1
|
Lian HY, Robertson ED, Hiraga SI, Alvino GM, Collingwood D, McCune HJ, Sridhar A, Brewer BJ, Raghuraman MK, Donaldson AD. The effect of Ku on telomere replication time is mediated by telomere length but is independent of histone tail acetylation. Mol Biol Cell 2011; 22:1753-65. [PMID: 21441303 PMCID: PMC3093326 DOI: 10.1091/mbc.e10-06-0549] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Ku controls telomere replication timing. We test the mechanism and find that Ku does not bind telomere-proximal origins directly or alter their histone acetylation state. Instead, Ku's effect on replication timing is mediated through telomere length and requires the TG1-3 repeat-counting component Rif1. DNA replication in Saccharomyces cerevisiae proceeds according to a temporal program. We have investigated the role of the telomere-binding Ku complex in specifying late replication of telomere-proximal sequences. Genome-wide analysis shows that regions extending up to 80 kb from telomeres replicate abnormally early in a yku70 mutant. We find that Ku does not appear to regulate replication time by binding replication origins directly, nor is its effect on telomere replication timing mediated by histone tail acetylation. We show that Ku instead regulates replication timing through its effect on telomere length, because deletion of the telomerase regulator Pif1 largely reverses the short telomere defect of a yku70 mutant and simultaneously rescues its replication timing defect. Consistent with this conclusion, deleting the genome integrity component Elg1 partially rescued both length and replication timing of yku70 telomeres. Telomere length–mediated control of replication timing requires the TG1–3 repeat-counting component Rif1, because a rif1 mutant replicates telomeric regions early, despite having extended TG1–3 tracts. Overall, our results suggest that the effect of Ku on telomere replication timing results from its impact on TG1–3 repeat length and support a model in which Rif1 measures telomere repeat length to ensure that telomere replication timing is correctly programmed.
Collapse
Affiliation(s)
- Hui-Yong Lian
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Abstract
Sir1 establishes transcriptional silencing at the cryptic mating-type loci HMR and HML (HM loci) by recruiting the three other Sir proteins, Sir2, -3, and -4, that function directly in silenced chromatin. However, SIR1-independent mechanisms also contribute to recruiting the Sir2-4 proteins to the HM loci. A screen to elucidate SIR1-independent mechanisms that establish HMR silencing identified a mutation in YKU80. The role for Ku in silencing both HMR and HML was masked by SIR1. Ku's role in silencing the HM loci was distinct from its shared role with the nuclear architecture protein Esc1 in tethering the HM loci and telomeres to the nuclear periphery. The ability of high-copy SIR4 to rescue HMR silencing defects in sir1Delta cells required Ku, and chromatin immunoprecipitation (ChIP) experiments provided evidence that Ku contributed to Sir4's physical association with the HM loci in vivo. Additional ChIP experiments provided evidence that Ku functioned directly at the HM loci. Thus Ku and Sir1 had overlapping roles in silencing the HM loci.
Collapse
|
3
|
Chang HW, Kim SY, Yi SL, Son SH, Song DY, Moon SY, Kim JH, Choi EK, Ahn SD, Shin SS, Lee KK, Lee SW. Expression of Ku80 correlates with sensitivities to radiation in cancer cell lines of the head and neck. Oral Oncol 2006; 42:979-86. [PMID: 16472552 DOI: 10.1016/j.oraloncology.2005.12.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 12/08/2005] [Indexed: 01/03/2023]
Abstract
The Ku protein is essential for the repair of a majority of DNA double-strand breaks in mammalian cells. The purpose of this study was to investigate the relationship between the expression of Ku70/80 and sensitivity to radiation in cancer cell lines of the head and neck. The sensitivity to radiation in various head and neck cancer cell lines (AMC-HN-1 to -9) was analyzed by colony forming assay. Of the nine cell lines examined, the most radiosensitive cell line (AMC-HN-3) and the most radioresistant cell line (AMC-HN-9) were selected for this experiments. The expression of Ku70/80 was examined after irradiation using real time PCR, Western blotting and immunofluorescence in two different cell lines. Cell cycle distribution after irradiation were analysed. A differential radioresponse was demonstrated by expression of Ku70/80 in AMC-HN-3 and AMC-HN-9 cells. While the expression of Ku70 was slightly increased in the radioresistant AMC-HN-9 cell line, the expression of Ku80 was remarkably increased, suggesting a correlation between Ku80 expression and radiation resistance. Overexpression of Ku80 plays an important role in the repair of DNA damage induced by radiation. Ku80 expression may provide an effective predictive assay of radiosensitivity in head and neck cancers.
