1
|
Splichal RC, Chen K, Walton SP, Chan C. The Role of Endoplasmic Reticulum Stress on Reducing Recombinant Protein Production in Mammalian Cells. Biochem Eng J 2024; 210:109434. [PMID: 39220803 PMCID: PMC11360842 DOI: 10.1016/j.bej.2024.109434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Therapeutic recombinant protein production relies on industrial scale culture of mammalian cells to produce active proteins in quantities sufficient for clinical use. The combination of stresses from industrial cell culture environment and recombinant protein production can overwhelm the protein synthesis machinery in the endoplasmic reticulum (ER). This leads to a buildup of improperly folded proteins which induces ER stress. Cells respond to ER stress by activating the Unfolded Protein Response (UPR). To restore proteostasis, ER sensor proteins reduce global protein synthesis and increase chaperone protein synthesis, and if that is insufficient the proteins are degraded. If proteostasis is still not restored, apoptosis is initiated. Increasing evidence suggests crosstalk between ER proteostasis and DNA damage repair (DDR) pathways. External factors (e.g., metabolites) from the cellular environment as well as internal factors (e.g., transgene copy number) can impact genome stability. Failure to maintain genome integrity reduces cell viability and in turn protein production. This review focuses on the association between ER stress and processes that affect protein production and secretion. The processes mediated by ER stress, including inhibition of global protein translation, chaperone protein production, degradation of misfolded proteins, DNA repair, and protein secretion, impact recombinant protein production. Recombinant protein production can be reduced by ER stress through increased autophagy and protein degradation, reduced protein secretion, and reduced DDR response.
Collapse
Affiliation(s)
- R. Chauncey Splichal
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - Kevin Chen
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - S. Patrick Walton
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - Christina Chan
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, MI, USA
- Department of Computer Science and Engineering, Michigan State University, MI, USA
- Institute for Quantitative Health Science and Engineering, Division of Medical Devices, Michigan State University, MI, USA
| |
Collapse
|
2
|
Jakhar N, Prabhakant A, Krishnan M. Mapping the recognition pathway of cyclobutane pyrimidine dimer in DNA by Rad4/XPC. Nucleic Acids Res 2023; 51:10132-10146. [PMID: 37757853 PMCID: PMC10602858 DOI: 10.1093/nar/gkad730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023] Open
Abstract
UV radiation-induced DNA damages have adverse effects on genome integrity and cellular function. The most prevalent UV-induced DNA lesion is the cyclobutane pyrimidine dimer (CPD), which can cause skin disorders and cancers in humans. Rad4/XPC is a damage sensing protein that recognizes and repairs CPD lesions with high fidelity. However, the molecular mechanism of how Rad4/XPC interrogates CPD lesions remains elusive. Emerging viewpoints indicate that the association of Rad4/XPC with DNA, the insertion of a lesion-sensing β-hairpin of Rad4/XPC into the lesion site and the flipping of CPD's partner bases (5'-dA and 3'-dA) are essential for damage recognition. Characterizing these slow events is challenging due to their infrequent occurrence on molecular time scales. Herein, we have used enhanced sampling and molecular dynamics simulations to investigate the mechanism and energetics of lesion recognition by Rad4/XPC, considering multiple plausible pathways between the crystal structure of the Rad4-DNA complex and nine intermediate states. Our results shed light on the most likely sequence of events, their potential coupling and energetics. Upon association, Rad4 and DNA form an encounter complex in which CPD and its partner bases remain in the duplex and the BHD3 β-hairpin is yet to be inserted into the lesion site. Subsequently, sequential base flipping occurs, with the flipping of the 5'-dA base preceding that of the 3'-dA base, followed by the insertion of the BHD3 β-hairpin into the lesion site. The results presented here have significant implications for understanding the molecular basis of UV-related skin disorders and cancers and for paving the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Nikhil Jakhar
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology, Gachibowli, Hyderabad 500032, Telangana, India
| | - Akshay Prabhakant
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology, Gachibowli, Hyderabad 500032, Telangana, India
| | - Marimuthu Krishnan
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology, Gachibowli, Hyderabad 500032, Telangana, India
| |
Collapse
|
3
|
Jeong YER, Kung RW, Bykowski J, Deak TK, Wetmore SD. Effect of Guanine Adduct Size, Shape, and Linker Type on the Conformation of Adducted DNA: A DFT and Molecular Dynamics Study. J Phys Chem B 2023; 127:9035-9049. [PMID: 37831812 DOI: 10.1021/acs.jpcb.3c04864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
DNA is damaged through various exogenous sources (e.g., automobile exhaust, tobacco smoke, and processed foods), which can yield diverse C8-dG bulky aryl adducts. Adducts are known to induce structural changes to DNA that can lead to various biological outcomes, ranging from cell death to diseases such as cancer. Unfortunately, the relationship between the chemical composition of the damaged product, the adducted DNA structure, and the biological consequences is not well understood, which limits the development of disease detection and prevention strategies. The present study uses density functional theory (DFT) calculations and quintuplicate 1 μs molecular dynamics (MD) simulations to characterize the structure of DNA containing 21 model C8-dG adducts that systematically differ in size (phenyl to pyrenyl), shape (α (2,3), β (3,4) fusion, or ring substitution), and nucleobase-aryl group linkage (N, O, and C-linked). DFT calculations reveal that the inherent structural features of the G nucleobase adducts are impacted by linker type and bulky moiety shape, but not size, with the conformational flexibility reducing with α-ring fusion and linker composition as N > O > C. These structural properties are maintained in nucleoside models, which also reveal an increased propensity for anti-to-syn rotation about the glycosidic bond with N < O < C linker type. Although these diverse chemical features do not influence the global structure of adducted DNA, the adducts differentially impact the conformation local to the adducted site, including the relative populations of structures with the bulky moiety in the major groove (B conformer) and intercalated (stacked) into the helix (S conformer). Specifically, while the smallest phenyl adducts favor the B conformation and the largest pyrenyl-derived adducts stabilize the S conformation, the B/S ratio decreases with an increase in ring size and N > O > C linker composition. The shape and size (length) of the adduct can further finetune the B/S ratio, with β-fused naphthyl or α-fused phenanthryl N-linked adducts and O or C-linked adducts containing ring substitution increasing the prevalence of the S adducted DNA conformation. Overall, this work uncovers the significant effect of bulky moiety size and linker type, as well as the lesser impact of aryl group shape, on adducted DNA structure, which suggests differential replication and repair outcomes, and thereby represents an important step toward rationalizing connections between the structure and biological consequences of diverse DNA adducts.
Collapse
Affiliation(s)
- Ye Eun Rebecca Jeong
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Ryan W Kung
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Janelle Bykowski
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Trinity K Deak
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
4
|
Zebian A, El-Dor M, Shaito A, Mazurier F, Rezvani HR, Zibara K. XPC multifaceted roles beyond DNA damage repair: p53-dependent and p53-independent functions of XPC in cell fate decisions. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108400. [PMID: 35690409 DOI: 10.1016/j.mrrev.2021.108400] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 06/15/2023]
Abstract
Xeroderma pigmentosum group C protein (XPC) acts as a DNA damage recognition factor for bulky adducts and as an initiator of global genome nucleotide excision repair (GG-NER). Novel insights have shown that the role of XPC is not limited to NER, but is also implicated in DNA damage response (DDR), as well as in cell fate decisions upon stress. Moreover, XPC has a proteolytic role through its interaction with p53 and casp-2S. XPC is also able to determine cellular outcomes through its interaction with downstream proteins, such as p21, ARF, and p16. XPC interactions with effector proteins may drive cells to various fates such as apoptosis, senescence, or tumorigenesis. In this review, we explore XPC's involvement in different molecular pathways in the cell and suggest that XPC can be considered not only as a genomic caretaker and gatekeeper but also as a tumor suppressor and cellular-fate decision maker. These findings envisage that resistance to cell death, induced by DNA-damaging therapeutics, in highly prevalent P53-deficent tumors might be overcome through new therapeutic approaches that aim to activate XPC in these tumors. Moreover, this review encourages care providers to consider XPC status in cancer patients before chemotherapy in order to improve the chances of successful treatment and enhance patients' survival.
Collapse
Affiliation(s)
- Abir Zebian
- University of Bordeaux, INSERM U1035, BMGIC, Bordeaux, France; PRASE, Lebanese University, Beirut, Lebanon
| | | | - Abdullah Shaito
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | | | | | - Kazem Zibara
- PRASE, Lebanese University, Beirut, Lebanon; Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
5
|
Kung RW, Deak TK, Griffith-Salik CA, Takyi NA, Wetmore SD. Impact of DNA Adduct Size, Number, and Relative Position on the Toxicity of Aromatic Amines: A Molecular Dynamics Case Study of ANdG- and APdG-Containing DNA Duplexes. J Chem Inf Model 2021; 61:2313-2327. [PMID: 33977716 DOI: 10.1021/acs.jcim.1c00202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human exposure to aromatic amines (AAs) can result in carcinogenic DNA adducts. To complement previous work geared toward understanding the mutagenicity of AA-derived adducts, which has almost exclusively studied (monoadducted) DNA containing a single lesion, the present work provides the first in-depth comparison of the structure of monoadducted and diadducted DNA duplexes. Specifically, molecular dynamics (MD) simulations were initially performed on DNA containing the nonmutagenic single-ringed N-(deoxyguanosin-8-yl)-aniline (ANdG) or the mutagenic four-ringed N-(deoxyguanosin-8-yl)-1-aminopyrene (APdG) lesion at G1, G2, or G3 in the AA deletion hotspot (5'-G1G2CG3CC) in the anti or syn glycosidic orientation (B/S duplex conformation). Subsequently, diadducted strands were assessed that span each combination of damaged sites (G1G2 (nearest neighbors), G2G3 (next-nearest neighbors), and G1G3 (two intervening nucleotides)) and anti/syn lesion glycosidic orientations. Despite other N-linked C8-dG adducts exhibiting sequence dependence conformational heterogeneity, a single ANdG or APdG lesion induces helical conformational homogeneity that is exclusively controlled by aryl moiety size. However, the preferred damaged DNA conformation can change upon the addition of a second adduct depending on lesion separation, with neighboring lesions stabilizing a nonmutagenic conformation and next-nearest damaged sites stabilizing a promutagenic conformation regardless of adduct size. As a result, diadducted DNA is found to adopt conformations that are unfavored for the corresponding monoadducted system, pointing to differential replication and repair outcomes for diadducted DNA compared to those for monoadducted DNA. Thus, although the toxicity of monoadducted DNA is most significantly dictated by lesion size, the toxicity can increase or decrease upon a second damaging event depending on lesion size and relative position. Overall, our work adds the number of lesions and their spatial separation to the growing list of factors that determine the structure and biological outcomes of adducted DNA.
