopathies: From Discovery to Clinical Trials. Viruses 2023; 15:713. [PMID: 36992422 PMCID: PMC10054523 DOI: 10.3390/v15030713] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Investigations to understand the function and control of the globin genes have led to some of the most exciting molecular discoveries and biomedical breakthroughs of the 20th and 21st centuries. Extensive characterization of the globin gene locus, accompanied by pioneering work on the utilization of viruses as human gene delivery tools in human hematopoietic stem and progenitor cells (HPSCs), has led to transformative and successful therapies via autologous hematopoietic stem-cell transplant with gene therapy (HSCT-GT). Due to the advanced understanding of the β-globin gene cluster, the first diseases considered for autologous HSCT-GT were two prevalent β-hemoglobinopathies: sickle cell disease and β-thalassemia, both affecting functional β-globin chains and leading to substantial morbidity. Both conditions are suitable for allogeneic HSCT; however, this therapy comes with serious risks and is most effective using an HLA-matched family donor (which is not available for most patients) to obtain optimal therapeutic and safe benefits. Transplants from unrelated or haplo-identical donors carry higher risks, although they are progressively improving. Conversely, HSCT-GT utilizes the patient's own HSPCs, broadening access to more patients. Several gene therapy clinical trials have been reported to have achieved significant disease improvement, and more are underway. Based on the safety and the therapeutic success of autologous HSCT-GT, the U.S. Food and Drug Administration (FDA) in 2022 approved an HSCT-GT for β-thalassemia (Zynteglo™). This review illuminates the β-globin gene research journey, adversities faced, and achievements reached; it highlights important molecular and genetic findings of the β-globin locus, describes the predominant globin vectors, and concludes by describing promising results from clinical trials for both sickle cell disease and β-thalassemia.
Collapse
Affiliation(s)
- Eva Eugenie Rose Segura
- Molecular Biology Interdepartmental Doctoral Program, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Paul George Ayoub
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Kevyn Lopez Hart
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Donald Barry Kohn
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Pediatrics (Hematology/Oncology), David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center for Stem Cell Research and Regenerative Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Cabriolu A, Odak A, Zamparo L, Yuan H, Leslie CS, Sadelain M. Globin vector regulatory elements are active in early hematopoietic progenitor cells. Mol Ther 2022; 30:2199-2209. [PMID: 35247584 PMCID: PMC9171148 DOI: 10.1016/j.ymthe.2022.02.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 01/19/2023] Open
Abstract
The globin genes are archetypal tissue-specific genes that are silent in most tissues but for late-stage erythroblasts upon terminal erythroid differentiation. The transcriptional activation of the β-globin gene is under the control of proximal and distal regulatory elements located on chromosome 11p15.4, including the β-globin locus control region (LCR). The incorporation of selected LCR elements in lentiviral vectors encoding β and β-like globin genes has enabled successful genetic treatment of the β-thalassemias and sickle cell disease. However, recent occurrences of benign clonal expansions in thalassemic patients and myelodysplastic syndrome in patients with sickle cell disease call attention to the non-erythroid functions of these powerful vectors. Here we demonstrate that lentivirally encoded LCR elements, in particular HS1 and HS2, can be activated in early hematopoietic cells including hematopoietic stem cells and myeloid progenitors. This activity is position-dependent and results in the transcriptional activation of a nearby reporter gene in these progenitor cell populations. We further show that flanking a globin vector with an insulator can effectively restrain this non-erythroid activity without impairing therapeutic globin expression. Globin lentiviral vectors harboring powerful LCR HS elements may thus expose to the risk of trans-activating cancer-related genes, which can be mitigated by a suitable insulator.
Collapse
Affiliation(s)
- Annalisa Cabriolu
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, 1250 1st Ave., New York, NY 10065, USA
| | - Ashlesha Odak
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, 1250 1st Ave., New York, NY 10065, USA; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA
| | - Lee Zamparo
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1250 1st Ave., New York, NY 10065, USA
| | - Han Yuan
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1250 1st Ave., New York, NY 10065, USA
| | - Christina S Leslie
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1250 1st Ave., New York, NY 10065, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, 1250 1st Ave., New York, NY 10065, USA.
| |
Collapse
|
9
|
Rattananon P, Anurathapan U, Bhukhai K, Hongeng S. The Future of Gene Therapy for Transfusion-Dependent Beta-Thalassemia: The Power of the Lentiviral Vector for Genetically Modified Hematopoietic Stem Cells. Front Pharmacol 2021; 12:730873. [PMID: 34658870 PMCID: PMC8517149 DOI: 10.3389/fphar.2021.730873] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/09/2021] [Indexed: 01/15/2023] Open
Abstract
β-thalassemia, a disease that results from defects in β-globin synthesis, leads to an imbalance of β- and α-globin chains and an excess of α chains. Defective erythroid maturation, ineffective erythropoiesis, and shortened red blood cell survival are commonly observed in most β-thalassemia patients. In severe cases, blood transfusion is considered as a mainstay therapy; however, regular blood transfusions result in chronic iron overload with life-threatening complications, e.g., endocrine dysfunction, cardiomyopathy, liver disease, and ultimately premature death. Therefore, transplantation of healthy hematopoietic stem cells (HSCs) is considered an alternative treatment. Patients with a compatible human leukocyte antigen (HLA) matched donor can be cured by allogeneic HSC transplantation. However, some recipients faced a high risk of morbidity/mortality due to graft versus host disease or graft failure, while a majority of patients do not have such HLA match-related donors. Currently, the infusion of autologous HSCs modified with a lentiviral vector expressing the β-globin gene into the erythroid progenitors of the patient is a promising approach to completely cure β-thalassemia. Here, we discuss a history of β-thalassemia treatments and limitations, in particular the development of β-globin lentiviral vectors, with emphasis on clinical applications and future perspectives in a new era of medicine.
Collapse
Affiliation(s)
- Parin Rattananon
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Ratchathewi, Thailand
| | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Ratchathewi, Thailand
| | - Kanit Bhukhai
- Department of Physiology, Faculty of Science, Mahidol University, Ratchathewi, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Ratchathewi, Thailand
| |
Collapse
|
10
|
De Simone G, Quattrocchi A, Mancini B, di Masi A, Nervi C, Ascenzi P. Thalassemias: From gene to therapy. Mol Aspects Med 2021; 84:101028. [PMID: 34649720 DOI: 10.1016/j.mam.2021.101028] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/19/2021] [Indexed: 12/26/2022]
Abstract
Thalassemias (α, β, γ, δ, δβ, and εγδβ) are the most common genetic disorders worldwide and constitute a heterogeneous group of hereditary diseases characterized by the deficient synthesis of one or more hemoglobin (Hb) chain(s). This leads to the accumulation of unstable non-thalassemic Hb chains, which precipitate and cause intramedullary destruction of erythroid precursors and premature lysis of red blood cells (RBC) in the peripheral blood. Non-thalassemic Hbs display high oxygen affinity and no cooperativity. Thalassemias result from many different genetic and molecular defects leading to either severe or clinically silent hematologic phenotypes. Thalassemias α and β are particularly diffused in the regions spanning from the Mediterranean basin through the Middle East, Indian subcontinent, Burma, Southeast Asia, Melanesia, and the Pacific Islands, whereas δβ-thalassemia is prevalent in some Mediterranean regions including Italy, Greece, and Turkey. Although in the world thalassemia and malaria areas overlap apparently, the RBC protection against malaria parasites is openly debated. Here, we provide an overview of the historical, geographic, genetic, structural, and molecular pathophysiological aspects of thalassemias. Moreover, attention has been paid to molecular and epigenetic pathways regulating globin gene expression and globin switching. Challenges of conventional standard treatments, including RBC transfusions and iron chelation therapy, splenectomy and hematopoietic stem cell transplantation from normal donors are reported. Finally, the progress made by rapidly evolving fields of gene therapy and gene editing strategies, already in pre-clinical and clinical evaluation, and future challenges as novel curative treatments for thalassemia are discussed.
