1
|
Kiss J, Szabó M, Hegyi A, Douard G, Praud K, Nagy I, Olasz F, Cloeckaert A, Doublet B. Identification and Characterization of oriT and Two Mobilization Genes Required for Conjugative Transfer of Salmonella Genomic Island 1. Front Microbiol 2019; 10:457. [PMID: 30894848 PMCID: PMC6414798 DOI: 10.3389/fmicb.2019.00457] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/20/2019] [Indexed: 11/13/2022] Open
Abstract
The integrative mobilizable elements of SGI1-family considerably contribute to the spread of resistance to critically important antibiotics among enteric bacteria. Even though many aspects of SGI1 mobilization by IncA and IncC plasmids have been explored, the basic transfer elements such as oriT and self-encoded mobilization proteins remain undiscovered. Here we describe the mobilization region of SGI1 that is well conserved throughout the family and carries the oriT SGI1 and two genes, mpsA and mpsB (originally annotated as S020 and S019, respectively) that are essential for the conjugative transfer of SGI1. OriT SGI1, which is located in the vicinity of the two mobilization genes proved to be a 125-bp GC-rich sequence with several important inverted repeat motifs. The mobilization proteins MpsA and MpsB are expressed from a bicistronic mRNA, although MpsB can be produced from its own mRNA as well. The protein structure predictions imply that MpsA belongs to the lambda tyrosine recombinase family, while MpsB resembles the N-terminal core DNA binding domains of these enzymes. The results suggest that MpsA may act as an atypical relaxase, which needs MpsB for SGI1 transfer. Although the helper plasmid-encoded relaxase proved not to be essential for SGI1 transfer, it appeared to be important to achieve the high transfer rate of the island observed with the IncA/IncC-SGI1 system.
Collapse
Affiliation(s)
- János Kiss
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Gödöllõ, Hungary
| | - Mónika Szabó
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Gödöllõ, Hungary
| | - Anna Hegyi
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Gödöllõ, Hungary.,ISP, Institut National de la Recherche Agronomique, Université de Tours, UMR 1282, Nouzilly, France
| | - Gregory Douard
- ISP, Institut National de la Recherche Agronomique, Université de Tours, UMR 1282, Nouzilly, France
| | - Karine Praud
- ISP, Institut National de la Recherche Agronomique, Université de Tours, UMR 1282, Nouzilly, France
| | - István Nagy
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Gödöllõ, Hungary
| | - Ferenc Olasz
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Gödöllõ, Hungary
| | - Axel Cloeckaert
- ISP, Institut National de la Recherche Agronomique, Université de Tours, UMR 1282, Nouzilly, France
| | - Benoît Doublet
- ISP, Institut National de la Recherche Agronomique, Université de Tours, UMR 1282, Nouzilly, France
| |
Collapse
|
2
|
Ilangovan A, Kay CWM, Roier S, El Mkami H, Salvadori E, Zechner EL, Zanetti G, Waksman G. Cryo-EM Structure of a Relaxase Reveals the Molecular Basis of DNA Unwinding during Bacterial Conjugation. Cell 2017; 169:708-721.e12. [PMID: 28457609 PMCID: PMC5422253 DOI: 10.1016/j.cell.2017.04.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/28/2017] [Accepted: 04/06/2017] [Indexed: 11/20/2022]
Abstract
Relaxases play essential roles in conjugation, the main process by which bacteria exchange genetic material, notably antibiotic resistance genes. They are bifunctional enzymes containing a trans-esterase activity, which is responsible for nicking the DNA strand to be transferred and for covalent attachment to the resulting 5'-phosphate end, and a helicase activity, which is responsible for unwinding the DNA while it is being transported to a recipient cell. Here we show that these two activities are carried out by two conformers that can both load simultaneously on the origin of transfer DNA. We solve the structure of one of these conformers by cryo electron microscopy to near-atomic resolution, elucidating the molecular basis of helicase function by relaxases and revealing insights into the mechanistic events taking place in the cell prior to substrate transport during conjugation.
Collapse
Affiliation(s)
- Aravindan Ilangovan
- Institute of Structural and Molecular Biology, Birkbeck, Malet Street, London WC1E 7HX, UK
| | - Christopher W M Kay
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK; London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, UK
| | - Sandro Roier
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Hassane El Mkami
- School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
| | - Enrico Salvadori
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK; London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, UK
| | - Ellen L Zechner
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Giulia Zanetti
- Institute of Structural and Molecular Biology, Birkbeck, Malet Street, London WC1E 7HX, UK.