Collapse
Affiliation(s)
- Hyo Won Chang
- Department of Otolaryngology, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Ruan C, Workman JL, Simpson RT. The DNA repair protein yKu80 regulates the function of recombination enhancer during yeast mating type switching. Mol Cell Biol 2005; 25:8476-85. [PMID: 16166630 PMCID: PMC1265738 DOI: 10.1128/mcb.25.19.8476-8485.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombination enhancer (RE) is essential for regulating donor preference during yeast mating type switching. In this study, by using minichromosome affinity purification (MAP) and mass spectrometry, we found that yeast Ku80p is associated with RE in MATa cells. Chromatin immunoprecipitation assays confirmed its occupancy in vivo. Deletion of YKU80 results in altered chromatin structure in the RE region and more importantly causes a dramatic decrease of HML usage in MATa cells. We also detect directional movement of yKu80p from the RE towards HML during switching. These results indicate a novel function of yeast Ku80p in regulating mating type switching.
Collapse
Affiliation(s)
- Chun Ruan
- Huck Institutes of the Life Sciences, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
5
|
Sibani S, Price GB, Zannis-Hadjopoulos M. Decreased origin usage and initiation of DNA replication in haploinsufficient HCT116 Ku80+/- cells. J Cell Sci 2005; 118:3247-61. [PMID: 16014376 DOI: 10.1242/jcs.02427] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
One of the functions of the abundant heterodimeric nuclear protein, Ku (Ku70/Ku80), is its involvement in the initiation of DNA replication through its ability to bind to chromosomal replication origins in a sequence-specific and cell cycle dependent manner. Here, using HCT116 Ku80+/- cells, the effect of Ku80 deficiency on cell cycle progression and origin activation was examined. Western blot analyses revealed a 75% and 36% decrease in the nuclear expression of Ku80 and Ku70, respectively. This was concomitant with a 33% and 40% decrease in chromatin binding of both proteins, respectively. Cell cycle analysis of asynchronous and late G1 synchronized Ku80+/- cells revealed a prolonged G1 phase. Furthermore, these Ku-deficient cells had a 4.5-, 3.4- and 4.3-fold decrease in nascent strand DNA abundance at the lamin B2, beta-globin and c-myc replication origins, respectively. Chromatin immunoprecipitation (ChIP) assays showed that the association of Ku80 with the lamin B2, beta-globin and c-myc origins was decreased by 1.5-, 2.3- and 2.5-fold, respectively, whereas that of Ku70 was similarly decreased (by 2.1-, 1.5- and 1.7-fold, respectively) in Ku80+/- cells. The results indicate that a deficiency of Ku80 resulted in a prolonged G1 phase, as well as decreased Ku binding to and activation of origins of DNA replication.
Collapse
Affiliation(s)
- Sahar Sibani
- McGill Cancer Center, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | |
Collapse
|
6
|
Murata LB, Dodson MS, Hall JD. A human cellular protein activity (OF-1), which binds herpes simplex virus type 1 origin, contains the Ku70/Ku80 heterodimer. J Virol 2004; 78:7839-42. [PMID: 15220460 PMCID: PMC434072 DOI: 10.1128/jvi.78.14.7839-7842.2004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In an effort to identify host proteins involved in herpes simplex virus type 1 replication, monkey and human cellular protein activities (called OF-1) that bind the viral replication origin, oriS, have been described. We show by mass spectrometry that the DNA-binding component of human OF-1 contains Ku70 and Ku80 proteins.
