1
|
Tamura K, Kawabayashi T, Shikanai T, Hara-Nishimura I. Decreased Expression of a Gene Caused by a T-DNA Insertion in an Adjacent Gene in Arabidopsis. PLoS One 2016; 11:e0147911. [PMID: 26828726 PMCID: PMC4734701 DOI: 10.1371/journal.pone.0147911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/10/2016] [Indexed: 11/30/2022] Open
Abstract
ALADIN is a component of the nuclear pore complex in higher eukaryotes. An Arabidopsis knockout line that had a T-DNA insertion in the ALADIN gene was defective in plant growth and thylakoid development and had reduced photosynthetic activity resulting from lower chlorophyll accumulation. The mutation appeared to decrease the level of chloroplast RuBisCO subunits and PSBA and PGL35 proteins. Unexpectedly, the T-DNA insertion in the ALADIN gene decreased the expression of the neighboring gene PSRP5, which functions in translation in chloroplasts. The mutant phenotype was rescued by expressing PSRP5, but not by expressing ALADIN. The abnormal phenotypes were also detected in an artificial microRNA (amiRNA)-mediated PSRPS5 knockdown, but not in an amiRNA-mediated ALADIN knockdown line. Thus, users of T-DNA insertions should be aware that a T-DNA insertion in one gene can have effects on the expression of neighboring genes.
Collapse
Affiliation(s)
- Kentaro Tamura
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
2
|
Urban A, Rossier J. Genetic targeting of specific neuronal cell types in the cerebral cortex. PROGRESS IN BRAIN RESEARCH 2012; 196:163-92. [PMID: 22341326 DOI: 10.1016/b978-0-444-59426-6.00009-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Understanding the structure and function of cortical circuits requires the identification of and control over specific cell types in the cortex. To address these obstacles, recent optogenetic approaches have been developed. The capacity to activate, silence, or monitor specific cell types by combining genetics, virology, and optics will decipher the role of specific groups of neurons within circuits with a spatiotemporal resolution that overcomes standard approaches. In this review, the various strategies for selective genetic targeting of a defined neuronal population are discussed as well as the pros and cons of the use of transgenic animals and recombinant viral vectors for the expression of transgenes in a specific set of neurons.
Collapse
Affiliation(s)
- Alan Urban
- Laboratoire de Neurobiologie et Diversité Cellulaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7637, Ecole Supérieure de Physique et de Chimie Industrielles, Paris, France.
| | | |
Collapse
|
3
|
Mechanics of the IL2RA gene activation revealed by modeling and atomic force microscopy. PLoS One 2011; 6:e18811. [PMID: 21533205 PMCID: PMC3076448 DOI: 10.1371/journal.pone.0018811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 03/16/2011] [Indexed: 01/22/2023] Open
Abstract
Transcription implies recruitment of RNA polymerase II and transcription factors (TFs) by DNA melting near transcription start site (TSS). Combining atomic force microscopy and computer modeling, we investigate the structural and dynamical properties of the IL2RA promoter and identify an intrinsically negative supercoil in the PRRII region (containing Elf-1 and HMGA1 binding sites), located upstream of a curved DNA region encompassing TSS. Conformational changes, evidenced by time-lapse studies, result in the progressive positioning of curvature apex towards the TSS, likely facilitating local DNA melting. In vitro assays confirm specific binding of the General Transcription Factors (GTFs) TBP and TFIIB over TATA-TSS position, where an inhibitory nucleosome prevented preinitiation complex (PIC) formation and uncontrolled DNA melting. These findings represent a substantial advance showing, first, that the structural properties of the IL2RA promoter are encoded in the DNA sequence and second, that during the initiation process DNA conformation is dynamic and not static.
Collapse
|
4
|
Bernard V, Lecharny A, Brunaud V. Improved detection of motifs with preferential location in promoters. Genome 2011; 53:739-52. [PMID: 20924423 DOI: 10.1139/g10-042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Many transcription factor binding sites (TFBSs) involved in gene expression regulation are preferentially located relative to the transcription start site. This property is exploited in in silico prediction approaches, one of which involves studying the local overrepresentation of motifs using a sliding window to scan promoters with considerable accuracy. Nevertheless, the consequences of the choice of the sliding window size have never before been analysed. We propose an automatic adaptation of this size to each motif distribution profile. This approach allows a better characterization of the topological constraints of the motifs and the lists of genes containing them. Moreover, our approach allowed us to highlight a nonconstant frequency of occurrence of spurious motifs that could be counter-selected close to their functional area. Therefore, to improve the accuracy of in silico prediction of TFBSs and the sensitivity of the promoter cartography, we propose, in addition to automatic adaptation of window size, consideration of the nonconstant frequency of motifs in promoters.