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, Birkbeck, Malet Street, London WC1E 7HX, UK; Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
3
|
Grohmann E, Keller W, Muth G. Mechanisms of Conjugative Transfer and Type IV Secretion-Mediated Effector Transport in Gram-Positive Bacteria. Curr Top Microbiol Immunol 2017. [PMID: 29536357 DOI: 10.1007/978-3-319-75241-9_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Conjugative DNA transfer is the most important means to transfer antibiotic resistance genes and virulence determinants encoded by plasmids, integrative conjugative elements (ICE), and pathogenicity islands among bacteria. In gram-positive bacteria, there exist two types of conjugative systems, (i) type IV secretion system (T4SS)-dependent ones, like those encoded by the Enterococcus, Streptococcus, Staphylococcus, Bacillus, and Clostridia mobile genetic elements and (ii) T4SS-independent ones, as those found on Streptomyces plasmids. Interestingly, very recently, on the Streptococcus suis genome, the first gram-positive T4SS not only involved in conjugative DNA transfer but also in effector translocation to the host was detected. Although no T4SS core complex structure from gram-positive bacteria is available, several structures from T4SS protein key factors from Enterococcus and Clostridia plasmids have been solved. In this chapter, we summarize the current knowledge on the molecular mechanisms and structure-function relationships of the diverse conjugation machineries and emerging research needs focused on combatting infections and spread of multiple resistant gram-positive pathogens.
Collapse
Affiliation(s)
- Elisabeth Grohmann
- Beuth University of Applied Sciences Berlin, Life Sciences and Technology, 13347, Berlin, Germany.
| | - Walter Keller
- Institute of Molecular Biosciences, BioTechMed, University of Graz, 8010, Graz, Austria
| | - Günther Muth
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
4
|
Conjugative DNA-transfer in Streptomyces, a mycelial organism. Plasmid 2016; 87-88:1-9. [PMID: 27687731 DOI: 10.1016/j.plasmid.2016.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/13/2016] [Accepted: 09/25/2016] [Indexed: 02/06/2023]
Abstract
Conjugative DNA-transfer in the Gram-positive mycelial soil bacterium Streptomyces, well known for the production of numerous antibiotics, is a unique process involving the transfer of a double-stranded DNA molecule. Apparently it does not depend on a type IV secretion system but resembles the segregation of chromosomes during bacterial cell division. A single plasmid-encoded protein, TraB, directs the transfer from the plasmid-carrying donor to the recipient. TraB is a FtsK-like DNA-translocase, which recognizes a specific plasmid sequence, clt, via interaction with specific 8-bp repeats. Chromosomal markers are mobilized by the recognition of clt-like sequences randomly distributed all over the Streptomyces chromosomes. Fluorescence microcopy with conjugative reporter plasmids and differentially labelled recipient strains revealed conjugative plasmid transfer at the lateral walls of the hyphae, when getting in contact. Subsequently, the newly transferred plasmids cross septal cross walls, which occur at irregular distances in the mycelium and invade the neighboring compartments, thus efficiently colonizing the recipient mycelium. This intramycelial plasmid spreading requires the DNA-translocase TraB and a complex of several Spd proteins. Inactivation of a single spd gene interferes with intramycelial plasmid spreading. The molecular function of the Spd proteins is widely unknown. Spd proteins of different plasmids are highly diverse, none showing sequence similarity to a functionally characterized protein. The integral membrane protein SpdB2 binds DNA, peptidoglycan and forms membrane pores in vivo and in vitro. Intramycelial plasmid spreading is an adaptation to the mycelial growth characteristics of Streptomyces and ensures the rapid dissemination of the plasmid within the recipient colony before the onset of sporulation.
Collapse
|
5
|
Gruber CJ, Lang S, Rajendra VKH, Nuk M, Raffl S, Schildbach JF, Zechner EL. Conjugative DNA Transfer Is Enhanced by Plasmid R1 Partitioning Proteins. Front Mol Biosci 2016; 3:32. [PMID: 27486582 PMCID: PMC4949242 DOI: 10.3389/fmolb.2016.00032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/01/2016] [Indexed: 11/22/2022] Open
Abstract
Bacterial conjugation is a form of type IV secretion used to transport protein and DNA directly to recipient bacteria. The process is cell contact-dependent, yet the mechanisms enabling extracellular events to trigger plasmid transfer to begin inside the cell remain obscure. In this study of plasmid R1 we investigated the role of plasmid proteins in the initiation of gene transfer. We find that TraI, the central regulator of conjugative DNA processing, interacts physically, and functionally with the plasmid partitioning proteins ParM and ParR. These interactions stimulate TraI catalyzed relaxation of plasmid DNA in vivo and in vitro and increase ParM ATPase activity. ParM also binds the coupling protein TraD and VirB4-like channel ATPase TraC. Together, these protein-protein interactions probably act to co-localize the transfer components intracellularly and promote assembly of the conjugation machinery. Importantly these data also indicate that the continued association of ParM and ParR at the conjugative pore is necessary for plasmid transfer to start efficiently. Moreover, the conjugative pilus and underlying secretion machinery assembled in the absence of Par proteins mediate poor biofilm formation and are completely dysfunctional for pilus specific R17 bacteriophage uptake. Thus, functional integration of Par components at the interface of relaxosome, coupling protein, and channel ATPases appears important for an optimal conformation and effective activation of the transfer machinery. We conclude that low copy plasmid R1 has evolved an active segregation system that optimizes both its vertical and lateral modes of dissemination.