Collapse
Affiliation(s)
- Lauren B Murata
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
7
|
Lucero H, Gae D, Taccioli GE. Novel localization of the DNA-PK complex in lipid rafts: a putative role in the signal transduction pathway of the ionizing radiation response. J Biol Chem 2003; 278:22136-43. [PMID: 12672807 DOI: 10.1074/jbc.m301579200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increased sensitivity to ionizing radiation (IR) has been shown to be due to defects in DNA double-strand break repair machinery. The major pathway in mammalian cells dedicated to the repair of DNA double-strand breaks is by the nonhomologous end-joining machinery. Six components function in this pathway, of which three (Ku70, Ku86, and DNA-PKcs) constitute a protein complex known as DNA-dependent protein kinase (DNA-PK). However, it is now recognized that the cellular radiation response is complex, and radiosensitivity may be also regulated at different levels in the radiation signal transduction pathway. In addition to DNA damage, exposure to IR triggers intracellular signaling cascades that overlap with pathways initiated by ligand engagement to a receptor. In this study, we provide evidence for the novel localization of the DNA-PK complex in lipid rafts. We also show this property is not a generalized characteristic of all DNA repair proteins. Furthermore, we have detected Ku86 in yeast lipid rafts. Our results suggest that the components of this complex might be recruited separately to the plasma membrane by tethering with raft-resident proteins. In addition, we found an irradiation-induced differential protein phosphorylation pattern dependent upon DNA-PKcs in lipid rafts. Thus, we speculate that another role for the DNA-PKcs subunit and perhaps for the holoenzyme is in the signal transduction of IR response.
Collapse
Affiliation(s)
- Hector Lucero
- Departments of Molecular and Cellular Biology, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | | | | |
Collapse
|
8
|
Schild-Poulter C, Matheos D, Novac O, Cui B, Giffin W, Ruiz MT, Price GB, Zannis-Hadjopoulos M, Haché RJG. Differential DNA binding of Ku antigen determines its involvement in DNA replication. DNA Cell Biol 2003; 22:65-78. [PMID: 12713733 DOI: 10.1089/104454903321515887] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ku antigen (Ku70/Ku80) is a regulatory subunit of DNA-dependent protein kinase, which participates in the regulation of DNA replication and gene transcription through specific DNA sequences. In this study, we have compared the mechanism of action of Ku from A3/4, a DNA sequence that appears in mammalian origins of DNA replication, and NRE1, a transcriptional regulatory element in the long terminal repeat of mouse mammary tumor virus through which Ku antigen and its associated kinase, DNA-dependent protein kinase (DNA-PK(cs)), act to repress steroid-induced transcription. Our results indicate that replication from a minimal replication origin of ors8 is independent of DNA-PK(cs) and that Ku interacts with A3/4-like sequences and NRE1 in fundamentally different ways. UV crosslinking experiments revealed differential interactions of the Ku subunits with A3/4, NRE1, and two other proposed Ku transcriptional regulatory elements. In vitro footprinting experiments showed direct contact of Ku on A3/4 and over the region of ors8 homologous to A3/4. In vitro replication assays using ors8 templates bearing mutations in the A3/4-like sequence suggested that Ku binding to this element was necessary for replication. By contrast, in vitro replication experiments revealed that NRE1 was not involved in DNA replication. Our results establish A3/4 as a new class of Ku DNA binding site. Classification of Ku DNA binding into eight categories of interaction based on recognition and DNA crosslinking experiments is discussed.
Collapse
Affiliation(s)
- Caroline Schild-Poulter
- Department of Medicine, The Ottawa Health Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Matheos D, Novac O, Price GB, Zannis-Hadjopoulos M. Analysis of the DNA replication competence of the xrs-5 mutant cells defective in Ku86. J Cell Sci 2003; 116:111-24. [PMID: 12456721 DOI: 10.1242/jcs.00156] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The radiosensitive mutant xrs-5, a derivative of the Chinese hamster ovary (CHO) K1 cell line, is defective in DNA double-strand break repair and V(D)J recombination. The defective phenotypes of xrs-5 cells are complemented by the 86 kDa subunit of Ku antigen. OBA is a protein, previously purified from HeLa cells, that binds in a sequence-specific manner to mammalian origins of DNA replication. The DNA-binding subunit of OBA has been identified as Ku86. We tested the xrs-5 cell line for its ability to replicate a mammalian origin-containing plasmid, p186, in vivo and in vitro. In vivo, the p186 episomal DNA replication in transfected xrs-5 cells was reduced by 45% when compared with the CHO K1 cells transfected with p186. In vitro, although total and cytoplasmic cell extracts from xrs-5 cells replicated the p186 with the same efficiency as the parental CHO K1 cell extracts, xrs-5 nuclear extracts did not possess any detectable replication activity. Addition of affinity-purified OBA/Ku restored replication in the xrs-5 nuclear extract reaction. Western blot analyses showed that the levels of other replication proteins (Orc2, PCNA, DNA polymerase epsilon and delta, Primase and Topoisomerase IIalpha) were comparable in both the xrs-5 mutant and CHO K1 wild-type cell lines. In addition, the in vivo association of Ku with the DHFR origin-containing sequence (oribeta) was examined in both the CHO K1 and xrs-5 cell lines by a chromatin immunoprecipitation (ChIP) assay. Anti-Ku antibodies did not immunoprecipitate a detectable amount of Ku from the xrs-5 cells in the origin-containing sequence, in contrast to the CHO K1 cells, wherein Ku was found to be associated with the oribeta origin. The data implicate Ku antigen in in vivo and in vitro DNA replication and suggest the existence of another protein with Ku-like functions in the xrs-5 cells.