Collapse
Affiliation(s)
- Ryan W Kung
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada
| | - Trinity K Deak
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada
| | - Cassidy A Griffith-Salik
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada
| | - Nathania A Takyi
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
6
|
Kolbanovskiy M, Aharonoff A, Sales AH, Geacintov NE, Shafirovich V. Remarkable Enhancement of Nucleotide Excision Repair of a Bulky Guanine Lesion in a Covalently Closed Circular DNA Plasmid Relative to the Same Linearized Plasmid. Biochemistry 2020; 59:2842-2848. [PMID: 32786887 DOI: 10.1021/acs.biochem.0c00441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The excision of DNA lesions by human nucleotide excision repair (NER) has been extensively studied in human cell extracts. Employing DNA duplexes with fewer than 200 bp containing a single bulky, benzo[a]pyrene-derived guanine lesion (B[a]P-dG), the NER yields are typically on the order of ∼5-10%, or less. Remarkably, the NER yield is enhanced by a factor of ∼6 when the B[a]P-dG lesion is embedded in a covalently closed circular pUC19NN plasmid (contour length of 2686 bp) rather than in the same plasmid linearized by a restriction enzyme with the B[a]P-dG adduct positioned at the 945th nucleotide counted from the 5'-end of the linearized DNA molecules. Furthermore, the NER yield in the circular pUC19NN plasmid is ∼9 times greater than in a short 147-mer DNA duplex with the B[a]P-dG adduct positioned in the middle. Although the NER factors responsible for these differences were not explicitly identified here, we hypothesize that the initial DNA damage sensor XPC-RAD23B is a likely candidate; it is known to search for DNA lesions by a constrained one-dimensional search mechanism [Cheon, N. Y., et al. (2019) Nucleic Acids Res. 47, 8337-8347], and our results are consistent with the notion that it dissociates more readily from the blunt ends than from the inner regions of linear DNA duplexes, thus accounting for the remarkable enhancement in NER yields associated with the single B[a]P-dG adduct embedded in covalently closed circular plasmids.
Collapse
Affiliation(s)
- Marina Kolbanovskiy
- Department of Chemistry, New York University, 31 Washington Place, New York, New York 10003-5180, United States
| | - Abraham Aharonoff
- Department of Chemistry, New York University, 31 Washington Place, New York, New York 10003-5180, United States
| | - Ana Helena Sales
- Department of Chemistry, New York University, 31 Washington Place, New York, New York 10003-5180, United States
| | - Nicholas E Geacintov
- Department of Chemistry, New York University, 31 Washington Place, New York, New York 10003-5180, United States
| | - Vladimir Shafirovich
- Department of Chemistry, New York University, 31 Washington Place, New York, New York 10003-5180, United States
| |
Collapse
|
7
|
Scheffold A, Baig AH, Chen Z, von Löhneysen SE, Becker F, Morita Y, Avila AI, Groth M, Lechel A, Schmid F, Kraus JM, Kestler HA, Stilgenbauer S, Philipp M, Burkhalter MD. Elevated Hedgehog activity contributes to attenuated DNA damage responses in aged hematopoietic cells. Leukemia 2019; 34:1125-1134. [PMID: 31728056 PMCID: PMC7214262 DOI: 10.1038/s41375-019-0641-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/04/2019] [Accepted: 11/03/2019] [Indexed: 01/13/2023]
Abstract
Accumulation of DNA damage and myeloid-skewed differentiation characterize aging of the hematopoietic system, yet underlying mechanisms remain incompletely understood. Here, we show that aging hematopoietic progenitor cells particularly of the myeloid branch exhibit enhanced resistance to bulky DNA lesions—a relevant type of DNA damage induced by toxins such as cancer drugs or endogenous aldehydes. We identified aging-associated activation of the Hedgehog (Hh) pathway to be connected to this phenotype. Inhibition of Hh signaling reverts DNA damage tolerance and DNA damage-resistant proliferation in aged hematopoietic progenitors. Vice versa, elevating Hh activity in young hematopoietic progenitors is sufficient to impair DNA damage responses. Altogether, these findings provide experimental evidence for aging-associated increases in Hh activity driving DNA damage tolerance in myeloid progenitors and myeloid-skewed differentiation. Modulation of Hh activity could thus be explored as a therapeutic strategy to prevent DNA damage tolerance, myeloid skewing, and disease development in the aging hematopoietic system.
Collapse
Affiliation(s)
- Annika Scheffold
- Department of Internal Medicine III, University Hospital Ulm, 89081, Ulm, Germany
| | - Ali H Baig
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany
| | - Zhiyang Chen
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany
| | | | - Friedrich Becker
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany
| | - Yohei Morita
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany
| | - Alush I Avila
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany
| | - Marco Groth
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany
| | - André Lechel
- Department of Internal Medicine I, University Hospital Ulm, 89081, Ulm, Germany
| | - Florian Schmid
- Institute of Medical Systems Biology, Ulm University, 89081, Ulm, Germany
| | - Johann M Kraus
- Institute of Medical Systems Biology, Ulm University, 89081, Ulm, Germany
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, 89081, Ulm, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, University Hospital Ulm, 89081, Ulm, Germany
| | - Melanie Philipp
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany.,Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomics, University of Tübingen, 72074, Tübingen, Germany
| | - Martin D Burkhalter
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany. .,Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomics, University of Tübingen, 72074, Tübingen, Germany.
| |
Collapse
|
8
|
Brickner JR, Townley BA, Mosammaparast N. Intersections between transcription-coupled repair and alkylation damage reversal. DNA Repair (Amst) 2019; 81:102663. [PMID: 31326362 DOI: 10.1016/j.dnarep.2019.102663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The response to DNA damage intersects with many other physiological processes in the cell, such as DNA replication, chromatin remodeling, and the cell cycle. Certain damaging lesions, such as UV-induced pyrimidine dimers, also strongly block RNA polymerases, necessitating the coordination of the repair mechanism with remodeling of the elongating transcriptional machinery, in a process called transcription-coupled nucleotide excision repair (TC-NER). This pathway is typically not thought to be engaged with smaller lesions such as base alkylation. However, recent work has uncovered the potential for shared molecular components between the cellular response to alkylation and UV damage. Here, we review our current understanding of the alkylation damage response and its impacts on RNA biogenesis. We give particular attention to the Activating Signal Cointegrator Complex (ASCC), which plays important roles in the transcriptional response during UV damage as well as alkylation damage reversal, and intersects with trichothiodystrophy, an inherited disease associated with TC-NER.
Collapse
Affiliation(s)
- Joshua R Brickner
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Brittany A Townley
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
9
|
Sugasawa K. Mechanism and regulation of DNA damage recognition in mammalian nucleotide excision repair. DNA Repair (Amst) 2019; 45:99-138. [DOI: 10.1016/bs.enz.2019.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Mu H, Geacintov NE, Broyde S, Yeo JE, Schärer OD. Molecular basis for damage recognition and verification by XPC-RAD23B and TFIIH in nucleotide excision repair. DNA Repair (Amst) 2018; 71:33-42. [PMID: 30174301 DOI: 10.1016/j.dnarep.2018.08.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Global genome nucleotide excision repair (GG-NER) is the main pathway for the removal of bulky lesions from DNA and is characterized by an extraordinarily wide substrate specificity. Remarkably, the efficiency of lesion removal varies dramatically and certain lesions escape repair altogether and are therefore associated with high levels of mutagenicity. Central to the multistep mechanism of damage recognition in NER is the sensing of lesion-induced thermodynamic and structural alterations of DNA by the XPC-RAD23B protein and the verification of the damage by the transcription/repair factor TFIIH. Additional factors contribute to the process: UV-DDB, for the recognition of certain UV-induced lesions in particular in the context of chromatin, while the XPA protein is believed to have a role in damage verification and NER complex assembly. Here we consider the molecular mechanisms that determine repair efficiency in GG-NER based on recent structural, computational, biochemical, cellular and single molecule studies of XPC-RAD23B and its yeast ortholog Rad4. We discuss how the actions of XPC-RAD23B are integrated with those of other NER proteins and, based on recent high-resolution structures of TFIIH, present a structural model of how XPC-RAD23B and TFIIH cooperate in damage recognition and verification.