Collapse
Affiliation(s)
- Christian J Gruber
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz Graz, Austria
| | - Silvia Lang
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz Graz, Austria
| | - Vinod K H Rajendra
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz Graz, Austria
| | - Monika Nuk
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz Graz, Austria
| | - Sandra Raffl
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz Graz, Austria
| | | | - Ellen L Zechner
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz Graz, Austria
| |
Collapse
|
6
|
Fernández-López C, Lorenzo-Díaz F, Pérez-Luque R, Rodríguez-González L, Boer R, Lurz R, Bravo A, Coll M, Espinosa M. Nicking activity of the pMV158 MobM relaxase on cognate and heterologous origins of transfer. Plasmid 2013; 70:120-30. [DOI: 10.1016/j.plasmid.2013.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 10/27/2022]
|
7
|
Nuk MR, Reisner A, Zechner EL. The transfer operon of plasmid R1 extends beyond finO into the downstream replication genes. Plasmid 2011; 65:150-8. [DOI: 10.1016/j.plasmid.2010.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 11/20/2010] [Accepted: 12/03/2010] [Indexed: 11/25/2022]
|
8
|
Dostál L, Shao S, Schildbach JF. Tracking F plasmid TraI relaxase processing reactions provides insight into F plasmid transfer. Nucleic Acids Res 2010; 39:2658-70. [PMID: 21109533 PMCID: PMC3074121 DOI: 10.1093/nar/gkq1137] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Early in F plasmid conjugative transfer, the F relaxase, TraI, cleaves one plasmid strand at a site within the origin of transfer called nic. The reaction covalently links TraI Tyr16 to the 5′-ssDNA phosphate. Ultimately, TraI reverses the cleavage reaction to circularize the plasmid strand. The joining reaction requires a ssDNA 3′-hydroxyl; a second cleavage reaction at nic, regenerated by extension from the plasmid cleavage site, may generate this hydroxyl. Here we confirm that TraI is transported to the recipient during transfer. We track the secondary cleavage reaction and provide evidence it occurs in the donor and F ssDNA is transferred to the recipient with a free 3′-hydroxyl. Phe substitutions for four Tyr within the TraI active site implicate only Tyr16 in the two cleavage reactions required for transfer. Therefore, two TraI molecules are required for F plasmid transfer. Analysis of TraI translocation on various linear and circular ssDNA substrates supports the assertion that TraI slowly dissociates from the 3′-end of cleaved F plasmid, likely a characteristic essential for plasmid re-circularization.
Collapse
Affiliation(s)
- Lubomír Dostál
- Department of Biology, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
9
|
Single-stranded DNA binding by F TraI relaxase and helicase domains is coordinately regulated. J Bacteriol 2010; 192:3620-8. [PMID: 20435720 DOI: 10.1128/jb.00154-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transfer of conjugative plasmids requires relaxases, proteins that cleave one plasmid strand sequence specifically. The F plasmid relaxase TraI (1,756 amino acids) is also a highly processive DNA helicase. The TraI relaxase activity is located within the N-terminal approximately 300 amino acids, while helicase motifs are located in the region comprising positions 990 to 1450. For efficient F transfer, the two activities must be physically linked. The two TraI activities are likely used in different stages of transfer; how the protein regulates the transition between activities is unknown. We examined TraI helicase single-stranded DNA (ssDNA) recognition to complement previous explorations of relaxase ssDNA binding. Here, we show that TraI helicase-associated ssDNA binding is independent of and located N-terminal to all helicase motifs. The helicase-associated site binds ssDNA oligonucleotides with nM-range equilibrium dissociation constants and some sequence specificity. Significantly, we observe an apparent strong negative cooperativity in ssDNA binding between relaxase and helicase-associated sites. We examined three TraI variants having 31-amino-acid insertions in or near the helicase-associated ssDNA binding site. B. A. Traxler and colleagues (J. Bacteriol. 188:6346-6353) showed that under certain conditions, these variants are released from a form of negative regulation, allowing them to facilitate transfer more efficiently than wild-type TraI. We find that these variants display both moderately reduced affinity for ssDNA by their helicase-associated binding sites and a significant reduction in the apparent negative cooperativity of binding, relative to wild-type TraI. These results suggest that the apparent negative cooperativity of binding to the two ssDNA binding sites of TraI serves a major regulatory function in F transfer.
Collapse
|
10
|
de la Cruz F, Frost LS, Meyer RJ, Zechner EL. Conjugative DNA metabolism in Gram-negative bacteria. FEMS Microbiol Rev 2010; 34:18-40. [PMID: 19919603 DOI: 10.1111/j.1574-6976.2009.00195.x] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacterial conjugation in Gram-negative bacteria is triggered by a signal that connects the relaxosome to the coupling protein (T4CP) and transferosome, a type IV secretion system. The relaxosome, a nucleoprotein complex formed at the origin of transfer (oriT), consists of a relaxase, directed to the nic site by auxiliary DNA-binding proteins. The nic site undergoes cleavage and religation during vegetative growth, but this is converted to a cleavage and unwinding reaction when a competent mating pair has formed. Here, we review the biochemistry of relaxosomes and ponder some of the remaining questions about the nature of the signal that begins the process.