Collapse
Affiliation(s)
- Diamanto Matheos
- McGill Cancer Centre, McGill University, Montréal, Québec, Canada, H3G 1Y6
| | | | | | | |
Collapse
|
10
|
Matheos D, Ruiz MT, Price GB, Zannis-Hadjopoulos M. Ku antigen, an origin-specific binding protein that associates with replication proteins, is required for mammalian DNA replication. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1578:59-72. [PMID: 12393188 DOI: 10.1016/s0167-4781(02)00497-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ors binding activity (OBA) represents a HeLa cell protein activity that binds in a sequence-specific manner to A3/4, a 36-bp mammalian replication origin sequence. OBA's DNA binding domain is identical to the 80-kDa subunit of Ku antigen. Ku antigen associates with mammalian origins of DNA replication in vivo, with maximum binding at the G1/S phase. Addition of an A3/4 double-stranded oligonucleotide inhibited in vitro DNA replication of p186, pors12, and pX24, plasmids containing the monkey replication origins of ors8, ors12, and the Chinese hamster DHFR oribeta, respectively. In contrast, in vitro SV40 DNA replication remained unaffected. The inhibitory effect of A3/4 oligonucleotide was fully reversed upon addition of affinity-purified Ku. Furthermore, depletion of Ku by inclusion of an antibody recognizing the Ku heterodimer, Ku70/Ku80, decreased mammalian replication to basal levels. By co-immunoprecipitation analyses, Ku was found to interact with DNA polymerases alpha, delta and epsilon, PCNA, topoisomerase II, RF-C, RP-A, DNA-PKcs, ORC-2, and Oct-1. These interactions were not inhibited by the presence of ethidium bromide in the immunoprecipitation reaction, suggesting DNA-independent protein associations. The data suggest an involvement of Ku in mammalian DNA replication as an origin-specific-binding protein with DNA helicase activity. Ku acts at the initiation step of replication and requires an A3/4-homologous sequence for origin binding. The physical association of Ku with replication proteins reveals a possible mechanism by which Ku is recruited to mammalian origins.
Collapse
Affiliation(s)
- Diamanto Matheos
- McGill Cancer Centre, McGill University, 3655 Drummond Street, Promenade Sir William Osler, Montréal, Québec, Canada H3G 1Y6
| | | | | | | |
Collapse
|
11
|
Cosgrove AJ, Nieduszynski CA, Donaldson AD. Ku complex controls the replication time of DNA in telomere regions. Genes Dev 2002; 16:2485-90. [PMID: 12368259 PMCID: PMC187453 DOI: 10.1101/gad.231602] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have investigated whether the Ku complex is involved in regulating DNA replication in the yeast Saccharomyces cerevisiae. We find that Ku proteins control the replication time of telomeric regions; replication origins located close to telomeres or within subtelomeric repeat sequences normally initiate late, but are activated much earlier in mutants lacking Ku function. In contrast, origins distant from telomeres initiate replication at the normal time. Ku is one of the first components identified as important for replication timing, and specification of the replication time of chromosome ends by Ku is consistent with its role in maintaining telomere localization.