Collapse
Affiliation(s)
- Giovanna De Simone
- Dipartimento di Scienze, Università Roma Tre, Viale Guglielmo Marconi 446, 00146, Roma, Italy
| | - Alberto Quattrocchi
- Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Facoltà di Farmacia e Medicina, "Sapienza" Università di Roma, Corso della Repubblica, 79, 04100, Latina, Italy
| | - Benedetta Mancini
- Dipartimento di Scienze, Università Roma Tre, Viale Guglielmo Marconi 446, 00146, Roma, Italy
| | - Alessandra di Masi
- Dipartimento di Scienze, Università Roma Tre, Viale Guglielmo Marconi 446, 00146, Roma, Italy
| | - Clara Nervi
- Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Facoltà di Farmacia e Medicina, "Sapienza" Università di Roma, Corso della Repubblica, 79, 04100, Latina, Italy.
| | - Paolo Ascenzi
- Dipartimento di Scienze, Università Roma Tre, Viale Guglielmo Marconi 446, 00146, Roma, Italy; Accademia Nazionale dei Lincei, Via della Lungara 10, 00165, Roma, Italy.
| |
Collapse
|
11
|
Grech L, Borg K, Borg J. Novel therapies in β-thalassaemia. Br J Clin Pharmacol 2021; 88:2509-2524. [PMID: 34004015 DOI: 10.1111/bcp.14918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 01/19/2023] Open
Abstract
Beta-thalassaemia is one of the most significant haemoglobinopathies worldwide resulting in the synthesis of little or no β-globin chains. Without treatment, β-thalassaemia major is lethal within the first decade of life due to the complex pathophysiology, which leads to wide clinical manifestations. Current clinical management for these patients depends on repeated transfusions followed by iron-chelating therapy. Several novel approaches to correct the resulting α/β-globin chain imbalance, treat ineffective erythropoiesis and improve iron overload are currently being developed. Up to now, the only curative treatment for β-thalassemia is haematopoietic stem-cell transplantation, but this is a risky and costly procedure. Gene therapy, gene editing and base editing are emerging as a powerful approach to treat this disease. In β-thalassaemia, gene therapy involves the insertion of a vector containing the normal β-globin or γ-globin gene into haematopoietic stem cells to permanently produce normal red blood cells. Gene editing and base editing involves the use of zinc finger nucleases, transcription activator-like nucleases and clustered regularly interspaced short palindromic repeats/Cas9 to either correct the causative mutation or else insert a single nucleotide variant that will increase foetal haemoglobin. In this review, we will examine the current management strategies used to treat β-thalassaemia and focus on the novel therapies targeting ineffective erythropoiesis, improving iron overload and correction of the globin chain imbalance.
Collapse
Affiliation(s)
- Laura Grech
- Centre for Molecular Medicine and Biobanking, University of Malta, Malta
| | - Karen Borg
- Department of Public Health Medicine, Ministry for Health, Malta
| | - Joseph Borg
- Centre for Molecular Medicine and Biobanking, University of Malta, Malta.,Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Malta
| |
Collapse
|
12
|
Grosveld F, van Staalduinen J, Stadhouders R. Transcriptional Regulation by (Super)Enhancers: From Discovery to Mechanisms. Annu Rev Genomics Hum Genet 2021; 22:127-146. [PMID: 33951408 DOI: 10.1146/annurev-genom-122220-093818] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Accurate control of gene expression in the right cell at the right moment is of fundamental importance to animal development and homeostasis. At the heart of gene regulation lie the enhancers, a class of gene regulatory elements that ensures precise spatiotemporal activation of gene transcription. Mammalian genomes are littered with enhancers, which are frequently organized in cooperative clusters such as locus control regions and superenhancers. Here, we discuss our current knowledge of enhancer biology, including an overview of the discovery of the various enhancer subsets and the mechanistic models used to explain their gene regulatory function.
Collapse
Affiliation(s)
- Frank Grosveld
- Department of Cell Biology, Erasmus MC, 3000 CA Rotterdam, The Netherlands; ,
| | | | - Ralph Stadhouders
- Department of Cell Biology, Erasmus MC, 3000 CA Rotterdam, The Netherlands; , .,Department of Pulmonary Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
13
|
|
14
|
Morgan RA, Ma F, Unti MJ, Brown D, Ayoub PG, Tam C, Lathrop L, Aleshe B, Kurita R, Nakamura Y, Senadheera S, Wong RL, Hollis RP, Pellegrini M, Kohn DB. Creating New β-Globin-Expressing Lentiviral Vectors by High-Resolution Mapping of Locus Control Region Enhancer Sequences. Mol Ther Methods Clin Dev 2020; 17:999-1013. [PMID: 32426415 PMCID: PMC7225380 DOI: 10.1016/j.omtm.2020.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022]
Abstract
Hematopoietic stem cell gene therapy is a promising approach for treating disorders of the hematopoietic system. Identifying combinations of cis-regulatory elements that do not impede packaging or transduction efficiency when included in lentiviral vectors has proven challenging. In this study, we deploy LV-MPRA (lentiviral vector-based, massively parallel reporter assay), an approach that simultaneously analyzes thousands of synthetic DNA fragments in parallel to identify sequence-intrinsic and lineage-specific enhancer function at near-base-pair resolution. We demonstrate the power of LV-MPRA in elucidating the boundaries of previously unknown intrinsic enhancer sequences of the human β-globin locus control region. Our approach facilitated the rapid assembly of novel therapeutic βAS3-globin lentiviral vectors harboring strong lineage-specific recombinant control elements capable of correcting a mouse model of sickle cell disease. LV-MPRA can be used to map any genomic locus for enhancer activity and facilitates the rapid development of therapeutic vectors for treating disorders of the hematopoietic system or other specific tissues and cell types.
Collapse
Affiliation(s)
- Richard A. Morgan
- Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Feiyang Ma
- Molecular Biology Institute Interdepartmental Doctoral Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mildred J. Unti
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Devin Brown
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Paul George Ayoub
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Curtis Tam
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lindsay Lathrop
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bamidele Aleshe
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ryo Kurita
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Shantha Senadheera
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ryan L. Wong
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Roger P. Hollis
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Molecular Biology Institute Interdepartmental Doctoral Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Donald B. Kohn
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- The Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
15
|
Uchida N, Hsieh MM, Raines L, Haro-Mora JJ, Demirci S, Bonifacino AC, Krouse AE, Metzger ME, Donahue RE, Tisdale JF. Development of a forward-oriented therapeutic lentiviral vector for hemoglobin disorders. Nat Commun 2019; 10:4479. [PMID: 31578323 PMCID: PMC6775231 DOI: 10.1038/s41467-019-12456-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
Hematopoietic stem cell (HSC) gene therapy is being evaluated for hemoglobin disorders including sickle cell disease (SCD). Therapeutic globin vectors have demanding requirements including high-efficiency transduction at the HSC level and high-level, erythroid-specific expression with long-term persistence. The requirement of intron 2 for high-level β-globin expression dictates a reverse-oriented globin-expression cassette to prevent its loss from RNA splicing. Current reverse-oriented globin vectors can drive phenotypic correction, but they are limited by low vector titers and low transduction efficiencies. Here we report a clinically relevant forward-oriented β-globin-expressing vector, which has sixfold higher vector titers and four to tenfold higher transduction efficiency for long-term hematopoietic repopulating cells in humanized mice and rhesus macaques. Insertion of Rev response element (RRE) allows intron 2 to be retained, and β-globin production is observed in transplanted macaques and human SCD CD34+ cells. These findings bring us closer to a widely applicable gene therapy for hemoglobin disorders.
Collapse
Affiliation(s)
- Naoya Uchida
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA.