Collapse
|
11
|
Protein and DNA effectors control the TraI conjugative helicase of plasmid R1. J Bacteriol 2009; 191:6888-99. [PMID: 19767439 DOI: 10.1128/jb.00920-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms controlling progression of conjugative DNA processing from a preinitiation stage of specific plasmid strand cleavage at the transfer origin to a stage competent for unwinding the DNA strand destined for transfer remain obscure. Linear heteroduplex substrates containing double-stranded DNA binding sites for plasmid R1 relaxosome proteins and various regions of open duplex for TraI helicase loading were constructed to model putative intermediate structures in the initiation pathway. The activity of TraI was compared in steady-state multiple turnover experiments that measured the net production of unwound DNA as well as transesterase-catalyzed cleavage at nic. Helicase efficiency was enhanced by the relaxosome components TraM and integration host factor. The magnitude of stimulation depended on the proximity of the specific protein binding sites to the position of open DNA. The cytoplasmic domain of the R1 coupling protein, TraDDeltaN130, stimulated helicase efficiency on all substrates in a manner consistent with cooperative interaction and sequence-independent DNA binding. Variation in the position of duplex opening also revealed an unsuspected autoinhibition of the unwinding reaction catalyzed by full-length TraI. The activity reduction was sequence dependent and was not observed with a truncated helicase, TraIDeltaN308, lacking the site-specific DNA binding transesterase domain. Given that transesterase and helicase domains are physically tethered in the wild-type protein, this observation suggests that an intramolecular switch controls helicase activation. The data support a model where protein-protein and DNA ligand interactions at the coupling protein interface coordinate the transition initiating production and uptake of the nucleoprotein secretion substrate.
Collapse
|
12
|
Precise determination, cross-recognition, and functional analysis of the double-strand origins of the rolling-circle replication plasmids in haloarchaea. J Bacteriol 2008; 190:5710-9. [PMID: 18567665 DOI: 10.1128/jb.00596-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The precise nick site in the double-strand origin (DSO) of pZMX201, a 1,668-bp rolling-circle replication (RCR) plasmid from the haloarchaeon Natrinema sp. CX2021, was determined by electron microscopy and DSO mapping. In this plasmid, DSO nicking occurred between residues C404 and G405 within a heptanucleotide sequence (TCTC/GGC) located in the stem region of an imperfect hairpin structure. This nick site sequence was conserved among the haloarchaeal RCR plasmids, including pNB101, suggesting that the DSO nick site might be the same for all members of this plasmid family. Interestingly, the DSOs of pZMX201 and pNB101 were found to be cross-recognized in RCR initiation and termination in a hybrid plasmid system. Mutation analysis of the DSO from pZMX201 (DSO(Z)) in this hybrid plasmid system revealed that: (i) the nucleotides in the middle of the conserved TCTCGGC sequence play more-important roles in the initiation and termination process; (ii) the left half of the hairpin structure is required for initiation but not for termination; and (iii) a 36-bp sequence containing TCTCGGC and the downstream sequence is essential and sufficient for termination. In conclusion, these haloarchaeal plasmids, with novel features that are different from the characteristics of both single-stranded DNA phages and bacterial RCR plasmids, might serve as a good model for studying the evolution of RCR replicons.
Collapse
|
13
|
TraM protein of plasmid R1: In vitro selection of the target region reveals two consensus 7bp binding motifs spaced by a 4bp linker of defined sequence. Plasmid 2008; 59:20-35. [DOI: 10.1016/j.plasmid.2007.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 09/18/2007] [Accepted: 10/12/2007] [Indexed: 11/23/2022]
|
14
|
Haft RJF, Palacios G, Nguyen T, Mally M, Gachelet EG, Zechner EL, Traxler B. General mutagenesis of F plasmid TraI reveals its role in conjugative regulation. J Bacteriol 2006; 188:6346-53. [PMID: 16923902 PMCID: PMC1595373 DOI: 10.1128/jb.00462-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 06/19/2006] [Indexed: 11/20/2022] Open
Abstract
Bacteria commonly exchange genetic information by the horizontal transfer of conjugative plasmids. In gram-negative conjugation, a relaxase enzyme is absolutely required to prepare plasmid DNA for transit into the recipient via a type IV secretion system. Here we report a mutagenesis of the F plasmid relaxase gene traI using in-frame, 31-codon insertions. Phenotypic analysis of our mutant library revealed that several mutant proteins are functional in conjugation, highlighting regions of TraI that can tolerate insertions of a moderate size. We also demonstrate that wild-type TraI, when overexpressed, plays a dominant-negative regulatory role in conjugation, repressing plasmid transfer frequencies approximately 100-fold. Mutant TraI proteins with insertions in a region of approximately 400 residues between the consensus relaxase and helicase sequences did not cause conjugative repression. These unrestrictive TraI variants have normal relaxase activity in vivo, and several have wild-type conjugative functions when expressed at normal levels. We postulate that TraI negatively regulates conjugation by interacting with and sequestering some component of the conjugative apparatus. Our data indicate that the domain responsible for conjugative repression resides in the central region of TraI between the protein's catalytic domains.