Collapse
Affiliation(s)
- Virginie Bernard
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165 - CNRS 8114 - UEVE, 91057 Evry CEDEX, France
| | | | | |
Collapse
|
5
|
Wang CC, Tsai MF, Dai TH, Hong TM, Chan WK, Chen JJW, Yang PC. Synergistic activation of the tumor suppressor, HLJ1, by the transcription factors YY1 and activator protein 1. Cancer Res 2007; 67:4816-26. [PMID: 17510411 DOI: 10.1158/0008-5472.can-07-0504] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
HLJ1 is a novel tumor and invasion suppressor that inhibits tumorigenesis and cancer metastasis. However, the mechanism of HLJ1 activation is currently unclear. Here, we identify an enhancer segment in the HLJ1 gene at -2,125 to -1,039 bp upstream of the transcription start site. A 50-bp element between -1,492 and -1,443 bp is the minimal enhancer segment, which includes the activator protein 1 (AP-1) site (-1,457 to -1,451 bp), an essential regulatory domain that binds the transcriptional factors FosB, JunB, and JunD. Chromatin immunoprecipitation assays confirm that these AP-1 family members bind to a specific site in the HLJ1 enhancer segment in vivo. Overexpression of either YY1 at promoter or AP-1 at enhancer results in a 3-fold increase in the transcriptional activity of HLJ1. We propose a novel mechanism whereby expression of the tumor suppressor, HLJ1, is up-regulated via enhancer AP-1 binding to promoter YY1 and the coactivator, p300, through DNA bending and multiprotein complex formation. The combined expression of AP-1 and YY1 enhances HLJ1 expression by more than five times and inhibits in vitro cancer cell invasion. Elucidation of the regulatory mechanism of HLJ1 expression may facilitate the development of personalized therapy by inhibiting cancer cell proliferation, angiogenesis, and metastasis.
Collapse
Affiliation(s)
- Chi-Chung Wang
- NTU Center for Genomic Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
6
|
Liang Y, Cui J, Yang G, Leung FCC, Zhang X. Polymorphisms of 5' flanking region of chicken prolactin gene. Domest Anim Endocrinol 2006; 30:1-16. [PMID: 15970423 DOI: 10.1016/j.domaniend.2005.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 05/12/2005] [Accepted: 05/12/2005] [Indexed: 11/17/2022]
Abstract
The polymorphisms of 5' flanking region of chicken prolactin (cPRL) gene were examined in several populations of Chinese native Yuehuang, Taihe Silkie and imported White Leghorn Layer chickens. The 5' flanking regions (2638 bp) from Yuehuang, Taihe Silkie and White Leghorn chickens were subjected to sequencing analysis. Four single nucleotide polymorphisms (SNPs) were identified at position -2425(C/T), -2215(T/C), -2063(G/A) and -1967(A/G). A 24-bp indel (insertion or deletion) and a polyA length polymorphism were also identified. For the 24-bp indel locus, three genotypes (AA, AB and BB) were found in Yuehuang chickens, while only two genotypes were detected in Taihe Silkie (AB and BB) and Leghorn chickens (AA and BB). The genotype frequencies of AA, AB and BB were significantly different among the three breeds. For the polyA locus, although three genotypes (CC, CD and DD) were found, only one genotype (CC) was detected in White Leghorn chickens, while two or three genotypes were observed in Chinese native chickens. We used real-time quantitative PCR and radioimmunology assay to investigate the potential association of the 24-bp indel locus with cPRL mRNA expression, plasma cPRL and brooding behaviors, and observed that chickens with genotype AB, which are of the highest incidence of broodiness, had the highest cPRL mRNA levels, providing the possibility that this polymorphic site might be related to the broodiness in chickens via modulating the transcriptional level of cPRL gene. The dissociation among cPRL gene transcription, mRNA storage and hormone release was also observed.
