1
|
Aboofazeli N, Khosravi S, Bagheri H, Chandler SF, Pan SQ, Azadi P. Conquering Limitations: Exploring the Factors that Drive Successful Agrobacterium-Mediated Genetic Transformation of Recalcitrant Plant Species. Mol Biotechnol 2024:10.1007/s12033-024-01247-x. [PMID: 39177863 DOI: 10.1007/s12033-024-01247-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024]
Abstract
Agrobacterium-mediated transformation is a preferred method for genetic engineering and genome editing of plants due to its numerous advantages, although not all species exhibit transformability. Genetic engineering and plant genome editing methods are technically challenging in recalcitrant crop plants. Factors affecting the poor rate of transformation in such species include host genotype, Agrobacterium genotype, type of explant, physiological condition of the explant, vector, selectable marker, inoculation method, chemical additives, antioxidative compounds, transformation-enhancing compounds, medium formulation, optimization of culture conditions, and pre-treatments. This review provides novel insights into the key factors involved in gene transfer facilitated by Agrobacterium and proposes potential solutions to overcome existing barriers to transformation in recalcitrant species, thereby contributing to improvement programs for these species. This review introduces the key factors that impact the effectiveness of a molecular breeding program using Agrobacterium-mediated transformation, specifically focusing on recalcitrant plant species.
Collapse
Affiliation(s)
- Nafiseh Aboofazeli
- Novin Giti Gene Biotech R&D Center (N.G.G), Imam Khomeini Higher Education Center, Karaj, Iran
| | - Solmaz Khosravi
- Department of Genetic Engineering, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran (ABRII), Postal Code: 3135933152, Karaj, Iran
| | - Hedayat Bagheri
- Department of Biotechnology, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, 65174, Iran
| | | | - Shen Q Pan
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Republic of Singapore
| | - Pejman Azadi
- Department of Genetic Engineering, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran (ABRII), Postal Code: 3135933152, Karaj, Iran.
| |
Collapse
|
2
|
Kaur M, Manchanda P, Kalia A, Ahmed FK, Nepovimova E, Kuca K, Abd-Elsalam KA. Agroinfiltration Mediated Scalable Transient Gene Expression in Genome Edited Crop Plants. Int J Mol Sci 2021; 22:10882. [PMID: 34639221 PMCID: PMC8509792 DOI: 10.3390/ijms221910882] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 10/03/2021] [Indexed: 02/07/2023] Open
Abstract
Agrobacterium-mediated transformation is one of the most commonly used genetic transformation method that involves transfer of foreign genes into target plants. Agroinfiltration, an Agrobacterium-based transient approach and the breakthrough discovery of CRISPR/Cas9 holds trending stature to perform targeted and efficient genome editing (GE). The predominant feature of agroinfiltration is the abolishment of Transfer-DNA (T-DNA) integration event to ensure fewer biosafety and regulatory issues besides showcasing the capability to perform transcription and translation efficiently, hence providing a large picture through pilot-scale experiment via transient approach. The direct delivery of recombinant agrobacteria through this approach carrying CRISPR/Cas cassette to knockout the expression of the target gene in the intercellular tissue spaces by physical or vacuum infiltration can simplify the targeted site modification. This review aims to provide information on Agrobacterium-mediated transformation and implementation of agroinfiltration with GE to widen the horizon of targeted genome editing before a stable genome editing approach. This will ease the screening of numerous functions of genes in different plant species with wider applicability in future.