- Cellular and Molecular Therapeutics Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA.
| | - Matthew M Hsieh
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Cellular and Molecular Therapeutics Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Lydia Raines
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Cellular and Molecular Therapeutics Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Juan J Haro-Mora
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Cellular and Molecular Therapeutics Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Selami Demirci
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Cellular and Molecular Therapeutics Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Aylin C Bonifacino
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, Maryland, USA
| | - Allen E Krouse
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, Maryland, USA
| | - Mark E Metzger
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, Maryland, USA
| | - Robert E Donahue
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Cellular and Molecular Therapeutics Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - John F Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Cellular and Molecular Therapeutics Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| |
Collapse
|
16
|
El-Beshlawy A, El-Ghamrawy M. Recent trends in treatment of thalassemia. Blood Cells Mol Dis 2019; 76:53-58. [DOI: 10.1016/j.bcmd.2019.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 01/12/2023]
|
17
|
Abstract
INTRODUCTION Sickle cell anemia (SCA) is a hereditary blood disease caused by a single-gene mutation that affects millions of individuals world-wide. In this review, we focus on techniques to treat SCA by ex vivo genetic manipulation of hematopoietic stem/progenitor cells (HSPC), emphasizing replacement gene therapy and gene editing. AREAS COVERED Viral transduction of an anti-sickling β-like globin gene has been tested in pre-clinical and early-phase clinical studies, and shows promising preliminary results. Targeted editing of endogenous genes by site-directed nucleases has been developed more recently, and several approaches also are nearing clinical translation. EXPERT OPINION The indications and timing of gene therapy for SCA in lieu of supportive care treatment and allogeneic hematopoietic cell transplantation are still undefined. In addition, ensuring access to the treatment where the disease is endemic will present important challenges that must be addressed. Nonetheless, gene therapy and gene editing techniques have transformative potential as a universal curative option in SCA.
Collapse
Affiliation(s)
- Zulema Romero
- a Department of Microbiology, Immunology and Molecular Genetics , University of California Los Angeles , Los Angeles , CA , USA
| | - Mark DeWitt
- b Innovative Genomics Initiative , University of California , Berkeley , CA , USA
| | - Mark C Walters
- c Blood and Marrow Transplantation Program , UCSF Benioff Children's Hospital , Oakland , CA , USA
| |
Collapse
|
18
|
Abstract
Sickle cell disease is the most prevalent monogenic disorder worldwide and curative therapies are limited to hematopoietic stem cell transplant to the few with matched donors. Gene therapy has curative potential, whereby autologous hematopoietic stem cells are genetically modified and transplanted, which would not be limited by matched donors, resulting in 1-time, life-long correction devoid of immune side effects. Significant progress has been made to clinically translate gene therapy for sickle cell disease using lentivirus vectors carrying antisickling genes. This review focuses on the current state of the field, factors that determine clinical success, gene editing, and future prospects.
Collapse
Affiliation(s)
- Rajeswari Jayavaradhan
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute (CBDI), Cincinnati Children's Hospital Medical Center (CCHMC), Mail Location 7013, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Pathobiology and Molecular Medicine Graduate Program, Mail Location: 0529, 231 Albert Sabin Way, Cincinnati, OH 45267-0529, USA
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute (CBDI), Cincinnati Children's Hospital Medical Center (CCHMC), Mail Location 7013, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Pathobiology and Molecular Medicine Graduate Program, Mail Location: 0529, 231 Albert Sabin Way, Cincinnati, OH 45267-0529, USA.
| |
Collapse
|
19
|
Cavazzana M, Antoniani C, Miccio A. Gene Therapy for β-Hemoglobinopathies. Mol Ther 2017; 25:1142-1154. [PMID: 28377044 DOI: 10.1016/j.ymthe.2017.03.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 01/09/2023] Open
Abstract
β-Thalassemia and sickle cell disease (SCD) are the world's two most widely disseminated hereditary hemoglobinopathies. β-Thalassemia originated in the Mediterranean, Middle Eastern, and Asian regions, and SCD originated in central Africa. However, subsequent population migration means that these two diseases are now global and thus constitute a growing health problem in many countries. Despite remarkable improvements in medical care for patients with β-hemoglobinopathies, there is still only one definitive treatment option: allogeneic hematopoietic stem cell (HSC) transplantation. The development of gene therapy for β-hemoglobinopathies has been justified by (1) the limited availability of human leukocyte antigen (HLA)-identical donors, (2) the narrow window of application of HSC transplantation to the youngest patients, and (3) recent advances in HSC-based gene therapy. The huge ongoing efforts in translational medicine and the high number of related publications show that gene therapy has the potential to become the treatment of choice for patients who lack either an HLA genoidentical sibling or an alternative, medically acceptable donor. In this dynamic scientific context, we first summarize the main steps toward clinical translation of this therapeutic approach and then discuss novel lentiviral- and genome editing-based treatment strategies for β-hemoglobinopathies.
Collapse
Affiliation(s)
- Marina Cavazzana
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France; Biotherapy Clinical Investigation Center, Assistance Publique-Hôpitaux de Paris, INSERM, Groupe Hospitalier Universitaire Ouest, 75015 Paris, France; INSERM UMR 1163, Laboratory of Human Lymphohematopoiesis, 75015 Paris, France; Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.
| | - Chiara Antoniani
- Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France; INSERM UMR 1163, Laboratory of Chromatin and Gene Regulation, 75015 Paris, France
| | - Annarita Miccio
- Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France; INSERM UMR 1163, Laboratory of Chromatin and Gene Regulation, 75015 Paris, France.
| |
Collapse
|
20
|
Dong AC, Rivella S. Gene Addition Strategies for β-Thalassemia and Sickle Cell Anemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1013:155-176. [PMID: 29127680 DOI: 10.1007/978-1-4939-7299-9_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Beta-thalassemia and sickle cell anemia are two of the most common diseases related to the hemoglobin protein. In these diseases, the beta-globin gene is mutated, causing severe anemia and ineffective erythropoiesis. Patients can additionally present with a number of life-threatening co-morbidities, such as stroke or spontaneous fractures. Current treatment involves transfusion and iron chelation; allogeneic bone marrow transplant is the only curative option, but is limited by the availability of matching donors and graft-versus-host disease. As these two diseases are monogenic diseases, they make an attractive setting for gene therapy. Gene therapy aims to correct the mutated beta-globin gene or add back a functional copy of beta- or gamma-globin. Initial gene therapy work was done with oncoretroviral vectors, but has since shifted to lentiviral vectors. Currently, there are a few clinical trials underway to test the curative potential of some of these lentiviral vectors. This review will highlight the work done thus far, and present the challenges still facing gene therapy, such as genome toxicity concerns and achieving sufficient transgene expression to cure those with the most severe forms of thalassemia.
Collapse
Affiliation(s)
- Alisa C Dong
- Division of Hematology-Oncology, Department of Pediatrics, Weill Cornell Medical College, 515 E. 71st St., Room S-709, New York, NY, 10021, USA
| | - Stefano Rivella
- Division of Hematology-Oncology, Department of Pediatrics, Weill Cornell Medical College, 515 E. 71st St., S702, Box 284, New York, NY, 10021, USA.
| |
Collapse
|
21
|
Negre O, Eggimann AV, Beuzard Y, Ribeil JA, Bourget P, Borwornpinyo S, Hongeng S, Hacein-Bey S, Cavazzana M, Leboulch P, Payen E. Gene Therapy of the β-Hemoglobinopathies by Lentiviral Transfer of the β(A(T87Q))-Globin Gene. Hum Gene Ther 2016; 27:148-65. [PMID: 26886832 PMCID: PMC4779296 DOI: 10.1089/hum.2016.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
β-globin gene disorders are the most prevalent inherited diseases worldwide and result from abnormal β-globin synthesis or structure. Novel therapeutic approaches are being developed in an effort to move beyond palliative management. Gene therapy, by ex vivo lentiviral transfer of a therapeutic β-globin gene derivative (β(AT87Q)-globin) to hematopoietic stem cells, driven by cis-regulatory elements that confer high, erythroid-specific expression, has been evaluated in human clinical trials over the past 8 years. β(AT87Q)-globin is used both as a strong inhibitor of HbS polymerization and as a biomarker. While long-term studies are underway in multiple centers in Europe and in the United States, proof-of-principle of efficacy and safety has already been obtained in multiple patients with β-thalassemia and sickle cell disease.