Collapse
Affiliation(s)
- Hong Mu
- Department of Biology, New York University, New York, NY 10003, USA
| | | | - Suse Broyde
- Department of Biology, New York University, New York, NY 10003, USA
| | - Jung-Eun Yeo
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea; Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| |
Collapse
|
11
|
Kung RW, Sharma P, Wetmore SD. Effect of Size and Shape of Nitrogen-Containing Aromatics on Conformational Preferences of DNA Containing Damaged Guanine. J Chem Inf Model 2018; 58:1415-1425. [PMID: 29923712 DOI: 10.1021/acs.jcim.8b00238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ryan W. Kung
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Purshotam Sharma
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
12
|
Polyvalent Proteins, a Pervasive Theme in the Intergenomic Biological Conflicts of Bacteriophages and Conjugative Elements. J Bacteriol 2017; 199:JB.00245-17. [PMID: 28559295 PMCID: PMC5512222 DOI: 10.1128/jb.00245-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/17/2017] [Indexed: 12/29/2022] Open
Abstract
Intense biological conflicts between prokaryotic genomes and their genomic parasites have resulted in an arms race in terms of the molecular “weaponry” deployed on both sides. Using a recursive computational approach, we uncovered a remarkable class of multidomain proteins with 2 to 15 domains in the same polypeptide deployed by viruses and plasmids in such conflicts. Domain architectures and genomic contexts indicate that they are part of a widespread conflict strategy involving proteins injected into the host cell along with parasite DNA during the earliest phase of infection. Their unique feature is the combination of domains with highly disparate biochemical activities in the same polypeptide; accordingly, we term them polyvalent proteins. Of the 131 domains in polyvalent proteins, a large fraction are enzymatic domains predicted to modify proteins, target nucleic acids, alter nucleotide signaling/metabolism, and attack peptidoglycan or cytoskeletal components. They further contain nucleic acid-binding domains, virion structural domains, and 40 novel uncharacterized domains. Analysis of their architectural network reveals both pervasive common themes and specialized strategies for conjugative elements and plasmids or (pro)phages. The themes include likely processing of multidomain polypeptides by zincin-like metallopeptidases and mechanisms to counter restriction or CRISPR/Cas systems and jump-start transcription or replication. DNA-binding domains acquired by eukaryotes from such systems have been reused in XPC/RAD4-dependent DNA repair and mitochondrial genome replication in kinetoplastids. Characterization of the novel domains discovered here, such as RNases and peptidases, are likely to aid in the development of new reagents and elucidation of the spread of antibiotic resistance. IMPORTANCE This is the first report of the widespread presence of large proteins, termed polyvalent proteins, predicted to be transmitted by genomic parasites such as conjugative elements, plasmids, and phages during the initial phase of infection along with their DNA. They are typified by the presence of multiple domains with disparate activities combined in the same protein. While some of these domains are predicted to assist the invasive element in replication, transcription, or protection of their DNA, several are likely to target various host defense systems or modify the host to favor the parasite's life cycle. Notably, DNA-binding domains from these systems have been transferred to eukaryotes, where they have been incorporated into DNA repair and mitochondrial genome replication systems.
Collapse
|
13
|
Sugasawa K. Molecular mechanisms of DNA damage recognition for mammalian nucleotide excision repair. DNA Repair (Amst) 2016; 44:110-117. [PMID: 27264556 DOI: 10.1016/j.dnarep.2016.05.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
For faithful DNA repair, it is crucial for cells to locate lesions precisely within the vast genome. In the mammalian global genomic nucleotide excision repair (NER) pathway, this difficult task is accomplished through multiple steps, in which the xeroderma pigmentosum group C (XPC) protein complex plays a central role. XPC senses the presence of oscillating 'normal' bases in the DNA duplex, and its binding properties contribute to the extremely broad substrate specificity of NER. Unlike XPC, which acts as a versatile sensor of DNA helical distortion, the UV-damaged DNA-binding protein (UV-DDB) is more specialized, recognizing UV-induced photolesions and facilitating recruitment of XPC. Recent single-molecule analyses and structural studies have advanced our understanding of how UV-DDB finds its targets, particularly in the context of chromatin. After XPC binds DNA, it is necessary to verify the presence of damage in order to avoid potentially deleterious incisions at damage-free sites. Accumulating evidence suggests that XPA and the helicase activity of transcription factor IIH (TFIIH) cooperate to verify abnormalities in DNA chemistry. This chapter reviews recent findings about the mechanisms underlying the efficiency, versatility, and accuracy of NER.
Collapse
Affiliation(s)
- Kaoru Sugasawa
- Biosignal Research Center, Kobe University, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
14
|
Nucleotide Excision Repair and Vitamin D--Relevance for Skin Cancer Therapy. Int J Mol Sci 2016; 17:372. [PMID: 27058533 PMCID: PMC4848881 DOI: 10.3390/ijms17040372] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 02/06/2023] Open
Abstract
Ultraviolet (UV) radiation is involved in almost all skin cancer cases, but on the other hand, it stimulates the production of pre-vitamin D3, whose active metabolite, 1,25-dihydroxyvitamin D3 (1,25VD3), plays important physiological functions on binding with its receptor (vitamin D receptor, VDR). UV-induced DNA damages in the form of cyclobutane pyrimidine dimers or (6-4)-pyrimidine-pyrimidone photoproducts are frequently found in skin cancer and its precursors. Therefore, removing these lesions is essential for the prevention of skin cancer. As UV-induced DNA damages are repaired by nucleotide excision repair (NER), the interaction of 1,25VD3 with NER components can be important for skin cancer transformation. Several studies show that 1,25VD3 protects DNA against damage induced by UV, but the exact mechanism of this protection is not completely clear. 1,25VD3 was also shown to affect cell cycle regulation and apoptosis in several signaling pathways, so it can be considered as a potential modulator of the cellular DNA damage response, which is crucial for mutagenesis and cancer transformation. 1,25VD3 was shown to affect DNA repair and potentially NER through decreasing nitrosylation of DNA repair enzymes by NO overproduction by UV, but other mechanisms of the interaction between 1,25VD3 and NER machinery also are suggested. Therefore, the array of NER gene functioning could be analyzed and an appropriate amount of 1.25VD3 could be recommended to decrease UV-induced DNA damage important for skin cancer transformation.
Collapse
|
15
|
Babu V, Schumacher B. A C. elegans homolog for the UV-hypersensitivity syndrome disease gene UVSSA. DNA Repair (Amst) 2016; 41:8-15. [PMID: 27043179 DOI: 10.1016/j.dnarep.2016.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/27/2016] [Accepted: 03/24/2016] [Indexed: 01/27/2023]
Abstract
The transcription-coupled repair pathway (TC-NER) plays a vital role in removing transcription-blocking DNA lesions, particularly UV-induced damage. Clinical symptoms of the two TC-NER-deficiency syndromes, Cockayne syndrome (CS) and UV-hypersensitivity syndrome (UVSS) are dissimilar and the underlying molecular mechanism causing this difference in disease pathology is not yet clearly understood. UV-stimulated scaffold protein A (UVSSA) has been identified recently as a new causal gene for UVSS. Here we describe a functional homolog of the human UVSSA gene in the nematode Caenorhabditis elegans, uvs-1 (UVSSA-like-1). Mutations in uvs-1 render the animals hypersensitive to UV-B irradiation and transcription-blocking lesion-inducing illudin-M, similar to mutations in TC-NER deficient mutants. Moreover, we demonstrate that TC-NER factors including UVS-1 are required for the survival of the adult animals after UV-treatment.
Collapse
Affiliation(s)
- Vipin Babu
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Research Center and Centre for Molecular Medicine (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Research Center and Centre for Molecular Medicine (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany.
| |
Collapse
|
16
|
Svetec N, Cridland JM, Zhao L, Begun DJ. The Adaptive Significance of Natural Genetic Variation in the DNA Damage Response of Drosophila melanogaster. PLoS Genet 2016; 12:e1005869. [PMID: 26950216 PMCID: PMC4780809 DOI: 10.1371/journal.pgen.1005869] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/22/2016] [Indexed: 01/15/2023] Open
Abstract
Despite decades of work, our understanding of the distribution of fitness effects of segregating genetic variants in natural populations remains largely incomplete. One form of selection that can maintain genetic variation is spatially varying selection, such as that leading to latitudinal clines. While the introduction of population genomic approaches to understanding spatially varying selection has generated much excitement, little successful effort has been devoted to moving beyond genome scans for selection to experimental analysis of the relevant biology and the development of experimentally motivated hypotheses regarding the agents of selection; it remains an interesting question as to whether the vast majority of population genomic work will lead to satisfying biological insights. Here, motivated by population genomic results, we investigate how spatially varying selection in the genetic model system, Drosophila melanogaster, has led to genetic differences between populations in several components of the DNA damage response. UVB incidence, which is negatively correlated with latitude, is an important agent of DNA damage. We show that sensitivity of early embryos to UVB exposure is strongly correlated with latitude such that low latitude populations show much lower sensitivity to UVB. We then show that lines with lower embryo UVB sensitivity also exhibit increased capacity for repair of damaged sperm DNA by the oocyte. A comparison of the early embryo transcriptome in high and low latitude embryos provides evidence that one mechanism of adaptive DNA repair differences between populations is the greater abundance of DNA repair transcripts in the eggs of low latitude females. Finally, we use population genomic comparisons of high and low latitude samples to reveal evidence that multiple components of the DNA damage response and both coding and non-coding variation likely contribute to adaptive differences in DNA repair between populations.
Collapse
Affiliation(s)
- Nicolas Svetec
- Department of Evolution and Ecology, University of California, Davis, Davis, California, United States of America
| | - Julie M. Cridland
- Department of Evolution and Ecology, University of California, Davis, Davis, California, United States of America
| | - Li Zhao
- Department of Evolution and Ecology, University of California, Davis, Davis, California, United States of America
| | - David J. Begun
- Department of Evolution and Ecology, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
17
|
Abstract
Nucleotide excision repair (NER) is a highly versatile and efficient DNA repair process, which is responsible for the removal of a large number of structurally diverse DNA lesions. Its extreme broad substrate specificity ranges from DNA damages formed upon exposure to ultraviolet radiation to numerous bulky DNA adducts induced by mutagenic environmental chemicals and cytotoxic drugs used in chemotherapy. Defective NER leads to serious diseases, such as xeroderma pigmentosum (XP). Eight XP complementation groups are known of which seven (XPA-XPG) are caused by mutations in genes involved in the NER process. The eighth gene, XPV, codes for the DNA polymerase ɳ, which replicates through DNA lesions in a process called translesion synthesis (TLS). Over the past decade, detailed structural information of these DNA repair proteins involved in eukaryotic NER and TLS have emerged. These structures allow us now to understand the molecular mechanism of the NER and TLS processes in quite some detail and we have begun to understand the broad substrate specificity of NER. In this review, we aim to highlight recent advances in the process of damage recognition and repair as well as damage tolerance by the XP proteins.