Collapse
Affiliation(s)
- Maninder Kaur
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab 141004, India;
| | - Pooja Manchanda
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab 141004, India;
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab 141004, India;
| | - Farah K. Ahmed
- Biotechnology English Program, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
- Biomedical Research Center, University Hospital Hradec Kralove, 50005 Hradec Kralove, Czech Republic
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center (ARC), 9-Gamaa St., Giza 12619, Egypt;
| |
Collapse
|
3
|
Mohammed S, Samad AA, Rahmat Z. Agrobacterium-Mediated Transformation of Rice: Constraints and Possible Solutions. RICE SCIENCE 2019; 26:133-146. [DOI: 10.1016/j.rsci.2019.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
4
|
Hwang HH, Yu M, Lai EM. Agrobacterium-mediated plant transformation: biology and applications. THE ARABIDOPSIS BOOK 2017; 15:e0186. [PMID: 31068763 PMCID: PMC6501860 DOI: 10.1199/tab.0186] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant genetic transformation heavily relies on the bacterial pathogen Agrobacterium tumefaciens as a powerful tool to deliver genes of interest into a host plant. Inside the plant nucleus, the transferred DNA is capable of integrating into the plant genome for inheritance to the next generation (i.e. stable transformation). Alternatively, the foreign DNA can transiently remain in the nucleus without integrating into the genome but still be transcribed to produce desirable gene products (i.e. transient transformation). From the discovery of A. tumefaciens to its wide application in plant biotechnology, numerous aspects of the interaction between A. tumefaciens and plants have been elucidated. This article aims to provide a comprehensive review of the biology and the applications of Agrobacterium-mediated plant transformation, which may be useful for both microbiologists and plant biologists who desire a better understanding of plant transformation, protein expression in plants, and plant-microbe interaction.
Collapse
Affiliation(s)
- Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, 402
| | - Manda Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, 115
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, 115
| |
Collapse
|
5
|
A novel in vitro transformation of Lepidium draba L. using rapid direct shoot regeneration. 3 Biotech 2017; 7:284. [PMID: 28828291 DOI: 10.1007/s13205-017-0915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022] Open
Abstract
The present research is carried out to study Lepidium draba gene transformation for the first time, using direct shoot explants. As a prerequisite for gene transformation, the regeneration conditions in L. draba were optimized. We achieved an efficient and reproducible protocol for successful direct shoot regeneration without intervening callus formation. The results indicate that L. draba is the insistent species of Brassicaceae in direct shoot regeneration. Various explants of L. draba were genetically transformed with different strains of Agrobacterium tumefaciens, viz., LBA4404, GV3850, GV3101, and EHA105, using the vector pBI121. Expression of GUS reporter protein was assayed by histochemical staining. In addition, using the PCR method with specific primers proved the integration of GUS gene into the plants. The highest transformation efficiency was achieved with Agrobacterium strain GV3850. Moreover, we found that infected hypocotyl and root explants of L. draba interestingly yielded higher transformation efficiency, so that in hypocotyls on average exceeded 70% of the explants. This study showed that L. draba, in addition to the numerous desirable traits, has a high potential for gene transfer.
Collapse
|
6
|
|
7
|
Kalbande BB, Patil AS. Plant tissue culture independent Agrobacterium tumefaciens mediated In-planta transformation strategy for upland cotton ( Gossypium hirsutum). J Genet Eng Biotechnol 2016; 14:9-18. [PMID: 30647592 PMCID: PMC6299899 DOI: 10.1016/j.jgeb.2016.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/21/2016] [Accepted: 05/01/2016] [Indexed: 11/17/2022]
Abstract
A new method of transgenic development called "In-planta" transformation method, where Agrobacterium is used to infect the plantlets but the steps of in vitro regeneration of plants is totally avoided. In this study, we have reported a simple In-planta method for efficient transformation of diploid cotton Gossypium hirsutum cv LRK-516 Anjali using Agrobacterium tumefaciens EHA-105 harbouring recombinant binary vector plasmid pBinAR with Arabidopsis At-NPR1 gene. Four day old plantlets were used for transformation. A vertical cut was made at the junction of cotyledonary leaves, moderately bisecting the shoot tip and exposing meristem cells at apical meristem. This site was infected with Agrobacterium inoculum. The transgenic events obtained were tested positive for the presence of At-NPR1 gene with promoter nptII gene. They are also tested negative for vector backbone integration and Agrobacterium contamination in T0 events. With this method a transformation frequency of 6.89% was reported for the cv LRK-516.