Collapse
Affiliation(s)
- Rembrandt J F Haft
- Department of Microbiology, University of Washington, Seattle, WA 98195-7242, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Reuther J, Gekeler C, Tiffert Y, Wohlleben W, Muth G. Unique conjugation mechanism in mycelial streptomycetes: a DNA-binding ATPase translocates unprocessed plasmid DNA at the hyphal tip. Mol Microbiol 2006; 61:436-46. [PMID: 16776656 DOI: 10.1111/j.1365-2958.2006.05258.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A single plasmid-encoded protein, the septal DNA translocator TraB, is sufficient to promote conjugal plasmid transfer in mycelial streptomycetes. To analyse the molecular mechanism of conjugation the closely related TraB proteins from plasmids pSG5 of Streptomyces ghanaensis and pSVH1 of Streptomyces venezuelae were characterized. TraB of pSG5 was expressed as a fusion protein with eGFP and found to be localized at the hyphal tips of Streptomyces lividans by fluorescence microscopy, which strongly indicates that conjugation takes place at the tips of the mating mycelium. The TraB protein of pSVH1 was heterologously expressed in S. lividans with an N-terminal strep-tagII and purified as a soluble protein to near homogeneity. The purified protein was shown to hydrolyse ATP and to bind to a 50 bp non-coding pSVH1 sequence containing a 14 bp direct repeat. The protein-DNA complex was too large to enter an agarose gel, indicating that multimers of TraB were bound to the DNA. Denaturation of the protein-DNA complex released unprocessed plasmid DNA demonstrating that the TraB protein does not possess nicking activity. Our experimental data provide evidence that conjugal DNA transfer in streptomycetes is mediated by the septal DNA translocator TraB, an plasmid-encoded ATPase that interacts non-covalently with DNA and translocates an unprocessed double-stranded DNA molecule at the hyphal tip into the recipient.
Collapse
Affiliation(s)
- Jens Reuther
- Mikrobiologie/Biotechnologie, Mikrobiologisches Institut, Fakultaet für Biologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | | | | | | | | |
Collapse
|
16
|
Lu J, Frost LS. Mutations in the C-terminal region of TraM provide evidence for in vivo TraM-TraD interactions during F-plasmid conjugation. J Bacteriol 2005; 187:4767-73. [PMID: 15995191 PMCID: PMC1169504 DOI: 10.1128/jb.187.14.4767-4773.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conjugation is a major mechanism for disseminating genetic information in bacterial populations, but the signal that triggers it is poorly understood in gram-negative bacteria. F-plasmid-mediated conjugation requires TraM, a homotetramer, which binds cooperatively to three binding sites within the origin of transfer. Using in vitro assays, TraM has previously been shown to interact with the coupling protein TraD. Here we present evidence that F conjugation also requires TraM-TraD interactions in vivo. A three-plasmid system was used to select mutations in TraM that are defective for F conjugation but competent for tetramerization and cooperative DNA binding to the traM promoter region. One mutation, K99E, was particularly defective in conjugation and was further characterized by affinity chromatography and coimmunoprecipitation assays that suggested it was defective in interacting with TraD. A C-terminal deletion (S79*, where the asterisk represents a stop codon) and a missense mutation (F121S), which affects tetramerization, also reduced the affinity of TraM for TraD. We propose that the C-terminal region of TraM interacts with TraD, whereas its N-terminal domain is involved in DNA binding. This arrangement of functional domains could in part allow TraM to receive the mating signal generated by donor-recipient contact and transfer it to the relaxosome, thereby triggering DNA transfer.
Collapse
Affiliation(s)
- Jun Lu
- Department of Biological Sciences, University of Alberta, Canada
| | | |
Collapse
|
17
|
Kim SW, Jeong EJ, Kang HS, Tak JI, Bang WY, Heo JB, Jeong JY, Yoon GM, Kang HY, Bahk JD. Role of RepB in the replication of plasmid pJB01 isolated from Enterococcus faecium JC1. Plasmid 2005; 55:99-113. [PMID: 16188315 DOI: 10.1016/j.plasmid.2005.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 07/30/2005] [Accepted: 08/08/2005] [Indexed: 11/24/2022]
Abstract
The plasmid pJB01 (GenBank Accession No. AY425961) isolated from the pathogenic bacterium, Enterococcus faecium JC1, is 2235 base pairs in length and consists of a putative double-strand origin (dso), a single-strand origin, a counter-transcribed RNA, and three open reading frames. A comparison of a few replication factors and motifs, bind and nic regions, for replication initiation on the nucleotide sequence level revealed that it belongs to the pMV158 family among RC-replicating plasmids. A runoff DNA synthesis assay demonstrated that nicking occurred between G525 and A526, which is located on the internal loop of a putative secondary structure in the dso. Unlike all the other plasmids of the pMV158 family having two or three direct repeats, pJB01 has three non-tandem direct repeats of 5'-CAACAAA-3' separated by four nucleotides, as the RepB-binding site in the dso. Moreover, the nick site on the internal loop is located at 77 nucleotides upstream from the RepB-binding region. Irrespective of the structural difference of direct repeats from other members of the pMV158 family, we think, it is still a new member of this plasmid family. The introduction of mutations in conserved regions of RepB confirmed that RepB N-moiety is important for nicking/nick-closing activity. Within N-moiety, especially all of the motif R-III, the Y100 in R-IV and Y116 in R-V residues, played particularly critical roles in this activity, however, for its binding, both of the N- and C-moieties of RepB were needed.