Collapse
|
18
|
Menzies GE, Reed SH, Brancale A, Lewis PD. Base damage, local sequence context and TP53 mutation hotspots: a molecular dynamics study of benzo[a]pyrene induced DNA distortion and mutability. Nucleic Acids Res 2015; 43:9133-46. [PMID: 26400171 PMCID: PMC4627081 DOI: 10.1093/nar/gkv910] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/26/2015] [Indexed: 12/22/2022] Open
Abstract
The mutational pattern for the TP53 tumour suppressor gene in lung tumours differs to other cancer types by having a higher frequency of G:C>T:A transversions. The aetiology of this differing mutation pattern is still unknown. Benzo[a]pyrene,diol epoxide (BPDE) is a potent cigarette smoke carcinogen that forms guanine adducts at TP53 CpG mutation hotspot sites including codons 157, 158, 245, 248 and 273. We performed molecular modelling of BPDE-adducted TP53 duplex sequences to determine the degree of local distortion caused by adducts which could influence the ability of nucleotide excision repair. We show that BPDE adducted codon 157 has greater structural distortion than other TP53 G:C>T:A hotspot sites and that sequence context more distal to adjacent bases must influence local distortion. Using TP53 trinucleotide mutation signatures for lung cancer in smokers and non-smokers we further show that codons 157 and 273 have the highest mutation probability in smokers. Combining this information with adduct structural data we predict that G:C>T:A mutations at codon 157 in lung tumours of smokers are predominantly caused by BPDE. Our results provide insight into how different DNA sequence contexts show variability in DNA distortion at mutagen adduct sites that could compromise DNA repair at well characterized cancer related mutation hotspots.
Collapse
Affiliation(s)
- Georgina E Menzies
- Institute of Life Science, Swansea University School of Medicine, Swansea University, SA2 8PP, UK
| | - Simon H Reed
- Institute of Cancer & Genetics, School of Medicine, Cardiff University, CF14 4XN, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmacology, Cardiff University, CF10 3NB, UK
| | - Paul D Lewis
- Institute of Life Science, Swansea University School of Medicine, Swansea University, SA2 8PP, UK
| |
Collapse
|
19
|
Mu H, Geacintov NE, Zhang Y, Broyde S. Recognition of Damaged DNA for Nucleotide Excision Repair: A Correlated Motion Mechanism with a Mismatched cis-syn Thymine Dimer Lesion. Biochemistry 2015; 54:5263-7. [PMID: 26270861 PMCID: PMC4748833 DOI: 10.1021/acs.biochem.5b00840] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
Mammalian
global genomic nucleotide excision repair requires lesion
recognition by XPC, whose detailed binding mechanism remains to be
elucidated. Here we have delineated the dynamic molecular pathway
and energetics of lesion-specific and productive binding by the Rad4/yeast
XPC lesion recognition factor, as it forms the open complex [Min,
J. H., and Pavletich, N. P. (2007) Nature 449, 570–575;
Chen, X., et al. (2015) Nat. Commun. 6, 5849] that
is required for excision. We investigated extensively a cis-syn cyclobutane pyrimidine dimer in mismatched duplex DNA, using high-level
computational approaches. Our results delineate a preferred correlated
motion mechanism, which provides for the first time an atomistic description
of the sequence of events as Rad4 productively binds to the damaged
DNA.
Collapse
Affiliation(s)
| | | | - Yingkai Zhang
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai 200062, China
| | | |
Collapse
|
20
|
Kathuria P, Sharma P, Wetmore SD. Adenine versus guanine DNA adducts of aristolochic acids: role of the carcinogen-purine linkage in the differential global genomic repair propensity. Nucleic Acids Res 2015; 43:7388-97. [PMID: 26175048 PMCID: PMC4551933 DOI: 10.1093/nar/gkv701] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/29/2015] [Indexed: 12/29/2022] Open
Abstract
Computational modeling is employed to provide a plausible structural explanation for the experimentally-observed differential global genome repair (GGR) propensity of the ALII-N(2)-dG and ALII-N(6)-dA DNA adducts of aristolochic acid II. Our modeling studies suggest that an intrinsic twist at the carcinogen-purine linkage of ALII-N(2)-dG induces lesion site structural perturbations and conformational heterogeneity of damaged DNA. These structural characteristics correlate with the relative repair propensities of AA-adducts, where GGR recognition occurs for ALII-N(2)-dG, but is evaded for intrinsically planar ALII-N(6)-dA that minimally distorts DNA and restricts the conformational flexibility of the damaged duplex. The present analysis on the ALII adduct model systems will inspire future experimental studies on these adducts, and thereby may extend the list of structural factors that directly correlate with the propensity for GGR recognition.
Collapse
Affiliation(s)
- Preetleen Kathuria
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada
| | - Purshotam Sharma
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada
| |
Collapse
|
21
|
Anderson DW, McKeown AN, Thornton JW. Intermolecular epistasis shaped the function and evolution of an ancient transcription factor and its DNA binding sites. eLife 2015; 4:e07864. [PMID: 26076233 PMCID: PMC4500092 DOI: 10.7554/elife.07864] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/13/2015] [Indexed: 02/07/2023] Open
Abstract
Complexes of specifically interacting molecules, such as transcription factor proteins (TFs) and the DNA response elements (REs) they recognize, control most biological processes, but little is known concerning the functional and evolutionary effects of epistatic interactions across molecular interfaces. We experimentally characterized all combinations of genotypes in the joint protein-DNA sequence space defined by an historical transition in TF-RE specificity that occurred some 500 million years ago in the DNA-binding domain of an ancient steroid hormone receptor. We found that rampant epistasis within and between the two molecules was essential to specific TF-RE recognition and to the evolution of a novel TF-RE complex with unique derived specificity. Permissive and restrictive epistatic mutations across the TF-RE interface opened and closed potential evolutionary paths accessible by the other, making the evolution of each molecule contingent on its partner's history and allowing a molecular complex with novel specificity to evolve.
Collapse
Affiliation(s)
- Dave W Anderson
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
| | - Alesia N McKeown
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
| | - Joseph W Thornton
- Department of Ecology and Evolution, University of Chicago, Chicago, United States
| |
Collapse
|
22
|
Kitsera N, Gasteiger K, Lühnsdorf B, Allgayer J, Epe B, Carell T, Khobta A. Cockayne syndrome: varied requirement of transcription-coupled nucleotide excision repair for the removal of three structurally different adducts from transcribed DNA. PLoS One 2014; 9:e94405. [PMID: 24713864 PMCID: PMC3979923 DOI: 10.1371/journal.pone.0094405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/14/2014] [Indexed: 12/04/2022] Open
Abstract
Hereditary defects in the transcription-coupled nucleotide excision repair (TC-NER) pathway of damaged DNA cause severe neurodegenerative disease Cockayne syndrome (CS), however the origin and chemical nature of the underlying DNA damage had remained unknown. To find out, to which degree the structural properties of DNA lesions determine the extent of transcription arrest in human CS cells, we performed quantitative host cell reactivation analyses of expression vectors containing various synthetic adducts. We found that a single 3-(deoxyguanosin-N2-yl)-2-acetylaminofluorene adduct (dG(N2)-AAF) constitutes an unsurmountable obstacle to transcription in both CS-A and CS-B cells and is removed exclusively by the CSA- and CSB-dependent pathway. In contrast, contribution of the CS proteins to the removal of two other transcription-blocking DNA lesions – N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG(C8)-AAF) and cyclobutane thymine-thymine (TT) dimer – is only minor (TT dimer) or none (dG(C8)-AAF). The unique properties of dG(N2)-AAF identify this adduct as a prototype for a new class of DNA lesions that escape the alternative global genome repair and could be critical for the CS pathogenesis.
Collapse
Affiliation(s)
- Nataliya Kitsera
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Karola Gasteiger
- Department of Chemistry and Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany
| | - Bork Lühnsdorf
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Julia Allgayer
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Thomas Carell
- Department of Chemistry and Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany
| | - Andriy Khobta
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Mainz, Germany
- * E-mail:
| |
Collapse
|
23
|
Amato NJ, Wang Y. Epimeric 2-deoxyribose lesions: Products from the improper chemical repair of 2-deoxyribose radicals. Chem Res Toxicol 2014; 27:470-9. [PMID: 24517165 PMCID: PMC4002128 DOI: 10.1021/tx400430g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
Genomic
integrity is constantly challenged by DNA damaging agents
such as reactive oxygen species (ROS). Consequently, DNA damage can
compromise the fidelity and efficiency of essential DNA metabolic
processes, including replication and transcription, which may contribute
significantly to the etiology of many human diseases. Here, we review
one family of DNA lesions, the epimeric 2-deoxyribose lesions, which
arise from the improper chemical repair of the 2-deoxyribose radicals.
Unlike most other DNA lesions, the epimeric 2-deoxyribose lesions
are indistinguishable from their corresponding unmodified nucleosides
in both molecular mass and chemical reactivity. We placed our emphasis
of discussion on the formation of these lesions, their impact on the
structure and stability of duplex DNA, their biological consequences,
their potential therapeutic relevance, and future research directions
about these modified nucleosides.
Collapse
Affiliation(s)
- Nicholas J Amato
- Department of Chemistry, University of California , 900 University Avenue, Riverside, California 92521, United States
| | | |
Collapse
|
24
|
Petruseva I, Evdokimov AN, Lavrik OI. Molecular mechanism of global genome nucleotide excision repair. Acta Naturae 2014; 6:23-34. [PMID: 24772324 PMCID: PMC3999463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Nucleotide excision repair (NER) is a multistep process that recognizes and eliminates a wide spectrum of damage causing significant distortions in the DNA structure, such as UV-induced damage and bulky chemical adducts. The consequences of defective NER are apparent in the clinical symptoms of individuals affected by three disorders associated with reduced NER capacities: xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD). These disorders have in common increased sensitivity to UV irradiation, greatly elevated cancer incidence (XP), and multi-system immunological and neurological disorders. The eucaryotic NER system eliminates DNA damage by the excision of 24-32 nt single-strand oligonucleotides from a damaged strand, followed by restoration of an intact double helix by DNA repair synthesis and DNA ligation. About 30 core polypeptides are involved in the entire repair process. NER consists of two pathways distinct in initial damage sensor proteins: transcription-coupled repair (TC-NER) and global genome repair (GG-NER). The article reviews current knowledge on the molecular mechanisms underlying damage recognition and its elimination from mammalian DNA.