Collapse
Affiliation(s)
- Olivier Negre
- 1 bluebird bio, Cambridge, Massachusetts.,2 CEA, Institute of Emerging Disease and Innovative Therapies (iMETI) , Fontenay aux Roses, France
| | | | - Yves Beuzard
- 2 CEA, Institute of Emerging Disease and Innovative Therapies (iMETI) , Fontenay aux Roses, France .,3 UMR 007, University of Paris 11 and CEA , CEA-iMETI, Fontenay aux Roses, France
| | | | - Philippe Bourget
- 4 Necker Hospital , Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | | | - Salima Hacein-Bey
- 6 Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud , Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marina Cavazzana
- 4 Necker Hospital , Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Philippe Leboulch
- 2 CEA, Institute of Emerging Disease and Innovative Therapies (iMETI) , Fontenay aux Roses, France .,3 UMR 007, University of Paris 11 and CEA , CEA-iMETI, Fontenay aux Roses, France .,5 Mahidol University , Bangkok, Thailand .,7 Harvard Medical School and Genetics Division, Department of Medicine, Brigham & Women's Hospital , Boston, Massachusetts
| | - Emmanuel Payen
- 2 CEA, Institute of Emerging Disease and Innovative Therapies (iMETI) , Fontenay aux Roses, France .,3 UMR 007, University of Paris 11 and CEA , CEA-iMETI, Fontenay aux Roses, France .,8 INSERM , Paris, France
| |
Collapse
|
22
|
Ludwig LS, Khajuria RK, Sankaran VG. Emerging cellular and gene therapies for congenital anemias. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2016; 172:332-348. [PMID: 27792859 DOI: 10.1002/ajmg.c.31529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Congenital anemias comprise a group of blood disorders characterized by a reduction in the number of peripherally circulating erythrocytes. Various genetic etiologies have been identified that affect diverse aspects of erythroid physiology and broadly fall into two main categories: impaired production or increased destruction of mature erythrocytes. Current therapies are largely focused on symptomatic treatment and are often based on transfusion of donor-derived erythrocytes and management of complications. Hematopoietic stem cell transplantation represents the only curative option currently available for the majority of congenital anemias. Recent advances in gene therapy and genome editing hold promise for the development of additional curative strategies for these blood disorders. The relative ease of access to the hematopoietic stem cell compartment, as well as the possibility of genetic manipulation ex vivo and subsequent transplantation in an autologous manner, make blood disorders among the most amenable to cellular therapies. Here we review cell-based and gene therapy approaches, and discuss the limitations and prospects of emerging avenues, including genome editing tools and the use of pluripotent stem cells, for the treatment of congenital forms of anemia. © 2016 Wiley Periodicals, Inc.
Collapse
|
23
|
Altrock PM, Brendel C, Renella R, Orkin SH, Williams DA, Michor F. Mathematical modeling of erythrocyte chimerism informs genetic intervention strategies for sickle cell disease. Am J Hematol 2016; 91:931-7. [PMID: 27299299 PMCID: PMC5093908 DOI: 10.1002/ajh.24449] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/11/2016] [Indexed: 01/24/2023]
Abstract
Recent advances in gene therapy and genome-engineering technologies offer the opportunity to correct sickle cell disease (SCD), a heritable disorder caused by a point mutation in the β-globin gene. The developmental switch from fetal γ-globin to adult β-globin is governed in part by the transcription factor (TF) BCL11A. This TF has been proposed as a therapeutic target for reactivation of γ-globin and concomitant reduction of β-sickle globin. In this and other approaches, genetic alteration of a portion of the hematopoietic stem cell (HSC) compartment leads to a mixture of sickling and corrected red blood cells (RBCs) in periphery. To reverse the sickling phenotype, a certain proportion of corrected RBCs is necessary; the degree of HSC alteration required to achieve a desired fraction of corrected RBCs remains unknown. To address this issue, we developed a mathematical model describing aging and survival of sickle-susceptible and normal RBCs; the former can have a selective survival advantage leading to their overrepresentation. We identified the level of bone marrow chimerism required for successful stem cell-based gene therapies in SCD. Our findings were further informed using an experimental mouse model, where we transplanted mixtures of Berkeley SCD and normal murine bone marrow cells to establish chimeric grafts in murine hosts. Our integrative theoretical and experimental approach identifies the target frequency of HSC alterations required for effective treatment of sickling syndromes in humans. Our work replaces episodic observations of such target frequencies with a mathematical modeling framework that covers a large and continuous spectrum of chimerism conditions. Am. J. Hematol. 91:931-937, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Philipp M. Altrock
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138
| | - Christian Brendel
- Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115
| | - Raffaele Renella
- Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Stuart H. Orkin
- Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Howard Hughes Medical Institute, Cambridge, MA 02138
- Harvard Stem Cell Institute, Cambridge, MA 02138
| | - David A. Williams
- Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Harvard Stem Cell Institute, Cambridge, MA 02138
- Corresponding Authors: David A. Williams, MD, Boston Children’s Hospital, 300 Longwood Ave., Karp 08125.3, Boston, MA 02115, Phone: 617-919-2697, Fax: 617-730-0868, , Franziska Michor, PhD, Dana-Farber Cancer Institute, Dept of Biostatistics and Computational Biology, Mailstop CLS-11007, 450 Brookline Avenue, Boston, MA 02115, Phone: 617-632-5045,
| | - Franziska Michor
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115
- Corresponding Authors: David A. Williams, MD, Boston Children’s Hospital, 300 Longwood Ave., Karp 08125.3, Boston, MA 02115, Phone: 617-919-2697, Fax: 617-730-0868, , Franziska Michor, PhD, Dana-Farber Cancer Institute, Dept of Biostatistics and Computational Biology, Mailstop CLS-11007, 450 Brookline Avenue, Boston, MA 02115, Phone: 617-632-5045,
| |
Collapse
|
24
|
Goodman MA, Malik P. The potential of gene therapy approaches for the treatment of hemoglobinopathies: achievements and challenges. Ther Adv Hematol 2016; 7:302-315. [PMID: 27695619 DOI: 10.1177/2040620716653729] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Hemoglobinopathies, including β-thalassemia and sickle cell disease (SCD), are a heterogeneous group of commonly inherited disorders affecting the function or levels of hemoglobin. Disease phenotype can be severe with substantial morbidity and mortality. Bone marrow transplantation is curative, but limited to those patients with an appropriately matched donor. Genetic therapy, which utilizes a patient's own cells, is thus an attractive therapeutic option. Numerous therapies are currently in clinical trials or in development, including therapies utilizing gene replacement therapy using lentiviruses and the latest gene editing techniques. In addition, methods are being developed that may be able to expand gene therapies to those with poor access to medical care, potentially significantly decreasing the global burden of disease.
Collapse
Affiliation(s)
- Michael A Goodman
- Division of Experimental Hematology and Cancer Biology,Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
25
|
de Dreuzy E, Bhukhai K, Leboulch P, Payen E. Current and future alternative therapies for beta-thalassemia major. Biomed J 2016; 39:24-38. [PMID: 27105596 PMCID: PMC6138429 DOI: 10.1016/j.bj.2015.10.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 10/12/2015] [Indexed: 11/15/2022] Open
Abstract
Beta-thalassemia is a group of frequent genetic disorders resulting in the synthesis of little or no β-globin chains. Novel approaches are being developed to correct the resulting α/β-globin chain imbalance, in an effort to move beyond the palliative management of this disease and the complications of its treatment (e.g. life-long red blood cell transfusion, iron chelation, splenectomy), which impose high costs on healthcare systems. Three approaches are envisaged: fetal globin gene reactivation by pharmacological compounds injected into patients throughout their lives, allogeneic hematopoietic stem cell transplantation (HSCT), and gene therapy. HSCT is currently the only treatment shown to provide an effective, definitive cure for β-thalassemia. However, this procedure remains risky and histocompatible donors are identified for only a small fraction of patients. New pharmacological compounds are being tested, but none has yet made it into common clinical practice for the treatment of beta-thalassemia major. Gene therapy is in the experimental phase. It is emerging as a powerful approach without the immunological complications of HSCT, but with other possible drawbacks. Rapid progress is being made in this field, and long-term efficacy and safety studies are underway.