Collapse
Affiliation(s)
- Yong Liang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | | | | | | | | |
Collapse
|
7
|
Florquin K, Saeys Y, Degroeve S, Rouzé P, Van de Peer Y. Large-scale structural analysis of the core promoter in mammalian and plant genomes. Nucleic Acids Res 2005; 33:4255-64. [PMID: 16049029 PMCID: PMC1181242 DOI: 10.1093/nar/gki737] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 06/10/2005] [Accepted: 07/10/2005] [Indexed: 12/19/2022] Open
Abstract
DNA encodes at least two independent levels of functional information. The first level is for encoding proteins and sequence targets for DNA-binding factors, while the second one is contained in the physical and structural properties of the DNA molecule itself. Although the physical and structural properties are ultimately determined by the nucleotide sequence itself, the cell exploits these properties in a way in which the sequence itself plays no role other than to support or facilitate certain spatial structures. In this work, we focus on these structural properties, comparing them between different organisms and assessing their ability to describe the core promoter. We prove the existence of distinct types of core promoters, based on a clustering of their structural profiles. These results indicate that the structural profiles are much conserved within plants (Arabidopsis and rice) and animals (human and mouse), but differ considerably between plants and animals. Furthermore, we demonstrate that these structural profiles can be an alternative way of describing the core promoter, in addition to more classical motif or IUPAC-based approaches. Using the structural profiles as discriminatory elements to separate promoter regions from non-promoter regions, reliable models can be built to identify core-promoter regions using a strictly computational approach.
Collapse
Affiliation(s)
- Kobe Florquin
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent UniversityTechnologiepark 927, B-9052 Ghent, Belgium
| | - Yvan Saeys
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent UniversityTechnologiepark 927, B-9052 Ghent, Belgium
| | - Sven Degroeve
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent UniversityTechnologiepark 927, B-9052 Ghent, Belgium
| | - Pierre Rouzé
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent UniversityTechnologiepark 927, B-9052 Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent UniversityTechnologiepark 927, B-9052 Ghent, Belgium
| |
Collapse
|
8
|
Dodd IB, Shearwin KE, Perkins AJ, Burr T, Hochschild A, Egan JB. Cooperativity in long-range gene regulation by the lambda CI repressor. Genes Dev 2004; 18:344-54. [PMID: 14871931 PMCID: PMC338286 DOI: 10.1101/gad.1167904] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Accepted: 12/19/2003] [Indexed: 11/24/2022]
Abstract
Effective repression of cI transcription from PRM by the bacteriophage lambda CI repressor requires binding sites (OL) located 2.4 kb from the promoter. A CI tetramer bound to OL1.OL2 interacts with a tetramer bound near PRM (OR1.OR2), looping the intervening DNA. We previously proposed that in this CI octamer:DNA complex, the distant OL3 operator and the weak OR3 operator overlapping PRM are juxtaposed so that a CI dimer at OL3 can cooperate with a CI dimer binding to OR3. Here we show that OL3 is necessary for effective repression of PRM and that the repressor at OL3 appears to interact specifically with the repressor at OR3. The OL3-CI-OR3 interaction involves the same CI interface used for short-range dimer-dimer interactions and does not occur without the other four operators. The long-range interactions were incorporated into a physicochemical model, allowing estimation of the long-range interaction energies and showing the lysogenic state to be ideally poised for CI negative autoregulation. The results establish the lambda system as a powerful tool for examining long-range gene regulatory interactions in vivo.
Collapse
Affiliation(s)
- Ian B Dodd
- Discipline of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, South Australia 5005, Australia.
| | | | | | | | | | | |
Collapse
|
9
|
Bondarenko VA, Jiang YI, Studitsky VM. Rationally designed insulator-like elements can block enhancer action in vitro. EMBO J 2003; 22:4728-37. [PMID: 12970185 PMCID: PMC212734 DOI: 10.1093/emboj/cdg468] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Insulators are DNA sequences that are likely to be involved in formation of chromatin domains, functional units of gene expression in eukaryotes. Insulators can form domain boundaries and block inappropriate action of regulatory elements (such as transcriptional enhancers) in eukaryotic nuclei. Using an in vitro system supporting enhancer action over a large distance, the enhancer-blocking insulator activity has been recapitulated in a highly purified system. The insulator-like element was constructed using a sequence-specific DNA-binding protein making stable DNA loops (lac repressor). The insulation was entirely dependent on formation of a DNA loop that topologically isolates the enhancer from the promoter. This rationally designed, inducible insulator-like element recapitulates many key properties of eukaryotic insulators observed in vivo. The data suggest novel mechanisms of enhancer and insulator action.