Collapse
|
8
|
Prasad B, Vadakedath N, Jeong HJ, General T, Cho MG, Lein W. Agrobacterium tumefaciens-mediated genetic transformation of haptophytes (Isochrysis species). Appl Microbiol Biotechnol 2014; 98:8629-39. [PMID: 24993358 DOI: 10.1007/s00253-014-5900-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 06/12/2014] [Accepted: 06/15/2014] [Indexed: 01/28/2023]
Abstract
Isochrysis galbana and Isochrysis sp. are economically important microalgae from the division of haptophytes. Here, we report Agrobacterium-mediated stable DNA transfer into their nuclear genomes. Initial studies were performed to standardize co-cultivation media and determine the sensitivity of the microalgae to selective agents. Up to 1 mg/ml of the antibiotic hygromycin did not inhibit growth, whereas both the haptophytes bleached in artificial seawater (ASW) medium containing micromolar concentrations of the herbicide norflurazon. Co-cultivation of Isochrysis sp. and I. galbana with Agrobacterium tumefaciens strain LBA 4404 harboring the binary vector pCAMBIA 1380-pds-L504R yielded norflurazon-resistant (NR) colonies visible on selective plates after 20-30 days. pCAMBIA 1380-pds-L540R was constructed by cloning a mutated genomic phytoene desaturase (pds) gene from Haematococcus pluvialis as a selectable marker gene into the binary vector system pCAMBIA 1380. Co-cultivation of Isochrysis sp. with A. tumefaciens in ASW medium containing 200 μM of acetosyringone for 72 h produced the highest number of NR cells. For I. galbana, 100 μM of acetosyringone, ASW medium, and 48 h co-cultivation period appeared to be optimum co-cultivation parameters. The NR colonies kept their resistance phenotype for at least 24 months, even in the absence of selective pressure. The transfer of the pds gene in NR cells was shown by PCR amplification of the T-DNA sequences from the genomic DNA of NR cells and Southern blot analysis using T-DNA sequences as probes. The genetic manipulation described here will allow metabolic engineering and a better understanding of several biochemical pathways in the future.
Collapse
Affiliation(s)
- Binod Prasad
- Department of Biotechnology, Dongseo University, San 47 Jurye-ro, Sasang-Gu, Busan, 617-716, South Korea
| | | | | | | | | | | |
Collapse
|
9
|
Brew-Appiah RAT, Ankrah N, Liu W, Konzak CF, von Wettstein D, Rustgi S. Generation of doubled haploid transgenic wheat lines by microspore transformation. PLoS One 2013; 8:e80155. [PMID: 24260351 PMCID: PMC3832437 DOI: 10.1371/journal.pone.0080155] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 10/01/2013] [Indexed: 11/18/2022] Open
Abstract
Microspores can be induced to develop homozygous doubled haploid plants in a single generation. In the present experiments androgenic microspores of wheat have been genetically transformed and developed into mature homozygous transgenic plants. Two different transformation techniques were investigated, one employing electroporation and the other co-cultivation with Agrobacterium tumefaciens. Different tissue culture and transfection conditions were tested on nine different wheat cultivars using four different constructs. A total of 19 fertile transformants in five genotypes from four market classes of common wheat were recovered by the two procedures. PCR followed by DNA sequencing of the products, Southern blot analyses and bio/histo-chemical and histological assays of the recombinant enzymes confirmed the presence of the transgenes in the T0 transformants and their stable inheritance in homozygous T1∶2 doubled haploid progenies. Several decisive factors determining the transformation and regeneration efficiency with the two procedures were determined: (i) pretreatment of immature spikes with CuSO4 solution (500 mg/L) at 4°C for 10 days; (ii) electroporation of plasmid DNA in enlarged microspores by a single pulse of ∼375 V; (iii) induction of microspores after transfection at 28°C in NPB-99 medium and regeneration at 26°C in MMS5 medium; (iv) co-cultivation with Agrobacterium AGL-1 cells for transfer of plasmid T-DNA into microspores at day 0 for <24 hours; and (v) elimination of AGL-1 cells after co-cultivation with timentin (200-400 mg/L).