Collapse
Affiliation(s)
- Andrew J Cosgrove
- Cancer Research UK Chromosome Replication Research Group, Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | | | | |
Collapse
|
12
|
Novac O, Matheos D, Araujo FD, Price GB, Zannis-Hadjopoulos M. In vivo association of Ku with mammalian origins of DNA replication. Mol Biol Cell 2001; 12:3386-401. [PMID: 11694575 PMCID: PMC61172 DOI: 10.1091/mbc.12.11.3386] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ku is a heterodimeric (Ku70/86-kDa) nuclear protein with known functions in DNA repair, V(D)J recombination, and DNA replication. Here, the in vivo association of Ku with mammalian origins of DNA replication was analyzed by studying its association with ors8 and ors12, as assayed by formaldehyde cross-linking, followed by immunoprecipitation and quantitative polymerase chain reaction analysis. The association of Ku with ors8 and ors12 was also analyzed as a function of the cell cycle. This association was found to be approximately fivefold higher in cells synchronized at the G1/S border, in comparison with cells at G0, and it decreased by approximately twofold upon entry of the cells into S phase, and to near background levels in cells at G2/M phase. In addition, in vitro DNA replication experiments were performed with the use of extracts from Ku80(+/+) and Ku80(-/-) mouse embryonic fibroblasts. A decrease of approximately 70% in in vitro DNA replication was observed when the Ku80(-/-) extracts were used, compared with the Ku80(+/+) extracts. The results indicate a novel function for Ku as an origin binding-protein, which acts at the initiation step of DNA replication and dissociates after origin firing.
Collapse
Affiliation(s)
- O Novac
- McGill Cancer Center, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | |
Collapse
|
13
|
Abstract
The ends of chromosomal DNA double-strand breaks (DSBs) can be accurately rejoined by at least two discrete pathways, homologous recombination and nonhomologous end-joining (NHEJ). The NHEJ pathway is essential for repair of specific classes of DSB termini in cells of the budding yeast Saccharomyces cerevisiae. Endonuclease-induced DSBs retaining complementary single-stranded DNA overhangs are repaired efficiently by end-joining. In contrast, damaged DSB ends (e.g., termini produced by ionizing radiation) are poor substrates for this pathway. NHEJ repair involves the functions of at least 10 genes, including YKU70, YKU80, DNL4, LIF1, SIR2, SIR3, SIR4, RAD50, MRE11, and XRS2. Most or all of these genes are required for efficient recombination-independent recircularization of linearized plasmids and for rejoining of EcoRI endonuclease-induced chromosomal DSBs in vivo. Several NHEJ mutants also display aberrant processing and rejoining of DSBs that are generated by HO endonuclease or formed spontaneously in dicentric plasmids. In addition, all NHEJ genes except DNL4 and LIF1 are required for stabilization of telomeric repeat sequences. Each of the proteins involved in NHEJ appears to bind, directly or through protein associations, with the ends of linear DNA. Enzymatic and/or structural roles in the rejoining of DSB termini have been postulated for several proteins within the group. Most yeast NHEJ genes have homologues in human cells and many biochemical activities and protein:protein interactions have been conserved in higher eucaryotes. Similarities and differences between NHEJ repair in yeast and mammalian cells are discussed.
Collapse
Affiliation(s)
- L K Lewis
- Chromosome Stability Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, PO Box 12233, 111 Alexander Drive, NIH, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
14
|
Abstract
Ku is a heterodimeric protein composed of approximately 70- and approximately 80-kDa subunits (Ku70 and Ku80) originally identified as an autoantigen recognized by the sera of patients with autoimmune diseases. Ku has high binding affinity for DNA ends and that is why originally it was known as a DNA end binding protein, but now it is known to also bind the DNA structure at nicks, gaps, hairpins, as well as the ends of telomeres. It has been reported also to bind with sequence specificity to DNA and with weak affinity to RNA. Ku is an abundant nuclear protein and is present in vertebrates, insects, yeast, and worms. Ku contains ssDNA-dependent ATPase and ATP-dependent DNA helicase activities. It is the regulatory subunit of the DNA-dependent protein kinase that phosphorylates many proteins, including SV-40 large T antigen, p53, RNA-polymerase II, RP-A, topoisomerases, hsp90, and many transcription factors such as c-Jun, c-Fos, oct-1, sp-1, c-Myc, TFIID, and many more. It seems to be a multifunctional protein that has been implicated to be involved directly or indirectly in many important cellular metabolic processes such as DNA double-strand break repair, V(D)J recombination of immunoglobulins and T-cell receptor genes, immunoglobulin isotype switching, DNA replication, transcription regulation, regulation of heat shock-induced responses, regulation of the precise structure of telomeric termini, and it also plays a novel role in G2 and M phases of the cell cycle. The mechanism underlying the regulation of all the diverse functions of Ku is still obscure.