Collapse
Affiliation(s)
- I.O. Petruseva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, prosp. Akad. Lavrentyeva, 8, 630090, Novosibirsk, Russia
| | - A. N. Evdokimov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, prosp. Akad. Lavrentyeva, 8, 630090, Novosibirsk, Russia
- Altai State University, Ministry of Education and Science of the Russian Federation, prosp. Lenina, 61, 656049, Barnaul, Russia
| | - O. I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, prosp. Akad. Lavrentyeva, 8, 630090, Novosibirsk, Russia
- Altai State University, Ministry of Education and Science of the Russian Federation, prosp. Lenina, 61, 656049, Barnaul, Russia
- Novosibirsk State University, Ministry of Education and Science of the Russian Federation, Pirogova Str., 2, 630090, Novosibirsk, Russia
| |
Collapse
|
25
|
Choudhury S, Dyba M, Pan J, Roy R, Chung FL. Repair kinetics of acrolein- and (E)-4-hydroxy-2-nonenal-derived DNA adducts in human colon cell extracts. Mutat Res 2013; 751-752:15-23. [PMID: 24113140 DOI: 10.1016/j.mrfmmm.2013.09.004] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/30/2013] [Accepted: 09/20/2013] [Indexed: 11/15/2022]
Abstract
ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) play a role in the pathogenesis of colon cancer. Upon oxidation, PUFAs generate α,β-unsaturated aldehydes or enals, such as acrolein (Acr) and (E)-4-hydroxy-2-nonenal (HNE), which can form cyclic adducts of deoxyguanosine (Acr-dG and HNE-dG, respectively) in DNA. Both Acr-dG and HNE-dG adducts have been detected in human and animal tissues and are potentially mutagenic and carcinogenic. In vivo levels of Acr-dG in DNA are at least two orders of magnitude higher than those of HNE-dG. In addition to the facile reaction with Acr, the higher levels of Acr-dG than HNE-dG in vivo may be due to a lower rate of repair. Previous studies have shown that HNE-dG adducts are repaired by the NER pathway (Choudhury et al. [42]). We hypothesize that Acr-dG adducts are repaired at a slower rate than HNE-dG and that HNE-dG in DNA may influence the repair of Acr-dG. In this study, using a DNA repair synthesis assay and a LC-MS/MS method, we showed that Acr-dG in a plasmid DNA is repaired by NER proteins, but it is repaired at a much slower rate than HNE-dG in human colon cell extracts, and the slow repair of Acr-dG is likely due to poor recognition/excision of the lesions in DNA. Furthermore, using a plasmid DNA containing both adducts we found the repair of Acr-dG is significantly inhibited by HNE-dG, however, the repair of HNE-dG is not much affected by Acr-dG. This study demonstrates that the NER repair efficiencies of the two major structurally-related in vivo cyclic DNA adducts from lipid oxidation vary greatly. More importantly, the repair of Acr-dG can be significantly retarded by the presence of HNE-dG in DNA. Therefore, this study provides a mechanistic explanation for the higher levels of Acr-dG than HNE-dG observed in tissue DNA.
Collapse
Affiliation(s)
- Sujata Choudhury
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
Nucleotide excision repair (NER) is the main pathway used by mammals to remove bulky DNA lesions such as those formed by UV light, environmental mutagens, and some cancer chemotherapeutic adducts from DNA. Deficiencies in NER are associated with the extremely skin cancer-prone inherited disorder xeroderma pigmentosum. Although the core NER reaction and the factors that execute it have been known for some years, recent studies have led to a much more detailed understanding of the NER mechanism, how NER operates in the context of chromatin, and how it is connected to other cellular processes such as DNA damage signaling and transcription. This review emphasizes biochemical, structural, cell biological, and genetic studies since 2005 that have shed light on many aspects of the NER pathway.
Collapse
Affiliation(s)
- Orlando D Schärer
- Department of Pharmacological Sciences and Department of Chemistry, Stony Brook University, Stony Brook, New York 11974-3400
| |
Collapse
|
27
|
Abstract
SIGNIFICANCE Oxidative DNA damage is repaired by multiple, overlapping DNA repair pathways. Accumulating evidence supports the hypothesis that nucleotide excision repair (NER), besides base excision repair (BER), is also involved in neutralizing oxidative DNA damage. RECENT ADVANCES NER includes two distinct sub-pathways: transcription-coupled NER (TC-NER) and global genome repair (GG-NER). The CSA and CSB proteins initiate the onset of TC-NER. Recent findings show that not only CSB, but also CSA is involved in the repair of oxidative DNA lesions, in the nucleus as well as in mitochondria. The XPG protein is also of importance for the removal of oxidative DNA lesions, as it may enhance the initial step of BER. Substantial evidence exists that support a role for XPC in NER and BER. XPC deficiency not only results in decreased repair of oxidative lesions, but has also been linked to disturbed redox homeostasis. CRITICAL ISSUES The role of NER proteins in the regulation of the cellular response to oxidative (mitochondrial and nuclear) DNA damage may be the underlying mechanism of the pathology of accelerated aging in Cockayne syndrome patients, a driving force for internal cancer development in XP-A and XP-C patients, and a contributor to the mixed exhibited phenotypes of XP-G patients. FUTURE DIRECTIONS Accumulating evidence indicates that DNA repair factors can be involved in multiple DNA repair pathways. However, the distinct detailed mechanism and consequences of these additional functions remain to be elucidated and can possibly shine a light on clinically related issues.
Collapse
Affiliation(s)
- Joost P M Melis
- Leiden University Medical Center, Department of Toxicogenetics, Leiden, The Netherlands
| | | | | |
Collapse
|
28
|
Nishi R, Sakai W, Tone D, Hanaoka F, Sugasawa K. Structure-function analysis of the EF-hand protein centrin-2 for its intracellular localization and nucleotide excision repair. Nucleic Acids Res 2013; 41:6917-29. [PMID: 23716636 PMCID: PMC3737541 DOI: 10.1093/nar/gkt434] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Centrin-2 is an evolutionarily conserved, calmodulin-related protein, which is involved in multiple cellular functions including centrosome regulation and nucleotide excision repair (NER) of DNA. Particularly to exert the latter function, complex formation with the XPC protein, the pivotal NER damage recognition factor, is crucial. Here, we show that the C-terminal half of centrin-2, containing two calcium-binding EF-hand motifs, is necessary and sufficient for both its localization to the centrosome and interaction with XPC. In XPC-deficient cells, nuclear localization of overexpressed centrin-2 largely depends on co-overexpression of XPC, and mutational analyses of the C-terminal domain suggest that XPC and the major binding partner in the centrosome share a common binding surface on the centrin-2 molecule. On the other hand, the N-terminal domain of centrin-2 also contains two EF-hand motifs but shows only low-binding affinity for calcium ions. Although the N-terminal domain is dispensable for enhancement of the DNA damage recognition activity of XPC, it contributes to augmenting rather weak physical interaction between XPC and XPA, another key factor involved in NER. These results suggest that centrin-2 may have evolved to bridge two protein factors, one with high affinity and the other with low affinity, thereby allowing delicate regulation of various biological processes.
Collapse
Affiliation(s)
- Ryotaro Nishi
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo 657-8501, Japan
| | | | | | | | | |
Collapse
|
29
|
Yeo JE, Khoo A, Fagbemi AF, Schärer OD. The efficiencies of damage recognition and excision correlate with duplex destabilization induced by acetylaminofluorene adducts in human nucleotide excision repair. Chem Res Toxicol 2012; 25:2462-8. [PMID: 23088760 DOI: 10.1021/tx3003033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nucleotide excision repair (NER) removes lesions caused by environmental mutagens or UV light from DNA. A hallmark of NER is the extraordinarily wide substrate specificity, raising the question of how one set of proteins is able to recognize structurally diverse lesions. Two key features of good NER substrates are that they are bulky and thermodynamically destabilize DNA duplexes. To understand what the limiting step in damage recognition in NER is, we set out to test the hypothesis that there is a correlation of the degree of thermodynamic destabilization induced by a lesion, binding affinity to the damage recognition protein XPC-RAD23B, and overall NER efficiency. We chose to use acetylaminofluorene (AAF) and aminofluorene (AF) adducts at the C8 position of guanine in different positions within the NarI (GGCGCC) sequence, as it is known that the structures of the duplexes depend on the position of the lesion in this context. We found that the efficiency of NER and the binding affinity of the damage recognition factor XPC-RAD23B correlated with the thermodynamic destabilization induced by the lesion. Our study is the first systematic analysis correlating these three parameters and supports the idea that initial damage recognition by XPC-RAD23B is a key rate-limiting step in NER.
Collapse
Affiliation(s)
- Jung-Eun Yeo
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
30
|
Research on plants for the understanding of diseases of nuclear and mitochondrial origin. J Biomed Biotechnol 2012; 2012:836196. [PMID: 22690124 PMCID: PMC3368588 DOI: 10.1155/2012/836196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/28/2012] [Indexed: 11/17/2022] Open
Abstract
Different model organisms, such as Escherichia coli, Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, mouse, cultured human cell lines, among others, were used to study the mechanisms of several human diseases. Since human genes and proteins have been structurally and functionally conserved in plant organisms, the use of plants, especially Arabidopsis thaliana, as a model system to relate molecular defects to clinical disorders has recently increased. Here, we briefly review our current knowledge of human diseases of nuclear and mitochondrial origin and summarize the experimental findings of plant homologs implicated in each process.
