1
|
Wawrzyniak P, Sobolewska-Ruta A, Zaleski P, Łukasiewicz N, Kabaj P, Kierył P, Gościk A, Bierczyńska-Krzysik A, Baran P, Mazurkiewicz-Pisarek A, Płucienniczak A, Bartosik D. Molecular dissection of the replication system of plasmid pIGRK encoding two in-frame Rep proteins with antagonistic functions. BMC Microbiol 2019; 19:254. [PMID: 31722681 PMCID: PMC6854812 DOI: 10.1186/s12866-019-1595-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 09/10/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Gene overlapping is a frequent phenomenon in microbial genomes. Excluding so-called "trivial overlapping", there are significant implications of such genetic arrangements, including regulation of gene expression and modification of protein activity. It is also postulated that, besides gene duplication, the appearance of overlapping genes (OGs) is one of the most important factors promoting a genome's novelty and evolution. OGs coding for in-frame proteins with different functions are a particularly interesting case. In this study we identified and characterized two in-frame proteins encoded by OGs on plasmid pIGRK from Klebsiella pneumoniae, a representative of the newly distinguished pHW126 plasmid family. RESULTS A single repR locus located within the replication system of plasmid pIGRK encodes, in the same frame, two functional polypeptides: a full-length RepR protein and a RepR' protein (with N-terminal truncation) translated from an internal START codon. Both proteins form homodimers, and interact with diverse DNA regions within the plasmid replication origin and repR promoter operator. Interestingly, RepR and RepR' have opposing functions - RepR is crucial for initiation of pIGRK replication, while RepR' is a negative regulator of this process. Nevertheless, both proteins act cooperatively as negative transcriptional regulators of their own expression. CONCLUSIONS Regulation of the initiation of pIGRK replication is a complex process in which a major role is played by two in-frame proteins with antagonistic functions. In-frame encoded Rep proteins are uncommon, having been described in only a few plasmids. This is the first description of such proteins in a plasmid of the pHW126 family.
Collapse
Affiliation(s)
- Paweł Wawrzyniak
- Bioengineering Department, Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516 Warsaw, Poland
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland
| | - Agnieszka Sobolewska-Ruta
- Bioengineering Department, Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516 Warsaw, Poland
| | - Piotr Zaleski
- Bioengineering Department, Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516 Warsaw, Poland
| | - Natalia Łukasiewicz
- Bioengineering Department, Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516 Warsaw, Poland
| | - Paulina Kabaj
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland
| | - Piotr Kierył
- Bioengineering Department, Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516 Warsaw, Poland
| | - Agata Gościk
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland
| | - Anna Bierczyńska-Krzysik
- Bioengineering Department, Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516 Warsaw, Poland
| | - Piotr Baran
- Bioengineering Department, Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516 Warsaw, Poland
| | - Anna Mazurkiewicz-Pisarek
- Bioengineering Department, Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516 Warsaw, Poland
| | - Andrzej Płucienniczak
- Bioengineering Department, Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516 Warsaw, Poland
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
2
|
Rakowski SA, Filutowicz M. Plasmid R6K replication control. Plasmid 2013; 69:231-42. [PMID: 23474464 DOI: 10.1016/j.plasmid.2013.02.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 02/14/2013] [Accepted: 02/16/2013] [Indexed: 10/27/2022]
Abstract
The focus of this minireview is the replication control of the 39.9-kb plasmid R6K and its derivatives. Historically, this plasmid was thought to have a narrow host range but more recent findings indicate that its derivatives can replicate in a variety of enteric and non-enteric bacterial species (Wild et al., 2004). In the four-plus decades since it was first described, R6K has proven to be an excellent model for studies of plasmid DNA replication. In part this is because of its similarities to other systems in which replication is activated and regulated by Rep protein and iteron-containing DNA. However its apparent idiosynchracies have also added to its significance (e.g., independent and co-dependent replication origins, and Rep dimers that stably bind iterons). Here, we survey the current state of knowledge regarding R6K replication and place individual regulatory elements into a proposed homeostatic model with implications for the biological significance of R6K and its multiple origins of replication.