Collapse
Affiliation(s)
- Edouard de Dreuzy
- CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay aux Roses, France; University of Paris 11, CEA-iMETI, 92260 Fontenay aux Roses, France
| | - Kanit Bhukhai
- CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay aux Roses, France; University of Paris 11, CEA-iMETI, 92260 Fontenay aux Roses, France
| | - Philippe Leboulch
- CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay aux Roses, France; University of Paris 11, CEA-iMETI, 92260 Fontenay aux Roses, France; Department of Medicine, Harvard Medical School and Genetics Division, Brigham and Women's Hospital, Boston MA, USA; Mahidol University and Ramathibodi Hospital, Bangkok, Thailand
| | - Emmanuel Payen
- CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay aux Roses, France; University of Paris 11, CEA-iMETI, 92260 Fontenay aux Roses, France; INSERM, Paris, France.
| |
Collapse
|
26
|
Genetic treatment of a molecular disorder: gene therapy approaches to sickle cell disease. Blood 2016; 127:839-48. [PMID: 26758916 DOI: 10.1182/blood-2015-09-618587] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/28/2015] [Indexed: 12/23/2022] Open
Abstract
Effective medical management for sickle cell disease (SCD) remains elusive. As a prevalent and severe monogenic disorder, SCD has been long considered a logical candidate for gene therapy. Significant progress has been made in moving toward this goal. These efforts have provided substantial insight into the natural regulation of the globin genes and illuminated challenges for genetic manipulation of the hematopoietic system. The initial γ-retroviral vectors, next-generation lentiviral vectors, and novel genome engineering and gene regulation approaches each share the goal of preventing erythrocyte sickling. After years of preclinical studies, several clinical trials for SCD gene therapies are now open. This review focuses on progress made toward achieving gene therapy, the current state of the field, consideration of factors that may determine clinical success, and prospects for future development.
Collapse
|
27
|
Saliba AN, Alameddine RS, Harb AR, Taher AT. Globin gene regulation for treating β-thalassemias: progress, obstacles and future. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1074071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
|
29
|
Herpes simplex viral-vector design for efficient transduction of nonneuronal cells without cytotoxicity. Proc Natl Acad Sci U S A 2015; 112:E1632-41. [PMID: 25775541 DOI: 10.1073/pnas.1423556112] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The design of highly defective herpes simplex virus (HSV) vectors for transgene expression in nonneuronal cells in the absence of toxic viral-gene activity has been elusive. Here, we report that elements of the latency locus protect a nonviral promoter against silencing in primary human cells in the absence of any viral-gene expression. We identified a CTCF motif cluster 5' to the latency promoter and a known long-term regulatory region as important elements for vigorous transgene expression from a vector that is functionally deleted for all five immediate-early genes and the 15-kb internal repeat region. We inserted a 16.5-kb expression cassette for full-length mouse dystrophin and report robust and durable expression in dystrophin-deficient muscle cells in vitro. Given the broad cell tropism of HSV, our design provides a nontoxic vector that can accommodate large transgene constructs for transduction of a wide variety of cells without vector integration, thereby filling an important void in the current arsenal of gene-therapy vectors.
Collapse
|
30
|
Chandrakasan S, Malik P. Gene therapy for hemoglobinopathies: the state of the field and the future. Hematol Oncol Clin North Am 2014; 28:199-216. [PMID: 24589262 DOI: 10.1016/j.hoc.2013.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
After nearly two decades of struggle, gene therapy for hemoglobinopathies using vectors carrying β or γ-globin gene has finally reached the clinical doorsteps. This was made possible by advances made in our understanding of critical regulatory elements required for high level of globin gene expression and improved gene transfer vectors and methodologies. Development of gene editing technologies and reprogramming somatic cells for regenerative medicine holds the promise of genetic correction of hemoglobinopathies in the future. This article will review the state of the field and the upcoming technologies that will allow genetic therapeutic correction of hemoglobinopathies.
Collapse
Affiliation(s)
- Shanmuganathan Chandrakasan
- Division of Hematology, Oncology and Bone Marrow Transplant, Cancer and Blood Disease Institute (CBDI), Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Punam Malik
- Division of Experimental Hematology/Cancer Biology, Cincinnati Children's Research Foundation, Cancer and Blood Institute (CBDI), Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Hematology, Cincinnati Children's Research Foundation, Cancer and Blood Institute (CBDI), Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
31
|
Acuto S, Baiamonte E, Di Stefano R, Spina B, Barone R, Maggio A. Development and Recent Progresses of Gene Therapy for β-Thalassemia. THALASSEMIA REPORTS 2014. [DOI: 10.4081/thal.2014.2925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
β-thalassemias are among the most common inherited monogenic disorders worldwide due to mutations in the β-globin gene that reduce or abolish the production of the β-globin chain resulting in transfusion-dependent chronic anemia. Currently, the only curative treatment is allogeneic hematopoietic stem cells (HSCs) transplantation, but this option is limited by the a vailability of HLA-matched donor. Gene therapy, based on autologous transplantation of genetically corrected HSCs, holds the promise to treat patients lacking a compati ble bone marrow donor. I nit ial attempts of gene transfer have been unsuccessful due to limitations of available vectors to stably transfer a globin gene in HSCs and reach high and regulated expression in the erythroid progeny. With the advent of lentiviral vectors (LVs), based on human immunodeficiency virus, many of the initial limitations have been overcome. Since 2000 when Sadelain and co-workers first demonstrated successful globin gene transfer in murine thalassemia models with improvement of the phenotype using a recombinant β globin/LV, several other groups have developed different vectors encoding either β, γ or mutated globin genes and confirmed these results in both murine models and erythroid progeny derived from patient’s HSCs. In light of these encouraging results, research has recently moved into clinical trials that are ongoing or soon to begin. One participant in an ongoing gene transfer trial for β-thalassemia has achieved clinical benefit with elimination of his transfusi on re quirement. Here , dev elopmen t and recent progress of gene therapy for β-thalassemia is reviewed.
Collapse
|
32
|
Antoniou MN, Skipper KA, Anakok O. Optimizing retroviral gene expression for effective therapies. Hum Gene Ther 2014; 24:363-74. [PMID: 23517535 DOI: 10.1089/hum.2013.062] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
With their ability to integrate their genetic material into the target cell genome, retroviral vectors (RV) of both the gamma-retroviral (γ-RV) and lentiviral vector (LV) classes currently remain the most efficient and thus the system of choice for achieving transgene retention and therefore potentially long-term expression and therapeutic benefit. However, γ-RV and LV integration comes at a cost in that transcription units will be present within a native chromatin environment and thus be subject to epigenetic effects (DNA methylation, histone modifications) that can negatively impact on their function. Indeed, highly variable expression and silencing of γ-RV and LV transgenes especially resulting from promoter DNA methylation is well documented and was the cause of the failure of gene therapy in a clinical trial for X-linked chronic granulomatous disease. This review will critically explore the use of different classes of genetic control elements that can in principle reduce vector insertion site position effects and epigenetic-mediated silencing. These transcriptional regulatory elements broadly divide themselves into either those with a chromatin boundary or border function (scaffold/matrix attachment regions, insulators) or those with a dominant chromatin remodeling and transcriptional activating capability (locus control regions,, ubiquitous chromatin opening elements). All these types of elements have their strengths and weaknesses within the constraints of a γ-RV and LV backbone, showing varying degrees of efficacy in improving reproducibility and stability of transgene function. Combinations of boundary and chromatin remodeling; transcriptional activating elements, which do not impede vector production; transduction efficiency; and stability are most likely to meet the requirements within a gene therapy context especially when targeting a stem cell population.