Collapse
Affiliation(s)
- Sam Woong Kim
- Division of Applied Life Sciences, Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Csitkovits VC, Zechner EL. Extent of single-stranded DNA required for efficient TraI helicase activity in vitro. J Biol Chem 2003; 278:48696-703. [PMID: 14506243 DOI: 10.1074/jbc.m310025200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The IncF plasmid protein TraI functions during bacterial conjugation as a site- and strand-specific DNA transesterase and a highly processive 5' to 3' DNA helicase. The N-terminal DNA transesterase domain of TraI localizes the protein to nic and cleaves this site within the plasmid transfer origin. In the cell the C-terminal DNA helicase domain of TraI is essential for driving the 5' to 3' unwinding of plasmid DNA from nic to provide the strand destined for transfer. In vitro, however, purified TraI protein cannot enter and unwind nicked plasmid DNA and instead requires a 5' tail of single-stranded DNA at the duplex junction. In this study we evaluate the extent of single-stranded DNA adjacent to the duplex that is required for efficient TraI-catalyzed DNA unwinding in vitro. A series of linear partial duplex DNA substrates containing a central stretch of single-stranded DNA of defined length was created and its structure verified. We found that substrates containing >or=27 nucleotides of single-stranded DNA 5' to the duplex were unwound efficiently by TraI, whereas substrates containing 20 or fewer nucleotides were not. These results imply that during conjugation localized unwinding of >20 nucleotides at nic is necessary to initiate unwinding of plasmid DNA strands.
Collapse
Affiliation(s)
- Vanessa C Csitkovits
- Institut für Molekularbiologie, Biochemie und Mikrobiologie, Karl-Franzens Universität Graz, Universitätsplatz 2, 8010 Graz, Austria
| | | |
Collapse
|
19
|
Abrhámová Z, Pátek M, Nesvera J. Atypical location of double-strand origin of replication (nic site) on the plasmid pGA1 from Corynebacterium glutamicum. Folia Microbiol (Praha) 2002; 47:307-10. [PMID: 12422507 DOI: 10.1007/bf02818687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The double-strand origin of replication (dso) of the rolling-circle-replicating (RC) plasmid pGA1 from Corynebacterium glutamicum was analyzed using the runoff DNA synthesis assay. The site- and strand-specific breakage of double-stranded plasmid DNA, representing the nic site of dso, was localized precisely within the sequence 5'-CTGG decreases AT-3' in the distal part of the pGA1 rep gene. This location of dso differs from the dso positions found on other RC plasmids and is in agreement with the classification of the plasmid pGA1 into a new group of RC plasmids.
Collapse
Affiliation(s)
- Z Abrhámová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czechia
| | | | | |
Collapse
|
20
|
Francia MV, Clewell DB. Transfer origins in the conjugative Enterococcus faecalis plasmids pAD1 and pAM373: identification of the pAD1 nic site, a specific relaxase and a possible TraG-like protein. Mol Microbiol 2002; 45:375-95. [PMID: 12123451 DOI: 10.1046/j.1365-2958.2002.03007.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Enterococcus faecalis conjugative plasmids pAD1 and pAM373 encode a mating response to the peptide sex pheromones cAD1 and cAM373 respectively. Sequence determination of both plasmids has recently been completed with strong similarity evident over many of the structural genes related to conjugation. pAD1 has two origins of transfer, with oriT1 being located within the repA determinant, whereas the more efficiently utilized oriT2 is located between orf53 and orf57, two genes found in the present study to be essential for conjugation. We have found a similarly located oriT to be present in pAM373. oriT2 corresponds to about 285 bp based on its ability to facilitate mobilization by pAD1 when ligated to the shuttle vector pAM401; however, it was not mobilized by pAM373. In contrast, a similarly ligated fragment containing the oriT of pAM373 did not facilitate mobilization by pAD1 but was efficiently mobilized by pAM373. The oriT sites of the two plasmids each contained a homologous large inverted repeat (spanning about 140 bp) adjacent to a series of non-homologous short (6 bp) direct repeats. A hybrid construction containing the inverted repeat of pAM373 and direct repeats of pAD1 was mobilized efficiently by pAD1 but not by pAM373, indicating a significantly greater degree of specificity is associated with the direct repeats. Mutational (deletion) analyses of the pAD1 oriT2 inverted repeat structure suggested its importance in facilitating transfer or perhaps ligation of the ends of the newly transferred DNA strand. Analyses showed that Orf57 (to be called TraX) is the relaxase, which was found to induce a specific nick in the large inverted repeat inside oriT; the protein also facilitated site-specific recombination between two oriT2 sites. Orf53 (to be called TraW) exhibits certain structural similarities to TraG-like proteins, although there is little overall homology.