Collapse
|
31
|
Sidorenko VS, Yeo JE, Bonala RR, Johnson F, Schärer OD, Grollman AP. Lack of recognition by global-genome nucleotide excision repair accounts for the high mutagenicity and persistence of aristolactam-DNA adducts. Nucleic Acids Res 2012; 40:2494-505. [PMID: 22121226 PMCID: PMC3315299 DOI: 10.1093/nar/gkr1095] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/01/2011] [Accepted: 11/03/2011] [Indexed: 01/14/2023] Open
Abstract
Exposure to aristolochic acid (AA), a component of Aristolochia plants used in herbal remedies, is associated with chronic kidney disease and urothelial carcinomas of the upper urinary tract. Following metabolic activation, AA reacts with dA and dG residues in DNA to form aristolactam (AL)-DNA adducts. These mutagenic lesions generate a unique TP53 mutation spectrum, dominated by A:T to T:A transversions with mutations at dA residues located almost exclusively on the non-transcribed strand. We determined the level of AL-dA adducts in human fibroblasts treated with AA to determine if this marked strand bias could be accounted for by selective resistance to global-genome nucleotide excision repair (GG-NER). AL-dA adduct levels were elevated in cells deficient in GG-NER and transcription-coupled NER, but not in XPC cell lines lacking GG-NER only. In vitro, plasmids containing a single AL-dA adduct were resistant to the early recognition and incision steps of NER. Additionally, the NER damage sensor, XPC-RAD23B, failed to specifically bind to AL-DNA adducts. However, placing AL-dA in mismatched sequences promotes XPC-RAD23B binding and renders this adduct susceptible to NER, suggesting that specific structural features of this adduct prevent processing by NER. We conclude that AL-dA adducts are not recognized by GG-NER, explaining their high mutagenicity and persistence in target tissues.
Collapse
Affiliation(s)
- Victoria S. Sidorenko
- Department of Pharmacological Sciences and Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jung-Eun Yeo
- Department of Pharmacological Sciences and Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Radha R. Bonala
- Department of Pharmacological Sciences and Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Francis Johnson
- Department of Pharmacological Sciences and Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Orlando D. Schärer
- Department of Pharmacological Sciences and Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Arthur P. Grollman
- Department of Pharmacological Sciences and Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
32
|
Cai Y, Geacintov NE, Broyde S. Nucleotide excision repair efficiencies of bulky carcinogen-DNA adducts are governed by a balance between stabilizing and destabilizing interactions. Biochemistry 2012; 51:1486-99. [PMID: 22242833 DOI: 10.1021/bi201794x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The nucleotide excision repair (NER) machinery, the primary defense against cancer-causing bulky DNA lesions, is surprisingly inefficient in recognizing certain mutagenic DNA adducts and other forms of DNA damage. However, the biochemical basis of resistance to repair remains poorly understood. To address this problem, we have investigated a series of intercalated DNA-adenine lesions derived from carcinogenic polycyclic aromatic hydrocarbon (PAH) diol epoxide metabolites that differ in their response to the mammalian NER apparatus. These stereoisomeric PAH-derived adenine lesions represent ideal model systems for elucidating the effects of structural, dynamic, and thermodynamic properties that determine the recognition of these bulky DNA lesions by NER factors. The objective of this work was to gain a systematic understanding of the relation between aromatic ring topology and adduct stereochemistry with existing experimental NER efficiencies and known thermodynamic stabilities of the damaged DNA duplexes. For this purpose, we performed 100 ns molecular dynamics studies of the lesions embedded in identical double-stranded 11-mer sequences. Our studies show that, depending on topology and stereochemistry, stabilizing PAH-DNA base van der Waals stacking interactions can compensate for destabilizing distortions caused by these lesions that can, in turn, cause resistance to NER. The results suggest that the balance between helix stabilizing and destabilizing interactions between the adduct and nearby DNA residues can account for the variability of NER efficiencies observed in this class of PAH-DNA lesions.
Collapse
Affiliation(s)
- Yuqin Cai
- Department of Biology, New York University, New York, New York 10003, United States
| | | | | |
Collapse
|
33
|
Melis JP, Luijten M, Mullenders LH, van Steeg H. The role of XPC: implications in cancer and oxidative DNA damage. Mutat Res 2011; 728:107-17. [PMID: 21763452 PMCID: PMC3203325 DOI: 10.1016/j.mrrev.2011.07.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 01/14/2023]
Abstract
The accumulation of DNA damage is a slow but hazardous phenomenon that may lead to cell death, accelerated aging features and cancer. One of the most versatile and important defense mechanisms against the accumulation of DNA damage is nucleotide excision repair (NER), in which the Xeroderma pigmentosum group C (XPC) protein plays a prominent role. NER can be divided into global genome repair (GG-NER) and transcription coupled repair (TC-NER). XPC is a key factor in GG-NER where it functions in DNA damage recognition and after which the repair machinery is recruited to eliminate the DNA damage. Defective XPC functioning has been shown to result in a cancer prone phenotype, in human as well as in mice. Mutation accumulation in XPC deficient mice is accelerated and increased, resulting in an increased tumor incidence. More recently XPC has also been linked to functions outside of NER since XPC deficient mice show a divergent tumor spectrum compared to other NER deficient mouse models. Multiple in vivo and in vitro experiments indicate that XPC appears to be involved in the initiation of several DNA damage-induced cellular responses. XPC seems to function in the removal of oxidative DNA damage, redox homeostasis and cell cycle control. We hypothesize that this combination of increased oxidative DNA damage sensitivity, disturbed redox homeostasis together with inefficient cell cycle control mechanisms are causes of the observed increased cancer susceptibility in oxygen exposed tissues. Such a phenotype is absent in other NER-deficient mice, including Xpa.
Collapse
Affiliation(s)
- Joost P.M. Melis
- National Institute of Public Health and the Environment, Laboratory for Health Protection Research, Bilthoven, The Netherlands
- Leiden University Medical Center, Department of Toxicogenetics, Leiden, The Netherlands
| | - Mirjam Luijten
- National Institute of Public Health and the Environment, Laboratory for Health Protection Research, Bilthoven, The Netherlands
| | - Leon H.F. Mullenders
- Leiden University Medical Center, Department of Toxicogenetics, Leiden, The Netherlands
| | - Harry van Steeg
- National Institute of Public Health and the Environment, Laboratory for Health Protection Research, Bilthoven, The Netherlands
- Leiden University Medical Center, Department of Toxicogenetics, Leiden, The Netherlands
| |
Collapse
|
34
|
Sugasawa K. Multiple DNA damage recognition factors involved in mammalian nucleotide excision repair. BIOCHEMISTRY (MOSCOW) 2011; 76:16-23. [PMID: 21568836 DOI: 10.1134/s0006297911010044] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The nucleotide excision repair (NER) subpathway operating throughout the mammalian genome is a versatile DNA repair system that can remove a wide variety of helix-distorting base lesions. This system contributes to prevention of blockage of DNA replication by the lesions, thereby suppressing mutagenesis and carcinogenesis. Therefore, it is of fundamental significance to understand how the huge genome can be surveyed for occurrence of a small number of lesions. Recent studies have revealed that this difficult task seems to be accomplished through sequential actions of multiple DNA damage recognition factors, including UV-DDB, XPC, and TFIIH. Notably, these factors adopt completely different strategies to recognize DNA damage. XPC detects disruption and/or destabilization of the base pairing, which ensures a broad spectrum of substrate specificity for global genome NER. In contrast, UV-DDB directly recognizes particular types of lesions, such as UV-induced photoproducts, thereby vitally recruiting XPC as well as further extending the substrate specificity. After DNA binding by XPC, moreover, the helicase activity associated with TFIIH scans a DNA strand to make a final search for the presence of aberrant chemical modifications of DNA. The combination of these different strategies makes a crucial contribution to simultaneously achieving efficiency, accuracy, and versatility of the entire repair system.
Collapse
Affiliation(s)
- K Sugasawa
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Hyogo, Japan.
| |
Collapse
|
35
|
Multiple roles of ubiquitination in the control of nucleotide excision repair. Mech Ageing Dev 2011; 132:355-65. [DOI: 10.1016/j.mad.2011.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/10/2011] [Accepted: 03/16/2011] [Indexed: 11/19/2022]
|
36
|
Liu Y, Reeves D, Kropachev K, Cai Y, Ding S, Kolbanovskiy M, Kolbanovskiy A, Bolton JL, Broyde S, Van Houten B, Geacintov NE. Probing for DNA damage with β-hairpins: similarities in incision efficiencies of bulky DNA adducts by prokaryotic and human nucleotide excision repair systems in vitro. DNA Repair (Amst) 2011; 10:684-96. [PMID: 21741328 PMCID: PMC3212938 DOI: 10.1016/j.dnarep.2011.04.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nucleotide excision repair (NER) is an important prokaryotic and eukaryotic defense mechanism that removes a large variety of structurally distinct lesions in cellular DNA. While the proteins involved are completely different, the mode of action of these two repair systems is similar, involving a cut-and-patch mechanism in which an oligonucleotide sequence containing the lesion is excised. The prokaryotic and eukaryotic NER damage-recognition factors have common structural features of β-hairpin intrusion between the two DNA strands at the site of the lesion. In the present study, we explored the hypothesis that this common β-hairpin intrusion motif is mirrored in parallel NER incision efficiencies in the two systems. We have utilized human HeLa cell extracts and the prokaryotic UvrABC proteins to determine their relative NER incision efficiencies. We report here comparisons of relative NER efficiencies with a set of stereoisomeric DNA lesions derived from metabolites of benzo[a]pyrene and equine estrogens in different sequence contexts, utilizing 21 samples. We found a general qualitative trend toward similar relative NER incision efficiencies for ∼65% of these substrates; the other cases deviate mostly by ∼30% or less from a perfect correlation, although several more distant outliers are also evident. This resemblance is consistent with the hypothesis that lesion recognition through β-hairpin insertion, a common feature of the two systems, is facilitated by local thermodynamic destabilization induced by the lesions in both cases. In the case of the UvrABC system, varying the nature of the UvrC endonuclease, while maintaining the same UvrA/B proteins, can markedly affect the relative incision efficiencies. These observations suggest that, in addition to recognition involving the initial modified duplexes, downstream events involving UvrC can also play a role in distinguishing and processing different lesions in prokaryotic NER.