Collapse
Affiliation(s)
- Vladimir A Bondarenko
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Avenue, Room 5123, Detroit, MI 48201, USA
| | | | | |
Collapse
|
10
|
Rombauts S, Florquin K, Lescot M, Marchal K, Rouzé P, van de Peer Y. Computational approaches to identify promoters and cis-regulatory elements in plant genomes. PLANT PHYSIOLOGY 2003; 132:1162-76. [PMID: 12857799 PMCID: PMC167057 DOI: 10.1104/pp.102.017715] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2002] [Revised: 01/10/2003] [Accepted: 03/17/2003] [Indexed: 05/19/2023]
Abstract
The identification of promoters and their regulatory elements is one of the major challenges in bioinformatics and integrates comparative, structural, and functional genomics. Many different approaches have been developed to detect conserved motifs in a set of genes that are either coregulated or orthologous. However, although recent approaches seem promising, in general, unambiguous identification of regulatory elements is not straightforward. The delineation of promoters is even harder, due to its complex nature, and in silico promoter prediction is still in its infancy. Here, we review the different approaches that have been developed for identifying promoters and their regulatory elements. We discuss the detection of cis-acting regulatory elements using word-counting or probabilistic methods (so-called "search by signal" methods) and the delineation of promoters by considering both sequence content and structural features ("search by content" methods). As an example of search by content, we explored in greater detail the association of promoters with CpG islands. However, due to differences in sequence content, the parameters used to detect CpG islands in humans and other vertebrates cannot be used for plants. Therefore, a preliminary attempt was made to define parameters that could possibly define CpG and CpNpG islands in Arabidopsis, by exploring the compositional landscape around the transcriptional start site. To this end, a data set of more than 5,000 gene sequences was built, including the promoter region, the 5'-untranslated region, and the first introns and coding exons. Preliminary analysis shows that promoter location based on the detection of potential CpG/CpNpG islands in the Arabidopsis genome is not straightforward. Nevertheless, because the landscape of CpG/CpNpG islands differs considerably between promoters and introns on the one side and exons (whether coding or not) on the other, more sophisticated approaches can probably be developed for the successful detection of "putative" CpG and CpNpG islands in plants.
Collapse
Affiliation(s)
- Stephane Rombauts
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, B-9000 Gent, Belgium
| | | | | | | | | | | |
Collapse
|
11
|
Bondarenko VA, Liu YV, Jiang YI, Studitsky VM. Communication over a large distance: enhancers and insulators. Biochem Cell Biol 2003; 81:241-51. [PMID: 12897858 DOI: 10.1139/o03-051] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Enhancers are regulatory DNA sequences that can work over a large distance. Efficient enhancer action over a distance clearly requires special mechanisms for facilitating communication between the enhancer and its target. While the chromatin looping model can explain the majority of the observations, some recent experimental findings suggest that a chromatin scanning mechanism is used to establish the loop. These new findings help to understand the mechanism of action of the elements that can prevent enhancer-promoter communication (insulators).
Collapse
Affiliation(s)
- Vladimir A Bondarenko
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
12
|
Abstract
Members of the HMGA (a.k.a. HMGI/Y) family of 'high mobility group' (HMG) proteins participate in a wide variety of nuclear processes ranging from chromosome and chromatin mechanics to acting as architectural transcription factors that regulate the expression of numerous genes in vivo. As a consequence, they function in the cell as highly connected 'nodes' of protein-DNA and protein-protein interactions that influence a diverse array of normal biological processes including growth, proliferation, differentiation and death. The HMGA proteins, likewise, participate in pathological processes by, for example, acting as regulators of viral gene transcription and by serving as host-supplied proteins that facilitate retroviral integration. HMGA genes are bona fide proto-oncogenes that promote tumor progression and metastasis when overexpressed in cells. High constitutive HMGA protein levels are among the most consistent feature observed in all types of cancers with increasing concentrations being correlated with increasing malignancy. The intrinsic attributes that endow the HMGA proteins with these remarkable abilities are a combination of structural, biochemical and biological characteristics that are unique to these proteins. HMGA proteins have little, if any, secondary structure while free in solution but undergo disordered-to-ordered structural transitions when bound to substrates such as DNA or other proteins. Each protein contains three copies of a conserved DNA-binding peptide motif called the 'AT-hook' that preferentially binds to the minor groove of stretches of AT-rich sequence. In vivo HMGA proteins specifically interact with a large number of other proteins, most of which are transcription factors. They are also subject to many types of in vivo biochemical modifications that markedly influence their ability to interact with DNA substrates, other proteins and chromatin. And, most importantly, both the transcription of HMGA genes and the biochemical modifications of HMGA proteins are direct downstream targets of numerous signal transduction pathways making them exquisitely responsive to various environmental influences. This review covers recent advances that have contributed to our understanding of how this constellation of structural and biological features allows the HMGA proteins to serve as central 'hubs' of nuclear function.