Collapse
Affiliation(s)
- R Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi.
| | | |
Collapse
|
15
|
Abstract
One of the fundamental characteristics of life is the ability of an entity to reproduce itself, which stems from the ability of the DNA molecule to replicate itself. The initiation step of DNA replication, where control over the timing and frequency of replication is exerted, is poorly understood in eukaryotes in general, and in mammalian cells in particular. The cis-acting DNA element defining the position and providing control over initiation is the replication origin. The activation of replication origins seems to be dependent on the presence of both a particular sequence and of structural determinants. In the past few years, the development of new methods for identification and mapping of origins of DNA replication has allowed some understanding of the fundamental elements that control the replication process. This review summarizes some of the major findings of this century, regarding the mechanism of DNA replication, emphasizing what is known about the replication of mammalian DNA. J. Cell. Biochem. Suppls. 32/33:1-14, 1999.
Collapse
|
16
|
Lewis LK, Westmoreland JW, Resnick MA. Repair of endonuclease-induced double-strand breaks in Saccharomyces cerevisiae: essential role for genes associated with nonhomologous end-joining. Genetics 1999; 152:1513-29. [PMID: 10430580 PMCID: PMC1460701 DOI: 10.1093/genetics/152.4.1513] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Repair of double-strand breaks (DSBs) in chromosomal DNA by nonhomologous end-joining (NHEJ) is not well characterized in the yeast Saccharomyces cerevisiae. Here we demonstrate that several genes associated with NHEJ perform essential functions in the repair of endonuclease-induced DSBs in vivo. Galactose-induced expression of EcoRI endonuclease in rad50, mre11, or xrs2 mutants, which are deficient in plasmid DSB end-joining and some forms of recombination, resulted in G2 arrest and rapid cell killing. Endonuclease synthesis also produced moderate cell killing in sir4 strains. In contrast, EcoRI caused prolonged cell-cycle arrest of recombination-defective rad51, rad52, rad54, rad55, and rad57 mutants, but cells remained viable. Cell-cycle progression was inhibited in excision repair-defective rad1 mutants, but not in rad2 cells, indicating a role for Rad1 processing of the DSB ends. Phenotypic responses of additional mutants, including exo1, srs2, rad5, and rdh54 strains, suggest roles in recombinational repair, but not in NHEJ. Interestingly, the rapid cell killing in haploid rad50 and mre11 strains was largely eliminated in diploids, suggesting that the cohesive-ended DSBs could be efficiently repaired by homologous recombination throughout the cell cycle in the diploid mutants. These results demonstrate essential but separable roles for NHEJ pathway genes in the repair of chromosomal DSBs that are structurally similar to those occurring during cellular development.
Collapse
Affiliation(s)
- L K Lewis
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
17
|
Ruiz MT, Matheos D, Price GB, Zannis-Hadjopoulos M. OBA/Ku86: DNA binding specificity and involvement in mammalian DNA replication. Mol Biol Cell 1999; 10:567-80. [PMID: 10069804 PMCID: PMC25188 DOI: 10.1091/mbc.10.3.567] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/1998] [Accepted: 12/29/1998] [Indexed: 12/21/2022] Open
Abstract
Ors-binding activity (OBA) was previously semipurified from HeLa cells through its ability to interact specifically with the 186-basepair (bp) minimal replication origin of ors8 and support ors8 replication in vitro. Here, through competition band-shift analyses, using as competitors various subfragments of the 186-bp minimal ori, we identified an internal region of 59 bp that competed for OBA binding as efficiently as the full 186-bp fragment. The 59-bp fragment has homology to a 36-bp sequence (A3/4) generated by comparing various mammalian replication origins, including the ors. A3/4 is, by itself, capable of competing most efficiently for OBA binding to the 186-bp fragment. Band-shift elution of the A3/4-OBA complex, followed by Southwestern analysis using the A3/4 sequence as probe, revealed a major band of approximately 92 kDa involved in the DNA binding activity of OBA. Microsequencing analysis revealed that the 92-kDa polypeptide is identical to the 86-kDa subunit of human Ku antigen. The affinity-purified OBA fraction obtained using an A3/4 affinity column also contained the 70-kDa subunit of Ku and the DNA-dependent protein kinase catalytic subunit. In vitro DNA replication experiments in the presence of A3/4 oligonucleotide or anti-Ku70 and anti-Ku86 antibodies implicate Ku in mammalian DNA replication.
Collapse
Affiliation(s)
- M T Ruiz
- McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
18
|
Abstract
The recent identification of proteins that recognize origins of DNA replication and control the initiation of eukaryotic DNA replication has provided critical molecular tools to dissect this process. Dynamic changes in the assembly and disassembly of protein complexes at origins are important for the initiation of DNA replication and occur throughout the cell cycle. Herein, we review the key proteins required for the initiation of DNA replication, their involvement in the protein complex assembly at replication origins, and how the cell cycle machinery regulates this process.