Collapse
Affiliation(s)
- Rhoda A. T. Brew-Appiah
- Department of Crop & Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - Nii Ankrah
- Department of Crop & Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - Weiguo Liu
- Department of Crop & Soil Sciences, Washington State University, Pullman, Washington, United States of America
- Doubled Haploid Laboratory, Pioneer Hi-Bred Int’l, Inc., Waipahu, Hawaii, United States of America
| | - Calvin F. Konzak
- Department of Crop & Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - Diter von Wettstein
- Department of Crop & Soil Sciences, Washington State University, Pullman, Washington, United States of America
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Sachin Rustgi
- Department of Crop & Soil Sciences, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
10
|
Development of Transgenic Papaya through Agrobacterium-Mediated Transformation. Int J Genomics 2013; 2013:235487. [PMID: 24066284 PMCID: PMC3771462 DOI: 10.1155/2013/235487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/22/2013] [Accepted: 07/08/2013] [Indexed: 11/17/2022] Open
Abstract
Transgenic papaya plants were regenerated from hypocotyls and immature zygotic embryo after cocultivation with Agrobacterium tumefaciens LBA-4404 carrying a binary plasmid vector system containing neomycin phosphotransferase (nptII) gene as the selectable marker and β-glucuronidase (GUS) as the reporter gene. The explants were co-cultivated with Agrobacterium tumefaciens on regeneration medium containing 500 mg/L carbenicillin + 200 mg/L cefotaxime for one week. The cocultivated explants were transferred into the final selection medium containing 500 mg/L carbenicillin + 200 mg/L cefotaxime + 50 mg/L kanamycin for callus induction as well as plant regeneration. The callus derived from the hypocotyls of Carica papaya cv. Shahi showed the highest positive GUS activities compared to Carica papaya cv. Ranchi. The transformed callus grew vigorously and formed embryos followed by transgenic plantlets successfully. The result of this study showed that the hypocotyls of C. papaya cv. Shahi and C. papaya cv. Ranchi are better explants for genetic transformation compared to immature embryos. The transformed C. papaya cv. Shahi also showed the maximum number of plant regeneration compared to that of C. papaya cv. Ranchi.
Collapse
|
11
|
Ziemienowicz A, Shim YS, Matsuoka A, Eudes F, Kovalchuk I. A novel method of transgene delivery into triticale plants using the Agrobacterium transferred DNA-derived nano-complex. PLANT PHYSIOLOGY 2012; 158:1503-13. [PMID: 22291201 PMCID: PMC3320166 DOI: 10.1104/pp.111.192856] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 01/25/2012] [Indexed: 05/22/2023]
Abstract
Genetic transformation of monocotyledonous plants still presents a challenge for plant biologists and biotechnologists because monocots are difficult to transform with Agrobacterium tumefaciens, whereas other transgenesis methods, such as gold particle-mediated transformation, result in poor transgene expression because of integration of truncated DNA molecules. We developed a method of transgene delivery into monocots. This method relies on the use of an in vitro-prepared nano-complex consisting of transferred DNA, virulence protein D2, and recombination protein A delivered to triticale microspores with the help of a Tat2 cell-penetrating peptide. We showed that this approach allowed for single transgene copy integration events and prevented degradation of delivered DNA, thus leading to the integration of intact copies of the transgene into the genome of triticale plants. This resulted in transgene expression in all transgenic plants regenerated from microspores transfected with the full transferred DNA/protein complex. This approach can easily substitute the bombardment technique currently used for monocots and will be highly valuable for plant biology and biotechnology.