Collapse
Affiliation(s)
- R Reeves
- Department of Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660, USA.
| |
Collapse
|
13
|
Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression. Blood 2000. [DOI: 10.1182/blood.v96.7.2323.h8002323_2323_2328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phenotype of individual hematopoietic cells, like all other differentiated mammalian cells, is determined by selective transcription of a subset of the genes encoded within the genome. This overview summarizes the recent evidence that transcriptional regulation at the level of individual cells is best described in terms of the regulation of the probability of transcription rather than the rate. In this model, heterogeneous gene expression among populations of cells arises by chance, and the degree of heterogeneity is a function of the stability of the mRNA and protein products of individual genes. The probabilistic nature of transcriptional regulation provides one explanation for stochastic phenomena, such as stem cell lineage commitment, and monoallelic expression of inducible genes, such as lymphokines and cytokines.
Collapse
|
14
|
Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression. Blood 2000. [DOI: 10.1182/blood.v96.7.2323] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe phenotype of individual hematopoietic cells, like all other differentiated mammalian cells, is determined by selective transcription of a subset of the genes encoded within the genome. This overview summarizes the recent evidence that transcriptional regulation at the level of individual cells is best described in terms of the regulation of the probability of transcription rather than the rate. In this model, heterogeneous gene expression among populations of cells arises by chance, and the degree of heterogeneity is a function of the stability of the mRNA and protein products of individual genes. The probabilistic nature of transcriptional regulation provides one explanation for stochastic phenomena, such as stem cell lineage commitment, and monoallelic expression of inducible genes, such as lymphokines and cytokines.
Collapse
|
15
|
Bagga R, Michalowski S, Sabnis R, Griffith JD, Emerson BM. HMG I/Y regulates long-range enhancer-dependent transcription on DNA and chromatin by changes in DNA topology. Nucleic Acids Res 2000; 28:2541-50. [PMID: 10871404 PMCID: PMC102711 DOI: 10.1093/nar/28.13.2541] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2000] [Revised: 05/12/2000] [Accepted: 05/12/2000] [Indexed: 11/14/2022] Open
Abstract
The nature of nuclear structures that are required to confer transcriptional regulation by distal enhancers is unknown. We show that long-range enhancer-dependent beta-globin transcription is achieved in vitro upon addition of the DNA architectural protein HMG I/Y to affinity-enriched holo RNA polymerase II complexes. In this system, HMG I/Y represses promoter activity in the absence of an associated enhancer and strongly activates transcription in the presence of a distal enhancer. Importantly, nucleosome formation is neither necessary for long-range enhancer regulation in vitro nor sufficient without the addition of HMG I/Y. Thus, the modulation of DNA structure by HMG I/Y is a critical regulator of long-range enhancer function on both DNA and chromatin-assembled genes. Electron microscopic analysis reveals that HMG I/Y binds cooperatively to preferred DNA sites to generate distinct looped structures in the presence or absence of the beta-globin enhancer. The formation of DNA topologies that enable distal enhancers to strongly regulate gene expression is an intrinsic property of HMG I/Y and naked DNA.