Collapse
Affiliation(s)
- Yang Liu
- Chemistry Department, New York University, 31 Washington Pl., New York, NY 10003
| | - Dara Reeves
- Chemistry Department, New York University, 31 Washington Pl., New York, NY 10003
| | - Konstantin Kropachev
- Chemistry Department, New York University, 31 Washington Pl., New York, NY 10003
| | - Yuqin Cai
- Biology Department, New York University, 31 Washington Pl., New York, NY 10003
| | - Shuang Ding
- Biology Department, New York University, 31 Washington Pl., New York, NY 10003
| | - Marina Kolbanovskiy
- Chemistry Department, New York University, 31 Washington Pl., New York, NY 10003
| | | | - Judith L. Bolton
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612
| | - Suse Broyde
- Biology Department, New York University, 31 Washington Pl., New York, NY 10003
| | - Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Cancer Institute, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
37
|
Reeves DA, Mu H, Kropachev K, Cai Y, Ding S, Kolbanovskiy A, Kolbanovskiy M, Chen Y, Krzeminski J, Amin S, Patel DJ, Broyde S, Geacintov NE. Resistance of bulky DNA lesions to nucleotide excision repair can result from extensive aromatic lesion-base stacking interactions. Nucleic Acids Res 2011; 39:8752-64. [PMID: 21764772 PMCID: PMC3203604 DOI: 10.1093/nar/gkr537] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The molecular basis of resistance to nucleotide excision repair (NER) of certain bulky DNA lesions is poorly understood. To address this issue, we have studied NER in human HeLa cell extracts of two topologically distinct lesions, one derived from benzo[a]pyrene (10R-(+)-cis-anti-B[a]P-N(2)-dG), and one from the food mutagen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (C8-dG-PhIP), embedded in either full or 'deletion' duplexes (the partner nucleotide opposite the lesion is missing). All lesions adopt base-displaced intercalated conformations. Both full duplexes are thermodynamically destabilized and are excellent substrates of NER. However, the identical 10R-(+)-cis-anti-B[a]P-N(2)-dG adduct in the deletion duplex dramatically enhances the thermal stability of this duplex, and is completely resistant to NER. Molecular dynamics simulations show that B[a]P lesion-induced distortion/destabilization is compensated by stabilizing aromatic ring system-base stacking interactions. In the C8-dG-PhIP-deletion duplex, the smaller size of the aromatic ring system and the mobile phenyl ring are less stabilizing and yield moderate NER efficiency. Thus, a partner nucleotide opposite the lesion is not an absolute requirement for the successful initiation of NER. Our observations are consistent with the hypothesis that carcinogen-base stacking interactions, which contribute to the local DNA stability, can prevent the successful insertion of an XPC β-hairpin into the duplex and the normal recruitment of other downstream NER factors.
Collapse
Affiliation(s)
- Dara A Reeves
- Department of Chemistry, Department of Biology, New York University, New York, NY 10003, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang Y, Rohde LH, Wu H. Involvement of nucleotide excision and mismatch repair mechanisms in double strand break repair. Curr Genomics 2011; 10:250-8. [PMID: 19949546 PMCID: PMC2709936 DOI: 10.2174/138920209788488544] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 03/28/2009] [Accepted: 03/30/2009] [Indexed: 11/25/2022] Open
Abstract
Living organisms are constantly threatened by environmental DNA-damaging agents, including UV and ionizing radiation (IR). Repair of various forms of DNA damage caused by IR is normally thought to follow lesion-specific repair pathways with distinct enzymatic machinery. DNA double strand break is one of the most serious kinds of damage induced by IR, which is repaired through double strand break (DSB) repair mechanisms, including homologous recombination (HR) and non-homologous end joining (NHEJ). However, recent studies have presented increasing evidence that various DNA repair pathways are not separated, but well interlinked. It has been suggested that non-DSB repair mechanisms, such as Nucleotide Excision Repair (NER), Mismatch Repair (MMR) and cell cycle regulation, are highly involved in DSB repairs. These findings revealed previously unrecognized roles of various non-DSB repair genes and indicated that a successful DSB repair requires both DSB repair mechanisms and non-DSB repair systems. One of our recent studies found that suppressed expression of non-DSB repair genes, such as XPA, RPA and MLH1, influenced the yield of IR induced micronuclei formation and/or chromosome aberrations, suggesting that these genes are highly involved in DSB repair and DSB-related cell cycle arrest, which reveals new roles for these gene products in the DNA repair network. In this review, we summarize current progress on the function of non-DSB repair-related proteins, especially those that participate in NER and MMR pathways, and their influence on DSB repair. In addition, we present our developing view that the DSB repair mechanisms are more complex and are regulated by not only the well known HR/NHEJ pathways, but also a systematically coordinated cellular network.
Collapse
Affiliation(s)
- Ye Zhang
- NASA Johnson Space Center, Houston, Texas 77058
| | | | | |
Collapse
|
39
|
|
40
|
Earley JN, Turchi JJ. Interrogation of nucleotide excision repair capacity: impact on platinum-based cancer therapy. Antioxid Redox Signal 2011; 14:2465-77. [PMID: 20812782 PMCID: PMC3096502 DOI: 10.1089/ars.2010.3369] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 08/20/2010] [Accepted: 09/02/2010] [Indexed: 12/23/2022]
Abstract
DNA repair is essential for routine monitoring and repair of damage imparted to our genetic material by exposure to endogenous and exogenous carcinogens, including reactive oxygen species, UV light, and chemicals such as those found in cigarette smoke. Without DNA repair pathways, the continual assault on our DNA would be highly mutagenic and the risk of cancer increased. Paradoxically, the same pathways that help prevent cancer development are detrimental to the efficacy of DNA-damaging cancer therapeutics such as cisplatin. Recent studies demonstrate the inverse relationship between DNA repair capacity and efficacy of platinum-based chemotherapeutics: increased DNA repair capacity leads to resistance, while decreased capacity leads to increased sensitivities. Cisplatin's cytotoxic effects are mediated by formation of intrastrand DNA crosslinks, which are predominantly repaired via the nucleotide excision repair (NER) pathway. In an effort to personalize the treatment of cancers based on DNA repair capacity, we developed an ELISA-based assay to measure NER activity accurately and reproducibly as a prognostic for platinum-based treatments. Here we present an overview of DNA repair and its link to cancer and therapeutics. We also present data demonstrating the ability to detect the proteins of the pre-incision complex within the NER pathway from cell and tissue extracts.
Collapse
Affiliation(s)
- Jennifer N. Earley
- Department of Medicine/Hematology and Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | - John J. Turchi
- Department of Medicine/Hematology and Oncology, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
41
|
Wolski SC, Kuper J, Kisker C. The XPD helicase: XPanDing archaeal XPD structures to get a grip on human DNA repair. Biol Chem 2011; 391:761-5. [PMID: 20482310 DOI: 10.1515/bc.2010.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Xeroderma pigmentosum complementation group D protein (XPD) is an iron-sulfur cluster containing 5'-3' helicase and, in humans, part of the transcription factor TFIIH. TFIIH is involved in nucleotide excision repair as well as in transcription initiation. Recently, three different groups have reported the structures of archaeal XPDs. All structures revealed a four-domain organization with two RecA-like domains, an Arch domain and an iron-sulfur cluster domain. It was possible to rationalize several of the mutations in the human XPD gene that lead to one of the three severe diseases xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. The different structures are compared and disease-related mutations are discussed.
Collapse
Affiliation(s)
- Stefanie C Wolski
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, D-97080 Würzburg, Germany
| | | | | |
Collapse
|
42
|
Rastogi RP, Richa, Kumar A, Tyagi MB, Sinha RP. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids 2010; 2010:592980. [PMID: 21209706 PMCID: PMC3010660 DOI: 10.4061/2010/592980] [Citation(s) in RCA: 669] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/15/2010] [Accepted: 09/28/2010] [Indexed: 11/20/2022] Open
Abstract
DNA is one of the prime molecules, and its stability is of utmost importance for proper functioning and existence of all living systems. Genotoxic chemicals and radiations exert adverse effects on genome stability. Ultraviolet radiation (UVR) (mainly UV-B: 280-315 nm) is one of the powerful agents that can alter the normal state of life by inducing a variety of mutagenic and cytotoxic DNA lesions such as cyclobutane-pyrimidine dimers (CPDs), 6-4 photoproducts (6-4PPs), and their Dewar valence isomers as well as DNA strand breaks by interfering the genome integrity. To counteract these lesions, organisms have developed a number of highly conserved repair mechanisms such as photoreactivation, base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). Additionally, double-strand break repair (by homologous recombination and nonhomologous end joining), SOS response, cell-cycle checkpoints, and programmed cell death (apoptosis) are also operative in various organisms with the expense of specific gene products. This review deals with UV-induced alterations in DNA and its maintenance by various repair mechanisms.
Collapse
Affiliation(s)
- Rajesh P Rastogi
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | | | | | | | | |
Collapse
|
43
|
Krasikova YS, Rechkunova NI, Maltseva EA, Petruseva IO, Lavrik OI. Localization of xeroderma pigmentosum group A protein and replication protein A on damaged DNA in nucleotide excision repair. Nucleic Acids Res 2010; 38:8083-94. [PMID: 20693538 PMCID: PMC3001049 DOI: 10.1093/nar/gkq649] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The interaction of xeroderma pigmentosum group A protein (XPA) and replication protein A (RPA) with damaged DNA in nucleotide excision repair (NER) was studied using model dsDNA and bubble-DNA structure with 5-{3-[6-(carboxyamido-fluoresceinyl)amidocapromoyl]allyl}-dUMP lesions in one strand and containing photoreactive 5-iodo-dUMP residues in defined positions. Interactions of XPA and RPA with damaged and undamaged DNA strands were investigated by DNA–protein photocrosslinking and gel shift analysis. XPA showed two maximums of crosslinking intensities located on the 5′-side from a lesion. RPA mainly localized on undamaged strand of damaged DNA duplex and damaged bubble-DNA structure. These results presented for the first time the direct evidence for the localization of XPA in the 5′-side of the lesion and suggested the key role of XPA orientation in conjunction with RPA binding to undamaged strand for the positioning of the NER preincision complex. The findings supported the mechanism of loading of the heterodimer consisting of excision repair cross-complementing group 1 and xeroderma pigmentosum group F proteins by XPA on the 5′-side from the lesion before damaged strand incision. Importantly, the proper orientation of XPA and RPA in the stage of preincision was achieved in the absence of TFIIH and XPG.