Collapse
Affiliation(s)
- Michael N Antoniou
- Gene Expression and Therapy Group, King's College London School of Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, United Kingdom.
| | | | | |
Collapse
|
33
|
Abstract
Retroviral vector-mediated gene transfer into hematopoietic stem cells provides a potentially curative therapy for severe β-thalassemia. Lentiviral vectors based on human immunodeficiency virus have been developed for this purpose and have been shown to be effective in curing thalassemia in mouse models. One participant in an ongoing clinical trial has achieved transfusion independence after gene transfer into bone marrow stem cells owing, in part, to a genetically modified, dominant clone. Ongoing efforts are focused on improving the efficiency of lentiviral vector-mediated gene transfer into stem cells so that the curative potential of gene transfer can be consistently achieved.
Collapse
|
34
|
Raja JV, Rachchh MA, Gokani RH. Recent advances in gene therapy for thalassemia. J Pharm Bioallied Sci 2012; 4:194-201. [PMID: 22923960 PMCID: PMC3425167 DOI: 10.4103/0975-7406.99020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/20/2011] [Accepted: 12/10/2011] [Indexed: 11/16/2022] Open
Abstract
Thalassemias are genetically transmitted disorders. Depending upon whether the genetic defects or deletion lies in transmission of α or β globin chain gene, thalassemias are classified into α and β-thalassemias. Thus, thalassemias could be cured by introducing or correcting a gene into the hematopoietic compartment or a single stem cell. Initial attempts at gene transfer have proved unsuccessful due to limitations of available gene transfer vectors. The present review described the newer approaches to overcome these limitations, includes the introduction of lentiviral vectors. New approaches have also focused on targeting the specific mutation in the globin genes, correcting the DNA sequence or manipulating the development in DNA translocation and splicing to restore globin chain synthesis. This review mainly discusses the gene therapy strategies for the thalassemias, including the use of lentiviral vectors, generation of induced pluripotent stem (iPS) cells, gene targeting, splice-switching and stop codon readthrough.
Collapse
Affiliation(s)
- J V Raja
- Department of Pharmacology, S. J. Thakkar Pharmacy College, Rajkot, Gujarat, India
| | | | | |
Collapse
|
35
|
Payen E, Colomb C, Negre O, Beuzard Y, Hehir K, Leboulch P. Lentivirus Vectors in β-Thalassemia. Methods Enzymol 2012; 507:109-24. [DOI: 10.1016/b978-0-12-386509-0.00006-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Drakopoulou E, Papanikolaou E, Anagnou NP. The Ongoing Challenge of Hematopoietic Stem Cell-Based Gene Therapy for β-Thalassemia. Stem Cells Int 2011; 2011:987980. [PMID: 22190966 PMCID: PMC3236367 DOI: 10.4061/2011/987980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 08/04/2011] [Indexed: 12/17/2022] Open
Abstract
β-thalassemia is characterized by reduced or absence of β-globin production, resulting in anemia. Current therapies include blood transfusion combined with iron chelation. BM transplantation, although curative, is restricted by the matched donor limitation. Gene therapy, on the other hand, is promising, and its success lies primarily on designing efficient globin vectors that can effectively and stably transduce HSCs. The major breakthrough in β-thalassemia gene therapy occurred a decade ago with the development of globin LVs. Since then, researchers focused on designing efficient and safe vectors, which can successfully deliver the therapeutic transgene, demonstrating no insertional mutagenesis. Furthermore, as human HSCs have intrinsic barriers to HIV-1 infection, attention is drawn towards their ex vivo manipulation, aiming to achieve higher yield of genetically modified HSCs. This paper presents the current status of gene therapy for β-thalassemia, its success and limitations, and the novel promising strategies available involving the therapeutic role of HSCs.
Collapse
Affiliation(s)
- Ekati Drakopoulou
- Laboratory of Cell and Gene Therapy, Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 115 27 Athens, Greece
| | | | | |
Collapse
|
37
|
Morianos I, Siapati EK, Pongas G, Vassilopoulos G. Comparative analysis of FV vectors with human α- or β-globin gene regulatory elements for the correction of β-thalassemia. Gene Ther 2011; 19:303-11. [PMID: 21734726 DOI: 10.1038/gt.2011.98] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
β-Globin locus control region (LCR) sequences have been widely used for the regulated expression of the human β-globin gene in therapeutic viral vectors. In this study, we compare the expression of the human β-globin gene from either the HS2/HS3 β-globin LCR or the HS40 regulatory element from the α-globin locus in the context of foamy virus (FV) vectors for the genetic correction of β-thalassemia. Both regulatory elements expressed comparable levels of human β-globin in a murine erythroleukemic line, whereas in murine hematopoietic stem cells the HS40.β vector proved more efficient in β-globin expression and correction of the β-thalassemia phenotype. Following transplantation in the Hbb(th3/+) mouse model, the expression efficiency by the two vectors was similar, whereas the HS40.β vector achieved relatively more stable transgene expression. In addition, in an ex vivo assay using CD34+ cells from thalassemic patients, both vectors achieved significant human β-globin expression and restoration of the thalassemic phenotype as evidenced by enhanced erythropoiesis and decreased apoptosis. Our data suggest that FV vectors with the α-globin HS40 element can be used as alternative but equally efficient vehicles for human β-globin gene expression for the genetic correction of β-thalassemia.
Collapse
Affiliation(s)
- I Morianos
- Division of Genetics and Gene Therapy, Basic Research II, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | | | | |
Collapse
|
38
|
Mansilla-Soto J, Rivière I, Sadelain M. Genetic strategies for the treatment of sickle cell anaemia. Br J Haematol 2011; 154:715-27. [DOI: 10.1111/j.1365-2141.2011.08773.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
39
|
|
40
|
Abstract
After more than 1500 gene therapy clinical trials in the past two decades, the overall conclusion is that for gene therapy (GT) to be successful, the vector systems must still be improved in terms of delivery, expression and safety. The recent development of more efficient and stable vector systems has created great expectations for the future of GT. Impressive results were obtained in three primary immunodeficiencies and other inherited diseases such as congenital blindness, adrenoleukodystrophy or junctional epidermolysis bullosa. However, the development of leukemia in five children included in the GT clinical trials for X-linked severe combined immunodeficiency and the silencing of the therapeutic gene in the chronic granulomatous disease clearly showed the importance of improving safety and efficiency. In this review, we focus on the main strategies available to achieve physiological or tissue-specific expression of therapeutic transgenes and discuss the importance of controlling transgene expression to improve safety. We propose that tissue-specific and/or physiological viral vectors offer the best balance between efficiency and safety and will be the tools of choice for future clinical trials in GT of inherited diseases.
Collapse
|
41
|
Uchida N, Washington KN, Lap CJ, Hsieh MM, Tisdale JF. Chicken HS4 insulators have minimal barrier function among progeny of human hematopoietic cells transduced with an HIV1-based lentiviral vector. Mol Ther 2010; 19:133-9. [PMID: 20940706 DOI: 10.1038/mt.2010.218] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Position effects limit the curative potential of gene transfer strategies for the hemoglobinopathies by inducing clonal variability of transgene expression. We evaluated the mitigating effects of the chicken hypersensitivity site 4 (HS4) insulator among lentiviral vector-transduced human hematopoietic cells. We constructed various lentiviral vectors using a green fluorescent protein (GFP) reporter under the control of a reverse-oriented murine stem cell virus (MSCV)-long-term repeat (LTR) promoter or a reverse-oriented β-globin expression cassette. A full-length HS4, a tandem HS4 core, and a single core insulator were inserted into the 3' LTR in both forward and reverse orientation. All but the reverse single core insulator significantly decreased titers. All reduced %GFP without increasing mean fluorescence intensity (MFI) among erythroid progeny of transduced human CD34(+) cells. A lower coefficient of variation (CV) was observed only among progeny of the full-length vector-transduced cells, yet a fivefold reduction in transduction efficiency was observed. In xenografted mice, the single core insulator decreased both the %GFP and the MFI at 4 and 8 weeks after transplantation with no difference in CVs. These data demonstrate that the inclusion of HS4 insulator elements lowers viral titers, reduces efficiency of transduction, and produces minimal effects on transgene expression among human hematopoietic cells in vitro and in vivo.