Collapse
Affiliation(s)
- Alicja Ziemienowicz
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4.
| | | | | | | | | |
Collapse
|
12
|
Veena. Engineering plants for future: tools and options. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2008; 14:131-5. [PMID: 23572880 PMCID: PMC3550667 DOI: 10.1007/s12298-008-0012-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The availability of efficient techniques for genetic engineering of plants across taxonomic boundaries is a must to address the challenges posed by the global growth of the human population. This will shorten the time and accelerate the entire process needed for inclusion of novel traits in plants with potential to increase agricultural productivity, improved nutritional quality as well as processing characteristics. This mini-review summarizes current understanding, latest advancements and comparisons of various methods used to date to generate transgenic plants with a special focus on the biological model of gene delivery into plants.
Collapse
Affiliation(s)
- Veena
- Donald Danforth Plant Science Center, 975 North Warson Road, Saint Louis, MO USA
| |
Collapse
|
13
|
De Buck S, Peck I, De Wilde C, Marjanac G, Nolf J, De Paepe A, Depicker A. Generation of single-copy T-DNA transformants in Arabidopsis by the CRE/loxP recombination-mediated resolution system. PLANT PHYSIOLOGY 2007; 145:1171-82. [PMID: 17693537 PMCID: PMC2151725 DOI: 10.1104/pp.107.104067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We investigated whether complex T-DNA loci, often resulting in low transgene expression, can be resolved efficiently into single copies by CRE/loxP-mediated recombination. An SB-loxP T-DNA, containing two invertedly oriented loxP sequences located inside and immediately adjacent to the T-DNA border ends, was constructed. Regardless of the orientation and number of SB-loxP-derived T-DNAs integrated at one locus, recombination between the outermost loxP sequences in direct orientation should resolve multiple copies into a single T-DNA copy. Seven transformants with a complex SB-loxP locus were crossed with a CRE-expressing plant. In three hybrids, the complex T-DNA locus was reduced efficiently to a single-copy locus. Upon segregation of the CRE recombinase gene, only the simplified T-DNA locus was found in the progeny, demonstrating DNA had been excised efficiently in the progenitor cells of the gametes. In the two transformants with an inverted T-DNA repeat, the T-DNA resolution was accompanied by at least a 10-fold enhanced transgene expression. Therefore, the resolution of complex loci to a single-copy T-DNA insert by the CRE/loxP recombination system can become a valuable method for the production of elite transgenic Arabidopsis thaliana plants that are less prone to gene silencing.
Collapse
Affiliation(s)
- Sylvie De Buck
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, and Department of Molecular Genetics, Ghent University, 9052 Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
14
|
Xu H, Zhou X, Lu J, Wang J, Wang X. Hairy roots induced by Agrobacterium rhizogenes and production of regenerative plants in hairy root cultures in maize. ACTA ACUST UNITED AC 2006; 49:305-10. [PMID: 16989275 DOI: 10.1007/s11427-006-0305-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hairy roots of maize were induced by infecting 15-d calli with Agrobacterium rhizogenes. The hairy roots cultured in hormone-free media showed the vigorous growth and typical hairy root features. The regenerated plants were produced from hairy roots in MS media supplemented with 1.6 mg/L ZT and 0.4 mg/L NAA. The PCR-Southern hybridization demonstrated that T-DNA had been integrated into the chromosome of regenerated plants.
Collapse
Affiliation(s)
- Hongwei Xu
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | | | | | | | | |
Collapse
|
15
|
Nagadhara D, Ramesh S, Pasalu IC, Rao YK, Krishnaiah NV, Sarma NP, Bown DP, Gatehouse JA, Reddy VD, Rao KV. Transgenic indica rice resistant to sap-sucking insects. PLANT BIOTECHNOLOGY JOURNAL 2003; 1:231-40. [PMID: 17156035 DOI: 10.1046/j.1467-7652.2003.00022.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Agrobacterium-mediated genetic transformation has been optimized in indica rice susceptible to sap-sucking insects, viz., brown planthopper (BPH) and green leafhopper (GLH). Snowdrop lectin gene (gna) from Galanthus nivalis, driven by phloem-specific rice-sucrose-synthase promoter, along with herbicide resistance gene (bar) driven by CaMV 35S promoter, was employed for genetic transformation. Embryogenic calli--after co-cultivation with Agrobacterium strain LBA4404 harbouring Ti plasmid pSB111-bar-gna--were selected on the medium containing phosphinothricin. PCR and Southern blot analyses confirmed the stable integration of both the genes into genomes of transgenic (T0) rice plants. Northern and Western blot analyses revealed the expression of gna in the transgenic plants. In the T1 and T2 generations, the gna and bar transgenes showed co-segregation at a ratio of 3 : 1. Plant progenies expressing gna, in T1 and T2, exhibited substantial resistance against BPH and GLH pests. This is the first report dealing with transgenic indica rice exhibiting high resistance to both insects.