Collapse
Affiliation(s)
- M Victoria Francia
- Department of Biologic and Materials Sciences, School of Dentistry, The University of Michigan, Ann Arbor, 48109, USA
| | | |
Collapse
|
21
|
Szpirer CY, Faelen M, Couturier M. Mobilization function of the pBHR1 plasmid, a derivative of the broad-host-range plasmid pBBR1. J Bacteriol 2001; 183:2101-10. [PMID: 11222611 PMCID: PMC95108 DOI: 10.1128/jb.183.6.2101-2110.2001] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pBHR1 plasmid is a derivative of the small (2.6-kb), mobilizable broad-host-range plasmid pBBR1, which was isolated from the gram-negative bacterium Bordetella bronchiseptica (R. Antoine and C. Locht, Mol. Microbiol. 6:1785-1799, 1992). Plasmid pBBR1 consists of two functional cassettes and presents sequence similarities with the transfer origins of several plasmids and mobilizable transposons from gram-positive bacteria. We show that the Mob protein specifically recognizes a 52-bp sequence which contains, in addition to the transfer origin, the promoter of the mob gene. We demonstrate that this gene is autoregulated. The binding of the Mob protein to the 52-bp sequence could thus allow the formation of a protein-DNA complex with a double function: relaxosome formation and mob gene regulation. We show that the Mob protein is a relaxase, and we located the nic site position in vitro. After sequence alignment, the position of the nic site of pBBR1 corresponds with those of the nick sites of the Bacteroides mobilizable transposon Tn4555 and the streptococcal plasmid pMV158. The oriT of the latter is characteristic of a family of mobilizable plasmids that are found in gram-positive bacteria and that replicate by the rolling-circle mechanism. Plasmid pBBR1 thus appears to be a new member of this group, even though it resides in gram-negative bacteria and does not replicate via a rolling-circle mechanism. In addition, we identified two amino acids of the Mob protein necessary for its activity, and we discuss their involvement in the mobilization mechanism.
Collapse
Affiliation(s)
- C Y Szpirer
- Laboratoire de Génétique des Procaryotes, Département de Biologie Moléculaire, Université Libre de Bruxelles, B-6041 Gosselies, Belgium.
| | | | | |
Collapse
|
22
|
Karl W, Bamberger M, Zechner EL. Transfer protein TraY of plasmid R1 stimulates TraI-catalyzed oriT cleavage in vivo. J Bacteriol 2001; 183:909-14. [PMID: 11208788 PMCID: PMC94957 DOI: 10.1128/jb.183.3.909-914.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of TraY protein on TraI-catalyzed strand scission at the R1 transfer origin (oriT) in vivo was investigated. As expected, the cleavage reaction was not detected in Escherichia coli cells expressing tral and the integration host factor (IHF) in the absence of other transfer proteins. The TraM dependence of strand scission was found to be inversely correlated with the presence of TraY. Thus, the TraY and TraM proteins could each enhance cleaving activity at oriT in the absence of the other. In contrast, no detectable intracellular cleaving activity was exhibited by TraI in an IHF mutant strain despite the additional presence of both TraM and TraY. An essential role for IHF in this reaction in vivo is, therefore, implied. Mobilization experiments employing recombinant R1 oriT constructions and a heterologous conjugative helper plasmid were used to investigate the independent contributions of TraY and TraM to the R1 relaxosome during bacterial conjugation. In accordance with earlier observations, traY was dispensable for mobilization in the presence of traM, but mobilization did not occur in the absence of both traM and traY. Interestingly, although the cleavage assays demonstrate that TraM and TraY independently promote strand scission in vivo, TraM remained essential for mobilization of the R1 origin even in the presence of TraY. These findings suggest that, whereas TraY and TraM function may overlap to a certain extent in the R1 relaxosome, TraM additionally performs a second function that is essential for successful conjugative transmission of plasmid DNA.
Collapse
Affiliation(s)
- W Karl
- Institut für Molekularbiologie, Biochemie und Mikrobiologie, Karl-Franzens-Universität Graz, A-8010 Graz, Austria
| | | | | |
Collapse
|
23
|
Dermić D, Trgovcević Z. Specific effects of a recB mutation on the HfrH strain of Escherichia coli. J Bacteriol 1999; 181:1334-7. [PMID: 9973363 PMCID: PMC93514 DOI: 10.1128/jb.181.4.1334-1337.1999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recB268::Tn10 mutation was introduced into the HfrH strain of Escherichia coli. Compared with recB F- and recB F+ cells, the viability of this mutant strain was much lower. Compared with wild-type HfrH, the recB derivative donated much shorter fragments of its chromosome to the recipient. It is suggested that the recB gene product (i.e., RecBCD enzyme) participates in Hfr transfer.
Collapse
Affiliation(s)
- D Dermić
- Ruer Bosković Institute, 10001 Zagreb, Croatia.