Collapse
Affiliation(s)
- R Bagga
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
16
|
Shao W, Lee AY, Gulnik S, Gustchina E, Liu YL, Kung H, Erickson JW. A novel putative transcription factor protein MYT2 that preferentially binds supercoiled DNA and induces DNA synthesis in quiescent cells. FEBS Lett 2000; 473:363-9. [PMID: 10818241 DOI: 10.1016/s0014-5793(00)01536-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Myelin transcription factor 2 (MYT2), a putative transcription factor found in the human central nervous system, was cloned from an expression cDNA library from human T-cells. MYT2 shares weak similarity to bacterial type I topoisomerases and shares 63% sequence identity to a replicase from Leuconostoc mesenteroides. MYT2 preferentially binds supercoiled DNA (scDNA). Incubation of MYT2 and scDNA at or above equal molar ratios generated topoisomer-like patterns that were abolished by deproteination. Thus, MYT2 appears to relax scDNA via a non-enzymatic mechanism. The banding pattern of MYT2-scDNA complexes was shown to be quantisized, saturable and sequence-independent. Microinjection of MYT2 mRNA induced G(o) growth-arrested NIH 3T3 cells to enter the S phase of the cell cycle.
Collapse
Affiliation(s)
- W Shao
- Structural Biochemistry Program, SAIC Frederick, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, MD 21702, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Ronai D, Berru M, Shulman MJ. Variegated expression of the endogenous immunoglobulin heavy-chain gene in the absence of the intronic locus control region. Mol Cell Biol 1999; 19:7031-40. [PMID: 10490640 PMCID: PMC84698 DOI: 10.1128/mcb.19.10.7031] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/1999] [Accepted: 07/25/1999] [Indexed: 11/20/2022] Open
Abstract
The expression of chromosomally integrated transgenes usually varies greatly among independent transfectants. This variability in transgene expression has led to the definition of locus control regions (LCRs) as elements which render expression consistent. Analyses of expression in single cells revealed that the expression of transgenes which lack an LCR is often variegated, i.e., on in some cells and off in others. In many cases, transgenes which show variegated expression were found to have inserted near the centromere. These observations have suggested that the LCR prevents variegation by blocking the inhibitory effect of heterochromatin and other repetitive-DNA-containing structures at the insertion site and have raised the question of whether the LCR plays a similar role in endogenous genes. To address this question, we have examined the effects of deleting the LCR from the immunoglobulin heavy-chain locus of a mouse hybridoma cell line in which expression of the immunoglobulin mu heavy-chain gene is normally highly stable. Our analysis of mu expression in single cells shows that deletion of this LCR resulted in variegated expression of the mu gene. That is, in the absence of the LCR, expression of the mu gene in the recombinant locus could be found in either of two epigenetically maintained, metastable states, in which transcription occurred either at the normal rate or not at all. In the absence of the LCR, the on state had a half-life of approximately 100 cell divisions, while the half-life of the off state was approximately 40,000 cell divisions. For recombinants with an intact LCR, the half-life of the on state exceeded 50,000 cell divisions. Our results thus indicate that the LCR increased the stability of the on state by at least 500-fold.
Collapse
Affiliation(s)
- D Ronai
- Departments of Immunology and Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
18
|
Bagga R, Armstrong JA, Emerson BM. Role of chromatin structure and distal enhancers in tissue-specific transcriptional regulation in vitro. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:569-76. [PMID: 10384322 DOI: 10.1101/sqb.1998.63.569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- R Bagga
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | |
Collapse
|
19
|
Lee KC, Crowe AJ, Barton MC. p53-mediated repression of alpha-fetoprotein gene expression by specific DNA binding. Mol Cell Biol 1999; 19:1279-88. [PMID: 9891062 PMCID: PMC116057 DOI: 10.1128/mcb.19.2.1279] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/1998] [Accepted: 10/27/1998] [Indexed: 02/06/2023] Open
Abstract
Aberrant expression of the alpha-fetoprotein (AFP) gene is characteristic of a majority of hepatocellular carcinoma cases and serves as a diagnostic tumor-specific marker. By dissecting regulatory mechanisms through electromobility gel shift, transient-transfection, Western blot, and in vitro transcription analyses, we find that AFP gene expression is controlled in part by mutually exclusive binding of two trans-acting factors, p53 and hepatic nuclear factor 3 (HNF-3). HNF-3 protein activates while p53 represses AFP transcription through sequence-specific binding within the previously identified AFP developmental repressor domain. A single mutation within the DNA binding domain of p53 protein or a mutation of the p53 DNA binding element within the AFP developmental repressor eliminates p53-repressive effects in both transient-transfection and cell-free expression systems. Coexpression of p300 histone acetyltransferase, which has been shown to acetylate p53 and increase specific DNA binding, amplifies the p53-mediated repression. Western blot analysis of proteins present in developmentally staged, liver nuclear extracts reveal a one-to-one correlation between activation of p53 protein and repression of AFP during hepatic development. Induction of p53 in response to actinomycin D or hypoxic stress decreases AFP expression. Studies in fibroblast cells lacking HNF-3 further support a model for p53-mediated repression that is both passive through displacement of a tissue-specific activating factor and active in the presence of tissue-specific corepressors. This mechanism for p53-mediated repression of AFP gene expression may be active during hepatic differentiation and lost in the process of tumorigenesis.