Collapse
Affiliation(s)
- D Nagadhara
- Centre for Plant Molecular Biology, Osmania University, Hyderabad-500 007, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dinkins RD, Reddy MSS, Meurer CA, Redmond CT, Collins GB. Recent Advances in Soybean Transformation. FOCUS ON BIOTECHNOLOGY 2003. [DOI: 10.1007/978-94-017-0139-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
17
|
Stahl R, Horvath H, Van Fleet J, Voetz M, von Wettstein D, Wolf N. T-DNA integration into the barley genome from single and double cassette vectors. Proc Natl Acad Sci U S A 2002; 99:2146-51. [PMID: 11854511 PMCID: PMC122333 DOI: 10.1073/pnas.032645299] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Patterns and sites of T-DNA integrations into the barley genome from single and double cassette vectors are of interest for the identification of cultivars with value added properties as well as for the production of selection marker-free transgenic lines that can be retransformed. T-DNA/Plant DNA junctions were obtained by capturing a single-stranded DNA with a biotinylated primer annealing to the vector adjacent to the border and an adaptor ligated to a restriction site overhang in the flanking barley DNA. The captured junction was converted into a double strand and sequenced. Fifty left and right border junctions from plants transgenic for one of five human genes were analyzed. Primers of 15-30 nucleotides designed from the genomic DNA at the insertion site can PCR amplify fragments that identify unequivocally any transformant. Adjacent transgene insertions with single cassette vectors were always in tandem direct repeat configuration. With regard to T-DNA integration the patterns were comparable to the variations found in dicotyledonous plants. Twelve of the 46 integrations characterized by blast searches were within different regions of the BARE-1 retrotransposon element occurring with a frequency of 2 x 10(5) copies in the barley genome. The use of border junctions to identify number of copies and loci of integrates in transformants is discussed.
Collapse
Affiliation(s)
- Rainer Stahl
- Maltagen Research Laboratory, Schaarstrasse 1, D-56626 Andernach, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Srivastava V, Ow DW. Single-copy primary transformants of maize obtained through the co-introduction of a recombinase-expressing construct. PLANT MOLECULAR BIOLOGY 2001; 46:561-566. [PMID: 11516149 DOI: 10.1023/a:1010646100261] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We describe a variation of the method to generate single-copy transgenic plants by recombinase-mediated resolution of multiple insertions. In this study, a transgene construct flanked by oppositely oriented lox sites was co-bombarded into maize cells along with a cre-expressing construct. From analysis of the regenerated plants, a high percentage of the primary transformants harbored a single copy of the introduced transgene, and among these, a majority also lacked the cre construct. We deduce that the expression of cre must have contributed to resolving concatemeric molecules either prior to or after DNA integration into the maize genome.
Collapse
Affiliation(s)
- V Srivastava
- Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, USA
| | | |
Collapse
|
19
|
Li W, Guo G, Zheng G. Agrobacterium-mediated transformation: state of the art and future prospect. ACTA ACUST UNITED AC 2000. [DOI: 10.1007/bf02886209] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Srivastava V, Anderson OD, Ow DW. Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proc Natl Acad Sci U S A 1999; 96:11117-21. [PMID: 10500139 PMCID: PMC17996 DOI: 10.1073/pnas.96.20.11117] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/1999] [Indexed: 01/14/2023] Open
Abstract
Genetic transformation of plants often results in multiple copies of the introduced DNA at a single locus. To ensure that only a single copy of a foreign gene resides in the plant genome, we used a strategy based on site-specific recombination. The transformation vector consists of a transgene flanked by recombination sites in an inverted orientation. Regardless of the number of copies integrated between the outermost transgenes, recombination between the outermost sites resolves the integrated molecules into a single copy. An example of this strategy has been demonstrated with wheat transformation, where four of four multiple-copy loci were resolved successfully into single-copy transgenes.