Collapse
Affiliation(s)
- A Dutta
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
19
|
Raychaudhuri S, Byers R, Upton T, Eisenberg S. Functional analysis of a replication origin from Saccharomyces cerevisiae: identification of a new replication enhancer. Nucleic Acids Res 1997; 25:5057-64. [PMID: 9396816 PMCID: PMC147147 DOI: 10.1093/nar/25.24.5057] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Yeast replication origins have a modular arrangement of essential DNA sequences containing the ARS consensus sequence (ACS) flanked by auxiliary DNA elements which stimulate origin function. One of the auxiliary elements identified at several origins is a DNA replication enhancer that binds the Abf1p protein. We have isolated an ARS sequence from Saccharomyces cerevisiae based on its ability to bind Abf1p. Here we present a detailed molecular dissection of this ARS, designated ARS 1501, and we demonstrate that it functions as a genomic replication origin on chromosome XV . Mutagenesis of the Abf1p DNA-binding sites revealed that these sequences did not contribute significantly to ARS function. Instead, a new DNA element important for replication, designated REN1501, has been located 5' to the T-rich strand of the ACS. We show that REN1501 functions in either orientation and at variable distances from the ACS, defining this element as a DNA replication enhancer. Most significantly, point mutations within this element decreased the stability of plasmids bearing ARS 1501, suggesting that REN1501 binds a protein important for replication initiation. Only three elements found at origins are known to specifically bind proteins. These include the ARS essential sequences and the Abf1p and Rap1p DNA-binding sites. We show that the function of REN1501 at the origin cannot be replaced by a Rap1p DNA-binding site or a site that binds the transcriptional factor Gal4p and can only be partially substituted for by an Abf1p recognition sequence. This implies that the role of the REN1501 element at the ARS 1501 origin is specific, and suggest that the frequency of origin firing in eukaryotic cells may be regulated by origin-specific enhancers.
Collapse
Affiliation(s)
- S Raychaudhuri
- Department of Microbiology, School of Medicine, The University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
20
|
Wiltshire S, Raychaudhuri S, Eisenberg S. An Abf1p C-terminal region lacking transcriptional activation potential stimulates a yeast origin of replication. Nucleic Acids Res 1997; 25:4250-6. [PMID: 9336454 PMCID: PMC147049 DOI: 10.1093/nar/25.21.4250] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although it has been demonstrated that eukaryotic cellular origins of DNA replication may harbor stimulatory elements that bind transcription factors, how these factors stimulate origin function is unknown. In Saccharomyces cerevisiae , the transcription factor Abf1p stimulates origin function of ARS121 and ARS1 . In the results presented here, an analysis of Abf1p function has been carried out utilizing LexA(BD)-Abf1p fusion proteins and an ARS 121 derivative harboring LexA DNA-binding sites. A minimal region which stimulates origin function mapped to 50 amino acids within the C-terminus of Abf1p. When tested for transcriptional activation of a LacZ reporter gene, the same LexA(BD)-Abf1p fusion protein had negligible transcriptional activation potential. Therefore, stimulation of ARS 121 may occur independently of a transcriptional activation domain. It has been previously observed that the Gal4p, Rap1p DNA-binding sites and the LexA-Gal4p fusion protein can replace the role of Abf1p in stimulating ARS 1 . Here we show that the stimulatory function of Abf1p at ARS 121 cannot be replaced by these alternative DNA-binding sites and the potent chimeric transcriptional activator LexA(BD)-Gal4(AD)p . Hence, these results strongly suggest that the Abf1p stimulation of replication may differ for ARS 121 and ARS 1 , and imply specificity in the Abf1p/ARS 121 relationship.
Collapse
Affiliation(s)
- S Wiltshire
- Department of Microbiology, School of Medicine, The University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | |
Collapse
|
21
|
Bambara RA, Murante RS, Henricksen LA. Enzymes and reactions at the eukaryotic DNA replication fork. J Biol Chem 1997; 272:4647-50. [PMID: 9081985 DOI: 10.1074/jbc.272.8.4647] [Citation(s) in RCA: 287] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- R A Bambara
- Department of Biochemistry, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | |
Collapse
|