| | | |
Collapse
|
24
|
del Solar G, Giraldo R, Ruiz-Echevarría MJ, Espinosa M, Díaz-Orejas R. Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 1998; 62:434-64. [PMID: 9618448 PMCID: PMC98921 DOI: 10.1128/mmbr.62.2.434-464.1998] [Citation(s) in RCA: 704] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
An essential feature of bacterial plasmids is their ability to replicate as autonomous genetic elements in a controlled way within the host. Therefore, they can be used to explore the mechanisms involved in DNA replication and to analyze the different strategies that couple DNA replication to other critical events in the cell cycle. In this review, we focus on replication and its control in circular plasmids. Plasmid replication can be conveniently divided into three stages: initiation, elongation, and termination. The inability of DNA polymerases to initiate de novo replication makes necessary the independent generation of a primer. This is solved, in circular plasmids, by two main strategies: (i) opening of the strands followed by RNA priming (theta and strand displacement replication) or (ii) cleavage of one of the DNA strands to generate a 3'-OH end (rolling-circle replication). Initiation is catalyzed most frequently by one or a few plasmid-encoded initiation proteins that recognize plasmid-specific DNA sequences and determine the point from which replication starts (the origin of replication). In some cases, these proteins also participate directly in the generation of the primer. These initiators can also play the role of pilot proteins that guide the assembly of the host replisome at the plasmid origin. Elongation of plasmid replication is carried out basically by DNA polymerase III holoenzyme (and, in some cases, by DNA polymerase I at an early stage), with the participation of other host proteins that form the replisome. Termination of replication has specific requirements and implications for reinitiation, studies of which have started. The initiation stage plays an additional role: it is the stage at which mechanisms controlling replication operate. The objective of this control is to maintain a fixed concentration of plasmid molecules in a growing bacterial population (duplication of the plasmid pool paced with duplication of the bacterial population). The molecules involved directly in this control can be (i) RNA (antisense RNA), (ii) DNA sequences (iterons), or (iii) antisense RNA and proteins acting in concert. The control elements maintain an average frequency of one plasmid replication per plasmid copy per cell cycle and can "sense" and correct deviations from this average. Most of the current knowledge on plasmid replication and its control is based on the results of analyses performed with pure cultures under steady-state growth conditions. This knowledge sets important parameters needed to understand the maintenance of these genetic elements in mixed populations and under environmental conditions.
Collapse
Affiliation(s)
- G del Solar
- Centro de Investigaciones Biológicas, CSIC, E-28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
25
|
Strohmaier H, Noiges R, Kotschan S, Sawers G, Högenauer G, Zechner EL, Koraimann G. Signal transduction and bacterial conjugation: characterization of the role of ArcA in regulating conjugative transfer of the resistance plasmid R1. J Mol Biol 1998; 277:309-16. [PMID: 9514749 DOI: 10.1006/jmbi.1997.1598] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of the two-component response regulator ArcA protein in the transfer of the conjugative resistance plasmid R1 was investigated using a variety of in vivo and in vitro assays. The frequency of conjugal DNA transfer of plasmid R1-16, a derepressed variant of R1, was reduced by four orders of magnitude in an Escherichia coli host with a mutation in the arcA gene. Measurements of mRNAs transcribed from key plasmid transfer genes revealed that the abundance of each of the mRNA species investigated was reduced significantly in an arcA background. Gene fusion studies with the R1 PY promoter, the major promoter of the transfer operon, and a lacZ reporter gene, indicated that arcA is required for maximal expression from this promoter. However, a stimulating effect of arcA could only be detected when the plasmid-specified positive regulator of the transfer genes, traJ, was present. Electrophoretic mobility shift assays were used to demonstrate specific binding of purified ArcA protein and a purified and phosphorylated oligohistidine-tagged ArcA (His6-ArcA) to a DNA fragment containing the PY promoter region. The binding of phosphorylated His6-ArcA to the PY promoter was further characterized by DNase I footprinting. The observed protection pattern was characteristic for ArcA acting as a transcriptional activator.
Collapse
Affiliation(s)
- H Strohmaier
- Institut für Mikrobiologie, Universität Graz, Universitätsplatz 2, Graz, A-8010, Austria
| | | | | | | | | | | | | |
Collapse
|
26
|
Kupelwieser G, Schwab M, Högenauer G, Koraimann G, Zechner EL. Transfer protein TraM stimulates TraI-catalyzed cleavage of the transfer origin of plasmid R1 in vivo. J Mol Biol 1998; 275:81-94. [PMID: 9451441 DOI: 10.1006/jmbi.1997.1436] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Factors contributing directly to the cleavage of the conjugative transfer origin of plasmid R1 in Escherichia coli were investigated. The essential transfer protein TraM was identified as a necessary positive effector of the catalytic activity of TraI relaxase at the R1 transfer origin in the absence of protein TraY. The stimulatory effect of TraM on the cleavage reaction in vivo correlated with the capacity of TraM to bind origin DNA. TraM was shown to be essential for heterologous mobilization of recombinant origin DNA. The requirement for TraM to promote mobilization was distinct from the protein's positive effect on transfer gene regulation. Chimeric traM alleles, fusing heterologous amino and carboxyl coding sequences from the traM genes of the R1 and the IncFI plasmid P307, were used to localize the specificity determinant of TraM's DNA binding activity. Use of the chimeric alleles also revealed that the requirement for TraM in mobilization is origin specific but transfer system independent. No evidence was found for a plasmid specific activity of TraM at a stage in the transfer process subsequent to the initial cleavage of origin DNA. In light of TraM's regulatory functions in transfer gene expression, we propose that TraM could control conjugative DNA processing in response to intracellular levels of transfer proteins.
Collapse
Affiliation(s)
- G Kupelwieser
- Institut für Mikrobiologie Karl-Franzens-Universität Graz, Austria
| | | | | | | | | |
Collapse
|