Collapse
Affiliation(s)
- V Srivastava
- Plant Gene Expression Center, U.S. Department of Agriculture, Agricultural Research Service, Albany, CA 94710, USA
| | | | | |
Collapse
|
21
|
Affiliation(s)
- G Hansen
- Novartis Agribusiness Biotechnology Research, Inc., Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
22
|
Methods of Genetic Transformation: Electroporation and Polyethylene Glycol Treatment. MOLECULAR IMPROVEMENT OF CEREAL CROPS 1999. [DOI: 10.1007/978-94-011-4802-3_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Relić B, Andjelković M, Rossi L, Nagamine Y, Hohn B. Interaction of the DNA modifying proteins VirD1 and VirD2 of Agrobacterium tumefaciens: analysis by subcellular localization in mammalian cells. Proc Natl Acad Sci U S A 1998; 95:9105-10. [PMID: 9689041 PMCID: PMC21299 DOI: 10.1073/pnas.95.16.9105] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Interaction between Agrobacterium tumefaciens and plants provides a unique example of interkingdom gene transfer. Agrobacterium, a plant pathogen, is capable to stably transform the plant cell with a segment of its own DNA called T-DNA (transferred DNA). This process depends, among others, on the specialized bacterial virulence proteins VirD1 and VirD2 that excise the T-DNA from its adjacent sequences. Subsequent to transfer to the plant cell, the virulence protein VirD2, through its nuclear localization signal (NLS), is believed to guide the T-DNA to the nucleus. The T-DNA then is integrated into the plant genome. Although both of these proteins are essential for bacterial virulence, physical interaction of them has not been analyzed so far. We studied associations between these proteins by expressing them in mammalian cells and by testing for intracellular localization and colocalization. When expressed in human cells [HeLa, human embryo kidney (HEK) 293], the VirD2 protein homogeneously distributed over the nucleoplasm. The presence of any of two NLSs, on the N and C termini of VirD2, was sufficient for its efficient nuclear localization whereas deletion of both NLSs rendered the protein cytoplasmic. However, this double NLS mutant was translocated to the nucleus in the presence of wild-type VirD2 protein, implying VirD2-VirD2 interaction. The VirD1 protein, by itself localized in the cytoplasm, moved to the nucleus when coexpressed with the VirD2 protein, suggesting VirD1-VirD2 interaction. This interaction was confirmed by coimmunoprecipitation tests. Of interest, both proteins coimported to the nucleus showed a similar, peculiar sublocalization. The data are discussed in terms of functions of the VirD proteins. In addition, coimport of proteins into nuclei is suggested as a useful system in studying individual protein-protein interactions.
Collapse
Affiliation(s)
- B Relić
- Friedrich Miescher-Institut, P.O. Box 2543, CH-4002 Basel, Switzerland.
| | | | | | | | | |
Collapse
|
24
|
Abstract
Scientists have entered a new era of agricultural biotechnology. No longer is it sufficient merely to introduce a gene into a plant. The new generation of technology requires that genes be introduced into agronomically important crops in single copy and without the integration of extraneous vector 'backbone' sequences and, perhaps, even selectable markers. The expression of transgenes must be predictable and consistent among numerous independent transformants. Recent research has more clearly defined these problems and pointed the way to their solution.
Collapse
Affiliation(s)
- SB Gelvin
- Department of Biological Sciences Purdue University West Lafayette, IN 47907-1392, USA
| |
Collapse
|