Collapse
Affiliation(s)
- Yuliya S Krasikova
- Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
| | | | | | | | | |
Collapse
|
44
|
Shuck SC, Turchi JJ. Targeted inhibition of Replication Protein A reveals cytotoxic activity, synergy with chemotherapeutic DNA-damaging agents, and insight into cellular function. Cancer Res 2010; 70:3189-98. [PMID: 20395205 PMCID: PMC2882864 DOI: 10.1158/0008-5472.can-09-3422] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Targeting uncontrolled cell proliferation and resistance to DNA-damaging chemotherapeutics with a single agent has significant potential in cancer treatment. Replication protein A (RPA), the eukaryotic ssDNA-binding protein, is essential for genomic maintenance and stability via roles in both DNA replication and repair. We have identified a novel small molecule that inhibits the in vitro and cellular ssDNA-binding activity of RPA, prevents cell cycle progression, induces cytotoxicity, and increases the efficacy of chemotherapeutic DNA-damaging agents. These results provide new insight into the mechanism of RPA-ssDNA interactions in chromosome maintenance and stability. This represents the first molecularly targeted eukaryotic DNA-binding inhibitor and reveals the utility of targeting a protein-DNA interaction as a therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Sarah C. Shuck
- Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - John J. Turchi
- Departments of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
- Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
45
|
Goosen N. Scanning the DNA for damage by the nucleotide excision repair machinery. DNA Repair (Amst) 2010; 9:593-6. [PMID: 20335079 DOI: 10.1016/j.dnarep.2010.02.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 02/12/2010] [Accepted: 02/24/2010] [Indexed: 11/28/2022]
Abstract
Damage detection during nucleotide excision repair requires the action of multiple proteins that probe the DNA for different parameters like disruption of basepairing, DNA bendability and presence of chemical modifications. In a recent study it has been shown that two of these probing events can be spatially separated on the DNA. Upon initial binding of the XPC protein to a region with disrupted basepairing a complex of XPC, TFIIH and XPA is translocated to a CPD lesion even when this chemical modification is located up to 160 nucleotides from the mispaired region.
Collapse
Affiliation(s)
- Nora Goosen
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
46
|
Sugasawa K, Akagi JI, Nishi R, Iwai S, Hanaoka F. Two-step recognition of DNA damage for mammalian nucleotide excision repair: Directional binding of the XPC complex and DNA strand scanning. Mol Cell 2009; 36:642-53. [PMID: 19941824 DOI: 10.1016/j.molcel.2009.09.035] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 08/03/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
Abstract
For mammalian nucleotide excision repair (NER), DNA lesions are recognized in at least two steps involving detection of unpaired bases by the XPC protein complex and the subsequent verification of injured bases. Although lesion verification is important to ensure high damage discrimination and the accuracy of the repair system, it has been unclear how this is accomplished. Here, we show that damage verification involves scanning of a DNA strand from the site where XPC is initially bound. Translocation by the NER machinery exhibits a 5'-to-3' directionality, strongly suggesting involvement of the XPD helicase, a component of TFIIH. Furthermore, the initial orientation of XPC binding is crucial in that only one DNA strand is selected to search for the presence of lesions. Our results dissect the intricate molecular mechanism of NER and provide insights into a strategy for mammalian cells to survey large genomes to detect DNA damage.
Collapse
Affiliation(s)
- Kaoru Sugasawa
- Biosignal Research Center, Kobe University, Rokkodai, Nada-ku, Hyogo, Japan.
| | | | | | | | | |
Collapse
|
47
|
Petruseva IO, Tikhanovich IS, Maltseva EA, Safronov IV, Lavrik OI. Photoactivated DNA analogs of substrates of the nucleotide excision repair system and their interaction with proteins of NER-competent HeLa cell extract. BIOCHEMISTRY (MOSCOW) 2009; 74:491-501. [PMID: 19538122 DOI: 10.1134/s0006297909050034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Photoactivated DNA analogs of nucleotide excision repair (NER) substrates have been created that are 48-mer duplexes containing in internal positions pyrimidine nucleotides with bulky substituents imitating lesions. Fluorochloroazidopyridyl, anthracenyl, and pyrenyl groups introduced using spacer fragments at 4N and 5C positions of dCMP and dUMP were used as model damages. The gel retardation and photo-induced affinity modification techniques were used to study the interaction of modified DNA duplexes with proteins in HeLa cell extracts containing the main components of NER protein complexes. It is shown that the extract proteins selectively bind and form covalent adducts with the model DNA. The efficiency and selectivity of protein modification depend on the structure of used DNA duplex. Apparent molecular masses of extract proteins, undergoing modification, were estimated. Mutual influence of simultaneous presence of extract proteins and recombinant NER protein factors XPC-HR23B, XPA, and RPA on interaction with the model DNA was analyzed. The extract proteins and RPA competed for interaction with photoactive DNA, mutually decreasing the yield of modification products. In this case the presence of extract proteins at particular concentrations tripled the increase in yield of covalent adducts formed by XPC. It is supposed that the XPC subunit interaction with DNA is stimulated by endogenous HR23B present in the extract. Most likely, the mutual effect of XPA and extract proteins stimulating formation of covalent adducts with model DNA is due to the interaction of XPA with endogenous RPA of the extract. A technique based on the use of specific antibodies revealed that RPA present in the extract is a modification target for photoactive DNA imitating NER substrates.
Collapse
Affiliation(s)
- I O Petruseva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | | | | | | | | |
Collapse
|
48
|
Abstract
The genome of all organisms is constantly attacked by a variety of environmental and endogenous mutagens that cause cell death, apoptosis, senescence, genetic diseases and cancer. To mitigate these deleterious endpoints of genotoxic reactions, living organisms have evolved one or more mechanisms for repairing every type of naturally occurring DNA lesion. For example, double-strand breaks are rapidly religated by non-homologous end-joining. Homologous recombination is used for the high-fidelity repair of interstrand cross-links, double-strand breaks and other DNA injuries that disrupt the replication fork. Some genotoxic lesions inflicted by alkylating agents can be repaired by direct reversal of DNA damage. The base excision repair pathway takes advantage of multiple DNA glycosylases to remove modified or incorrect bases. Finally, the nucleotide excision repair machinery provides a versatile strategy to monitor DNA quality and eliminate all forms of helix-distorting DNA lesions, including a wide diversity of carcinogen adducts. The efficiency of DNA repair responses is enhanced by their coupling to transcription and coordination with the cell cycle circuit.
Collapse
|
49
|
Wang G, Vasquez KM. Models for chromosomal replication-independent non-B DNA structure-induced genetic instability. Mol Carcinog 2009; 48:286-98. [PMID: 19123200 PMCID: PMC2766916 DOI: 10.1002/mc.20508] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Regions of genomic DNA containing repetitive nucleotide sequences can adopt a number of different structures in addition to the canonical B-DNA form: many of these non-B DNA structures are causative factors in genetic instability and human disease. Although chromosomal DNA replication through such repetitive sequences has been considered a major cause of non-B form DNA structure-induced genetic instability, it is also observed in non-proliferative tissues. In this review, we discuss putative mechanisms responsible for the mutagenesis induced by non-B DNA structures in the absence of chromosomal DNA replication.
Collapse
Affiliation(s)
- Guliang Wang
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, TX 78957
| | - Karen M. Vasquez
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, TX 78957
| |
Collapse
|
50
|
Cai Y, Patel DJ, Geacintov NE, Broyde S. Differential nucleotide excision repair susceptibility of bulky DNA adducts in different sequence contexts: hierarchies of recognition signals. J Mol Biol 2009; 385:30-44. [PMID: 18948114 PMCID: PMC2680230 DOI: 10.1016/j.jmb.2008.09.087] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 09/24/2008] [Accepted: 09/26/2008] [Indexed: 11/26/2022]
Abstract
The structural origin underlying differential nucleotide excision repair (NER) susceptibilities of bulky DNA lesions remains a challenging problem. We investigated the 10S (+)-trans-anti-[BP]-N(2)-2'-deoxyguanosine (G*) adduct in double-stranded DNA. This adduct arises from the reaction, in vitro and in vivo, of a major genotoxic metabolite of benzo[a]pyrene (BP), (+)-(7R,8S,9S,10R)-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene, with the exocyclic amino group of guanine. Removal of this lesion by the NER apparatus in cell-free extracts has been found to depend on the base sequence context in which the lesion is embedded, providing an excellent opportunity for elucidating the properties of the damaged DNA duplexes that favor NER. While the BP ring system is in the B-DNA minor groove, 5' directed along the modified strand, there are orientational distinctions that are sequence dependent and are governed by flanking amino groups [Nucleic Acids Res.35 (2007), 1555-1568]. To elucidate sequence-governed NER susceptibility, we conducted molecular dynamics simulations for the 5'-...CG*GC..., 5'-...CGG*C..., and 5'-...TCG*CT... adduct-containing duplexes. We also investigated the 5'-...CG*IC... and 5'-...CIG*C... sequences, which contain "I" (2'-deoxyinosine), with hydrogen replacing the amino group in 2'-deoxyguanosine, to further characterize the structural and dynamic roles of the flanking amino groups in the damaged duplexes. Our results pinpoint explicit roles for the amino groups in tandem GG sequences on the efficiency of NER and suggest a hierarchy of destabilizing structural features that differentially facilitate NER of the BP lesion in the sequence contexts investigated. Furthermore, combinations of several locally destabilizing features in the hierarchy, consistent with a multipartite model, may provide a relatively strong recognition signal.
Collapse
Affiliation(s)
- Yuqin Cai
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA
| | | | - Suse Broyde
- Department of Biology, New York University, New York, NY, 10003, USA
| |
Collapse
|