Collapse
Affiliation(s)
- K C Lee
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, Ohio 45267-0524, USA
| | | | | |
Collapse
|
20
|
Colnot S, Romagnolo B, Lambert M, Cluzeaud F, Porteu A, Vandewalle A, Thomasset M, Kahn A, Perret C. Intestinal expression of the calbindin-D9K gene in transgenic mice. Requirement for a Cdx2-binding site in a distal activator region. J Biol Chem 1998; 273:31939-46. [PMID: 9822664 DOI: 10.1074/jbc.273.48.31939] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The calbindin-D9K gene encodes a vitamin D-induced calcium-binding protein that is expressed as a marker of small intestine differentiation. We have shown that 4580 base pairs of its 5' DNA regulatory region can target reporter transgene expression in the intestine and cause this transgene to respond like the endogenous gene to vitamin D active metabolite and that the homeoprotein Cdx2 is bound to the TATA box in the intestine. We now show that the 4580 base pairs construct confers a differentiated pattern of reporter transgene expression in the intestine and that cooperation between the proximal promoter and a distal element located in an opened chromatin structure is responsible for the intestinal expression and vitamin D responsiveness of the transgene. Gel shift and footprinting assays using duodenal nuclear extracts indicate that this distal element contains a Cdx2-binding site. Finally, a mutation in this distal Cdx2-binding site dramatically decreases intestinal expression in transgenic mice. This report, using an in vivo approach, demonstrates the crucial role of Cdx2 for the transcription of an intestinal gene.
Collapse
Affiliation(s)
- S Colnot
- INSERM U458, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
We have addressed the association between the site of DNA cleavage during apoptosis and DNA replication. DNA double strand breaks were introduced into chromatin containing pulse labeled nascent DNA by the induction of apoptosis or autocleavage of isolated nuclei. The location of these breaks in relation to nascent DNA were revealed by Bal31 exonuclease digestion at the cut sites. Our data show that Bal31 accessible cut sites are directly linked to regions enriched in nascent DNA. We suggest that these regions coincide with the termini of replication domains, possibly linked by strong DNA-matrix interactions with biophysically defined topological structures of 0.5-1.3 Mbp in size. The 50 kbp fragments that are commonly observed as products of apoptosis are also enriched in nascent DNA within internal regions but not at their termini. It is proposed that these fragments contain a subset of replicon DNA that is excised during apoptosis through recognition of their weak attachment to the nuclear matrix within the replication domain.
Collapse
Affiliation(s)
- N N Khodarev
- Department of Radiotherapy, Loyola University Medical Center, Maywood, Illinois 60153, USA.
| | | | | |
Collapse
|
22
|
Sheridan SD, Benham CJ, Hatfield GW. Activation of gene expression by a novel DNA structural transmission mechanism that requires supercoiling-induced DNA duplex destabilization in an upstream activating sequence. J Biol Chem 1998; 273:21298-308. [PMID: 9694890 DOI: 10.1074/jbc.273.33.21298] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously demonstrated that integration host factor (IHF)-mediated activation of transcription from the ilvPG promoter of Escherichia coli requires a supercoiled DNA template and occurs in the absence of specific interactions between IHF and RNA polymerase. In this report, we describe a novel, supercoiling-dependent, DNA structural transmission mechanism for this activation. We provide theoretical evidence for a supercoiling-induced DNA duplex destabilized (SIDD) structure in the A + T-rich, ilvPG regulatory region between base pair positions +1 and -160. We show that the region of this SIDD sequence immediately upstream of an IHF binding site centered at base pair position -92 is, in fact, destabilized by superhelical stress and that this duplex destabilization is inhibited by IHF binding. Thus, in the presence of IHF, the negative superhelical twist normally absorbed by this DNA structure in the promoter distal half of the SIDD sequence is transferred to the downstream portion of the SIDD sequence containing the ilvPG promoter site. This IHF-mediated translocation of superhelical energy facilitates duplex destabilization in the -10 region of the downstream ilvPG promoter and activates transcription by increasing the rate of open complex formation.