Collapse
Affiliation(s)
- Sheryl A Rakowski
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
3
|
Norman A, Hansen LH, She Q, Sørensen SJ. Nucleotide sequence of pOLA52: a conjugative IncX1 plasmid from Escherichia coli which enables biofilm formation and multidrug efflux. Plasmid 2008; 60:59-74. [PMID: 18440636 DOI: 10.1016/j.plasmid.2008.03.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 03/11/2008] [Accepted: 03/13/2008] [Indexed: 12/01/2022]
Abstract
The large conjugative multidrug resistance (MDR) plasmid pOLA52 was sequenced and annotated. The plasmid encodes two phenotypes normally associated with the chromosomes of opportunistic pathogens, namely MDR via a resistance-nodulation-division (RND)-type efflux-pump (oqxAB), and the formation of type 3 fimbriae (mrkABCDF). The plasmid was found to be 51,602 bp long with 68 putative genes. About half of the plasmid constituted a conserved IncX1-type backbone with predicted regions for conjugation, replication and partitioning, as well as a toxin/antitoxin (TA) plasmid addiction system. The plasmid was also classified as IncX1 with incompatibility testing. The conjugal transfer and plasmid maintenance regions of pOLA52 therefore seem to represent IncX1 orthologues of the well-characterized IncX2 plasmid R6K. Sequence homology searches in GenBank also suggested a considerably higher prevalence of IncX1 group plasmids than IncX2. The 21 kb 'genetic load' region of pOLA52 was shown to consist of a mosaic, among other things a fragmented Tn3 transposon encoding ampicillin resistance. Most notably the oqxAB and mrkABCDF cassettes were contained within two composite transposons (Tn6010 and Tn6011) that seemed to originate from Klebsiella pneumoniae, thus demonstrating the capability of IncX1 plasmids of facilitating lateral transfer of gene cassettes between different Enterobacteriaceae.
Collapse
Affiliation(s)
- Anders Norman
- Department of Biology, Evolution and Microbiology Section, University of Copenhagen, Sølvgade 83H, DK-1307 Copenhagen K, Denmark
| | | | | | | |
Collapse
|
4
|
Bowers LM, Filutowicz M. Cooperative binding mode of the inhibitors of R6K replication, pi dimers. J Mol Biol 2008; 377:609-15. [PMID: 18295232 DOI: 10.1016/j.jmb.2008.01.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 12/24/2007] [Accepted: 01/15/2008] [Indexed: 10/22/2022]
Abstract
The replication initiator protein, pi, plays an essential role in the initiation of plasmid R6K replication. Both monomers and dimers of pi bind to iterons in the gamma origin of plasmid R6K, yet monomers facilitate open complex formation, while dimers, the predominant form in the cell, do not. Consequently, pi monomers activate replication, while pi dimers inhibit replication. Recently, it was shown that the monomeric form of pi binds multiple tandem iterons in a strongly cooperative fashion, which might explain how monomers outcompete dimers for replication initiation when plasmid copy number and pi supply are low. Here, we examine cooperative binding of pi dimers and explore the role that these interactions may have in the inactivation of gamma origin. To examine pi dimer/iteron interactions in the absence of competing pi monomer/iteron interactions using wild-type pi, constructs were made with key base changes to each iteron that eliminate pi monomer binding yet have no impact on pi dimer binding. Our results indicate that, in the absence of pi monomers, pi dimers bind with greater cooperativity to alternate iterons than to adjacent iterons, thus preferentially leaving intervening iterons unbound and the origin unsaturated. We discuss new insights into plasmid replication control by pi dimers.
Collapse
Affiliation(s)
- Lisa M Bowers
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | | |
Collapse
|
5
|
Bowers LM, Krüger R, Filutowicz M. Mechanism of origin activation by monomers of R6K-encoded pi protein. J Mol Biol 2007; 368:928-38. [PMID: 17383678 PMCID: PMC2001305 DOI: 10.1016/j.jmb.2007.02.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 02/15/2007] [Accepted: 02/16/2007] [Indexed: 10/23/2022]
Abstract
One recurring theme in plasmid duplication is the recognition of the origin of replication (ori) by specific Rep proteins that bind to DNA sequences called iterons. For plasmid R6K, this process involves a complex interplay between monomers and dimers of the Rep protein, pi, with seven tandem iterons of gamma ori. Remarkably, both pi monomers and pi dimers can bind to iterons, a new paradigm in replication control. Dimers, the predominant form in the cell, inhibit replication, while monomers facilitate open complex formation and activate the ori. Here, we investigate a mechanism by which pi monomers out-compete pi dimers for iteron binding, and in so doing activate the ori. With an in vivo plasmid incompatibility assay, we find that pi monomers bind cooperatively to two adjacent iterons. Cooperative binding is eliminated by insertion of a half-helical turn between two iterons but is diminished only slightly by insertion of a full helical turn between two iterons. These studies show also that pi bound to a consensus site promotes occupancy of an adjacent mutated site, another hallmark of cooperative interactions. pi monomer/iteron interactions were quantified using a monomer-biased pi variant in vitro with the same collection of two-iteron constructs. The cooperativity coefficients mirror the plasmid incompatibility results for each construct tested. pi dimer/iteron interactions were quantified with a dimer-biased mutant in vitro and it was found that pi dimers bind with negligible cooperativity to two tandem iterons.