Collapse
Affiliation(s)
- Naoya Uchida
- Molecular and Clinical Hematology Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
The β-thalassaemias are inherited anaemias that form the most common class of monogenic disorders in the world. Treatment options are limited, with allogeneic haematopoietic stem cell transplantation offering the only hope for lifelong cure. However, this option is not available for many patients as a result of either the lack of compatible donors or the increased risk of transplant-related mortality in subjects with organ damage resulting from accumulated iron. The paucity of alternative treatments for patients that fall into either of these categories has led to the development of a revolutionary treatment strategy based on gene therapy. This approach involves replacing allogeneic stem cell transplantation with the transfer of normal globin genes into patient-derived, autologous haematopoietic stem cells. This highly attractive strategy offers several advantages, including bypassing the need for allogeneic donors and the immunosuppression required to achieve engraftment of the transplanted cells and to eliminate the risk of donor-related graft-versus-host disease. This review discusses the many advances that have been made towards this endeavour as well as the hurdles that must still be overcome before gene therapy for β-thalassaemia, as well as many other gene therapy applications, can be widely applied in the clinic.
Collapse
|
43
|
Kim EO, Kim TJ, Kim N, Kim ST, Kumar V, Lee KM. Homotypic cell to cell cross-talk among human natural killer cells reveals differential and overlapping roles of 2B4 and CD2. J Biol Chem 2010; 285:41755-64. [PMID: 20813844 DOI: 10.1074/jbc.m110.137976] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human natural killer (NK) cells express an abundant level of 2B4 and CD2 on their surface. Their counter-receptors, CD48 and CD58, are also expressed on the NK cell surface, raising a question about the functional consequences of potential 2B4/CD48 and CD2/CD58 interactions. Using blocking antibodies specific to each receptor, we demonstrated that both 2B4/CD48 and CD2/CD58 interactions were essential for the development of NK effector functions: cytotoxicity and cytokine secretion. However, only 2B4/CD48, but not CD2/CD58, interactions were shown to be critical for the optimal NK cell proliferation in response to interleukin (IL)-2. IL-2-activated NK cells cultured in the absence of 2B4/CD48 or CD2/CD58 interactions were severely impaired for their ability to induce intracellular calcium mobilization and subsequent ERK activation upon tumor target exposure, suggesting that the early signaling pathway of NK receptors leading to impaired cytolysis and interferon (IFN)-γ secretion was inhibited. Nevertheless, these defects did not fully account for the reduced proliferation of NK cells in the absence of 2B4/CD48 interactions, because anti-CD2 or anti-CD58 monoclonal antibody (mAb)-treated NK cells, showing defective signaling and effector functions, displayed normal proliferation upon IL-2 stimulation. These results propose the signaling divergence between pathways leading to cell proliferation and cytotoxicity/cytokine release, which can be differentially regulated by 2B4 and CD2 during IL-2-driven NK cell activation. Collectively, these results reveal the importance of homotypic NK-to-NK cell cross-talk through 2B4/CD48 and CD2/CD58 pairs and further present their differential and overlapping roles in human NK cells.
Collapse
Affiliation(s)
- Eun-Ok Kim
- Department of Biochemistry, Division of Brain Korea 21 Program for Biomedical Science, Global Research Lab, Korea University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
44
|
Arumugam P, Malik P. Genetic therapy for beta-thalassemia: from the bench to the bedside. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2010; 2010:445-450. [PMID: 21239833 DOI: 10.1182/asheducation-2010.1.445] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Beta-thalassemia is a genetic disorder with mutations in the β-globin gene that reduce or abolish β-globin protein production. Patients with β-thalassemia major (Cooley's anemia) become severely anemic by 6 to 18 months of age, and are transfusion dependent for life, while those with thalassemia intermedia, a less-severe form of thalassemia, are intermittently or rarely transfused. An allogeneically matched bone marrow transplant is curative, although it is restricted to those with matched donors. Gene therapy holds the promise of "fixing" one's own bone marrow cells by transferring the normal β-globin or γ-globin gene into hematopoietic stem cells (HSCs) to permanently produce normal red blood cells. Requirements for effective gene transfer for the treatment of β-thalassemia are regulated, erythroid-specific, consistent, and high-level β-globin or γ-globin expression. Gamma retroviral vectors have had great success with immune-deficiency disorders, but due to vector-associated limitations, they have limited utility in hemoglobinopathies. Lentivirus vectors, on the other hand, have now been shown in several studies to correct mouse and animal models of thalassemia. The immediate challenges of the field as it moves toward clinical trials are to optimize gene transfer and engraftment of a high proportion of genetically modified HSCs and to minimize the adverse consequences that can result from random integration of vectors into the genome by improving current vector design or developing novel vectors. This article discusses the current state of the art in gene therapy for β-thalassemia and some of the challenges it faces in human trials.
Collapse
Affiliation(s)
- Paritha Arumugam
- Division of Experimental Hematology, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | |
Collapse
|
45
|
Gene therapy in thalassemia and hemoglobinopathies. Mediterr J Hematol Infect Dis 2009; 1:e2009008. [PMID: 21415990 PMCID: PMC3033156 DOI: 10.4084/mjhid.2009.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 11/12/2009] [Indexed: 01/19/2023] Open
Abstract
Sickle cell disease (SCD) and ß-thalassemia represent the most common hemoglobinopathies caused, respectively, by the alteration of structural features or deficient production of the ß-chain of the Hb molecule. Other hemoglobinopathies are characterized by different mutations in the α- or ß-globin genes and are associated with anemia and might require periodic or chronic blood transfusions. Therefore, ß-thalassemia, SCD and other hemoglobinopathies are excellent candidates for genetic approaches since they are monogenic disorders and, potentially, could be cured by introducing or correcting a single gene into the hematopoietic compartment or a single stem cell. Initial attempts at gene transfer of these hemoglobinopathies have proved unsuccessful due to limitations of available gene transfer vectors. With the advent of lentiviral vectors many of the initial limitations have been overcame. New approaches have also focused on targeting the specific mutation in the ß-globin genes, correcting the DNA sequence or manipulating the fate of RNA translation and splicing to restore ß-globin chain synthesis. These techniques have the potential to correct the defect into hematopoietic stem cells or be utilized to modify stem cells generated from patients affected by these disorders. This review discusses gene therapy strategies for the hemoglobinopathies, including the use of lentiviral vectors, generation of induced pluripotent stem cells (iPS) cells, gene targeting, splice-switching and stop codon readthrough.