Collapse
Affiliation(s)
- S D Sheridan
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, California 92697, USA
| | | | | |
Collapse
|
23
|
Yang X, Taylor L, Polgar P. Mechanisms in the transcriptional regulation of bradykinin B1 receptor gene expression. Identification of a minimum cell-type specific enhancer. J Biol Chem 1998; 273:10763-70. [PMID: 9553142 DOI: 10.1074/jbc.273.17.10763] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the mechanisms of bradykinin B1 (BKB1) receptor gene expression, transient DNA transfection analyses of human BKB1 receptor gene promoter were performed in SV-40 transformed IMR90 cells. A positive regulatory element (PRE) located at position -604 to -448 base pair (bp) upstream of the transcription start site consistently exhibited, by far, the highest level of relative luciferase activity. A negative regulatory element, at position -682 to -604 bp, was able to completely ablate the function of the PRE. Transfection combined with deletion and mutation analyses illustrated that the PRE contains a classic, powerful enhancer. This enhancer was minimized to a 100-bp element at position -548 to -448 bp. A 78-bp fragment of negative regulatory element functioned as a silencer. Transient transfection of the enhancer construct, driven by heterologous herpes simplex thymidine kinase promoter, into a variety of cell types, showed that this enhancer presents a cell-type specific feature. In the characterization of the enhancer, motifs A (-548 to -532) and B (-483 to -477) were found to be essential for full enhancer activity. Motif D (-472 to -467) played a smaller role in enhancer activation. Gel shift and antibody supershift assays determined that an AP-1 factor binds with motif B. The nuclear protein which binds to motif A has yet to be identified. Both factors are the critical regulators for this enhancer activation.
Collapse
Affiliation(s)
- X Yang
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
24
|
Abstract
Transcription of chromatin-packaged genes involves highly regulated changes in nucleosomal structure that control DNA accessibility. Two systems that facilitate these changes are ATP-dependent chromatin remodeling complexes and enzymatic complexes which control histone acetylation and deacetylation. Recent studies provide insight on the role of these remodeling machines and specific transcription factors in the expression of viral, inducible, and tissue-restricted genes.
Collapse
Affiliation(s)
- J A Armstrong
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | |
Collapse
|
25
|
Dworkin J, Ninfa AJ, Model P. A protein-induced DNA bend increases the specificity of a prokaryotic enhancer-binding protein. Genes Dev 1998; 12:894-900. [PMID: 9512522 PMCID: PMC316635 DOI: 10.1101/gad.12.6.894] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/1997] [Accepted: 01/27/1998] [Indexed: 02/06/2023]
Abstract
Control of transcription in prokaryotes often involves direct contact of regulatory proteins with RNA polymerase from binding sites located adjacent to the target promoter. Alternatively, in the case of genes transcribed by Escherichia coli RNA polymerase holoenzyme containing the alternate sigma factor sigma54, regulatory proteins bound at more distally located enhancer sites can activate transcription via DNA looping by taking advantage of the increasing flexibility of DNA over longer distances. While this second mechanism offers a greater possible flexibility in the location of these binding sites, it is not clear how the specificity offered by the proximity of the regulatory protein and the polymerase intrinsic to the first mechanism is maintained. Here we demonstrate that integration host factor (IHF), a protein that induces a sharp bend in DNA, acts both to inhibit DNA-looping-dependent transcriptional activation by an inappropriate enhancer-binding protein and to facilitate similar activation by an appropriate enhancer-binding protein. These opposite effects have the consequence of increasing the specificity of activation of a promoter that is susceptible to regulation by proteins bound to a distal site.
Collapse
Affiliation(s)
- J Dworkin
- Laboratory of Genetics, The Rockefeller University, New York, New York 10021, USA.
| | | | | |
Collapse
|