Collapse
|
46
|
Hayakawa J, Ueda T, Lisowski L, Hsieh MM, Washington K, Phang O, Metzger M, Krouse A, Donahue RE, Sadelain M, Tisdale JF. Transient in vivo beta-globin production after lentiviral gene transfer to hematopoietic stem cells in the nonhuman primate. Hum Gene Ther 2009; 20:563-72. [PMID: 19222366 DOI: 10.1089/hum.2008.186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Inherited disorders of globin synthesis remain desirable targets for hematopoietic stem cell (HSC)-based therapies. Gene transfer using retroviral vectors offers an alternative to allogeneic HSC transplantation by the permanent integration of potentially therapeutic genes into primary autologous HSCs. Although proof of principle has been demonstrated in humans, this approach has been met by formidable obstacles, and large-animal models have become increasingly important for the preclinical development of gene addition strategies. Here we report lentiviral gene transfer of the human beta-globin gene under the control of the globin promoter and large fragments of the globin locus control region (LCR) in the nonhuman primate. Using an HIV-1, vesicular stomatitis virus glycoprotein G (VSV-G)-pseudotyped vector, modified to overcome a species-specific restriction to HIV-1, gene transfer to colony-forming units (CFU) derived from mobilized peripheral blood (PB) rhesus CD34+ cells was 84.4 +/- 2.33%. Erythroid cells derived from transduced rhesus CD34+ cells expressed human beta-globin at high levels as assessed by flow cytometry with a human beta-globin-specific antibody. Two rhesus macaques (RQ3586 and RQ3583) were transplanted with mobilized PB CD34+ cells transduced with our modified HIV vector at a multiplicity of infection of 80. High gene transfer rates to CFUs were achieved in vitro (RQ3586, 87.5%; RQ3583, 83.3%), with efficient human beta-globin expression among erythroid progeny generated in vitro. Early posttransplantation, gene transfer rates of 5% or higher were detectable and confirmed by genomic Southern blotting, with equivalent-level human beta-globin expression detected by flow cytometry. Long-term gene marking levels among mononuclear cells and granulocytes assessed by quantitative polymerase chain reaction gradually decreased to about 0.001% at 2 years, likely due to additional HIV-1 restrictive elements in the rhesus macaque. No evidence of clonal hematopoiesis has occurred in our animals in up to 2 years. Current efforts are aimed at developing a lentiviral vector capable of efficiently transducing both human and rhesus HSCs to allow preclinical modeling of globin gene transfer.
Collapse
Affiliation(s)
- Jun Hayakawa
- Molecular and Clinical Hematology Branch (MCHB), National Institutes of Diabetes and Digestive and Kidney Disorders (NIDDK) , National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The concept of introducing genes into human cells for therapeutic purposes developed nearly 50 years ago as diseases due to defects in specific genes were recognized. Development of recombinant DNA techniques in the 1970s and their application to the study of mouse tumor viruses facilitated the assembly of the first gene transfer vectors. Vectors of several different types have now been developed for specific applications and over the past decade, efficacy has been demonstrated in many animal models. Clinical trials began in 1989 and by 2002 there was unequivocal evidence that children with severe combined immunodeficiency could be cured by gene transfer into primitive hematopoietic cells. Emerging from these successful trials was the realization that proto-oncogene activation by retroviral integration could contribute to leukemia. Much current effort is focused on development of safer vectors. Successful gene therapy applications have also been developed for control of graft-versus-host disease and treatment of various viral infections, leukemias, and lymphomas. The hemophilias seem amenable to gene therapy intervention and informative clinical trials have been conducted. The hemoglobin disorders, an early target for gene therapy, have proved particularly challenging although ongoing research is yielding new information that may ultimately lead to successful clinical trials.
Collapse
|
48
|
Maina N, Zhong L, Li X, Zhao W, Han Z, Bischof D, Aslanidi G, Zolotukhin S, Weigel-Van Aken KA, Rivers AE, Slayton WB, Yoder MC, Srivastava A. Optimization of recombinant adeno-associated viral vectors for human beta-globin gene transfer and transgene expression. Hum Gene Ther 2008; 19:365-75. [PMID: 18399730 DOI: 10.1089/hum.2007.173] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Therapeutic levels of expression of the beta-globin gene have been difficult to achieve with conventional retroviral vectors without the inclusion of DNase I-hypersensitive site (HS2, HS3, and HS4) enhancer elements. We generated recombinant adeno-associated viral (AAV) vectors carrying an antisickling human beta-globin gene under the control of either the beta-globin gene promoter/enhancer or the erythroid cell-specific human parvovirus B19 promoter at map unit 6 (B19p6) without any enhancer, and tested their efficacy in a human erythroid cell line (K-562) and in primary murine hematopoietic progenitor cells (c-kit(+)lin()). We report here that (1) self-complementary AAV serotype 2 (scAAV2)-beta-globin vectors containing only the HS2 enhancer are more efficient than single-stranded AAV (ssAAV2)-beta-globin vectors containing the HS2+HS3+HS4 enhancers; (2) scAAV2-beta-globin vectors recombine with scAAV2-HS2+HS3+HS4 vectors after dual-vector transduction, leading to transgene expression; (3) scAAV2-beta-globin as well as scAAV1-beta-globin vectors containing the B19p6 promoter without the HS2 enhancer element are more efficient than their counterparts containing the HS2 enhancer/beta-globin promoter; and (4) scAAV2-B19p6-beta-globin vectors in K-562 cells, and scAAV1-B19p6-beta-globin vectors in murine c-kit(+)lin() cells, yield efficient expression of the beta-globin protein. Thus, the combined use of scAAV vectors and the parvovirus B19 promoter may lead to expression of therapeutic levels the beta-globin gene in human erythroid cells, which has implications in the use of these vectors in gene therapy of beta-thalassemia and sickle cell disease.
Collapse
Affiliation(s)
- Njeri Maina
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Beta-globin LCR and intron elements cooperate and direct spatial reorganization for gene therapy. PLoS Genet 2008; 4:e1000051. [PMID: 18404216 PMCID: PMC2271131 DOI: 10.1371/journal.pgen.1000051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 03/11/2008] [Indexed: 12/15/2022] Open
Abstract
The Locus Control Region (LCR) requires intronic elements within β-globin transgenes to direct high level expression at all ectopic integration sites. However, these essential intronic elements cannot be transmitted through retrovirus vectors and their deletion may compromise the therapeutic potential for gene therapy. Here, we systematically regenerate functional β-globin intron 2 elements that rescue LCR activity directed by 5′HS3. Evaluation in transgenic mice demonstrates that an Oct-1 binding site and an enhancer in the intron cooperate to increase expression levels from LCR globin transgenes. Replacement of the intronic AT-rich region with the Igμ 3′MAR rescues LCR activity in single copy transgenic mice. Importantly, a combination of the Oct-1 site, Igμ 3′MAR and intronic enhancer in the BGT158 cassette directs more consistent levels of expression in transgenic mice. By introducing intron-modified transgenes into the same genomic integration site in erythroid cells, we show that BGT158 has the greatest transcriptional induction. 3D DNA FISH establishes that induction stimulates this small 5′HS3 containing transgene and the endogenous locus to spatially reorganize towards more central locations in erythroid nuclei. Electron Spectroscopic Imaging (ESI) of chromatin fibers demonstrates that ultrastructural heterochromatin is primarily perinuclear and does not reorganize. Finally, we transmit intron-modified globin transgenes through insulated self-inactivating (SIN) lentivirus vectors into erythroid cells. We show efficient transfer and robust mRNA and protein expression by the BGT158 vector, and virus titer improvements mediated by the modified intron 2 in the presence of an LCR cassette composed of 5′HS2-4. Our results have important implications for the mechanism of LCR activity at ectopic integration sites. The modified transgenes are the first to transfer intronic elements that potentiate LCR activity and are designed to facilitate correction of hemoglobinopathies using single copy vectors. Expression of the β-globin gene is regulated by interactions between a distant Locus Control Region (LCR) and regulatory elements in or near the gene. We previously showed that LCR activity requires specific β-globin intron elements to consistently activate transgene expression in mice. These important intronic elements fail to transmit through lentivirus vectors designed for gene therapy of Sickle Cell Anemia. In this study, we identify intron modifications that reveal functional cooperation between the β-globin intronic enhancer and an intronic Oct-1 site. LCR activity in transgenic mice is also potentiated by an intronically located Igμ 3′MAR element. During induction of erythroid gene expression, the modified intron directs relocalization of the transgene away from the nuclear periphery towards more central neighbourhoods, and this movement mimics relocalization by the endogenous β-globin locus. Lentivirus vectors with the modified intron produce high titer virus stocks that express the transgene to therapeutic levels in erythroid cells. These findings have implications for understanding the mechanism of LCR activity, and for designing safe and effective lentivirus vectors for gene therapy.
Collapse
|
50
|
Lisowski L, Sadelain M. Current status of globin gene therapy for the treatment of β-thalassaemia. Br J Haematol 2008; 141:335-45. [DOI: 10.1111/j.1365-2141.2008.07098.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|