Collapse
Affiliation(s)
- Lisa M. Bowers
- Department of Bacteriology, University of Wisconsin-Madison, 420 Henry Mall, Madison, WI 53706, USA
| | | | - Marcin Filutowicz
- Department of Bacteriology, University of Wisconsin-Madison, 420 Henry Mall, Madison, WI 53706, USA
- *Corresponding author (M. Filutowicz): Tel. 608-262-6947; Fax. 608-262-9865; E-mail:
| |
Collapse
|
6
|
Han M, Aoki K, Yagura M, Itoh T. The ColE2-P9 Rep protein binds to the origin DNA as a monomer. Biochem Biophys Res Commun 2007; 353:306-10. [PMID: 17182000 DOI: 10.1016/j.bbrc.2006.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 12/04/2006] [Indexed: 11/28/2022]
Abstract
The Rep proteins of some plasmid replicons have two functions. Dimers bind to the operator sequences acting as auto-repressors, whereas monomers bind to the iterons to initiate replication of DNA. The ColE2 Rep proteins are present mostly in a dimeric form with some multimers larger than dimers in solution, while the form of Rep binding to Ori is not known. We used an EMSA-based method to determine the molecular weight of Rep in the Rep-Ori complex. The result suggested that Rep binds to Ori as a monomer. In addition, the result of EMSA using the Rep protein fused with the maltose binding protein and the His6-tag also supported this conclusion. We proposed that dimerization of Rep might probably be involved in keeping the copy number of the ColE2 plasmid at the normal low level by limiting the amount of active monomeric forms of Rep in the host cell.
Collapse
Affiliation(s)
- Man Han
- Department of Biology, Faculty of Science, Shinshu University, Matsumoto, Nagano 390-8621, Japan
| | | | | | | |
Collapse
|
7
|
Peng Y, Rakowski SA, Filutowicz M. Small deletion variants of the replication protein, pi, and their potential for over-replication-based antimicrobial activity. FEMS Microbiol Lett 2006; 261:245-52. [PMID: 16907728 DOI: 10.1111/j.1574-6968.2006.00364.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The emergence of multiply antibiotic-resistant microorganisms in the environment has become a serious public health threat. To address this, our lab has devised a methodology in which antimicrobial agents are transferred into unwanted cells using the process of bacterial conjugation. In the work described here, we pursued proteins that cause plasmid over-replication as potential antimicrobial agents. Our focus was on the pir-encoded pi protein of plasmid R6K that possesses both positive and negative functions in controlling gamma origin-based replication. We observed that three of four pir mutations examined, including two in-frame deletions, severely impaired negative plasmid-replication control. The resulting over-replication phenotype was particularly strong when a pir mutant was placed in cis to gamma origin. In conjugative mating experiments with several representatives of the family Enterobacteriaceae, the plasmids expressed postconjugational antimicrobial activity. The potential utility of a conjugation-based antimicrobial approach is discussed. Additionally, we describe the replication inhibitory function of a novel and useful Rep protein variant, pi*M36A;M38A, which binds iteron DNA exclusively as dimers.
Collapse
Affiliation(s)
- Yanyu Peng
- Department of Bacteriology, University of Wisconsin, Madison, USA
| | | | | |
Collapse
|
8
|
Kunnimalaiyaan S, Inman RB, Rakowski SA, Filutowicz M. Role of pi dimers in coupling ("handcuffing") of plasmid R6K's gamma ori iterons. J Bacteriol 2005; 187:3779-85. [PMID: 15901701 PMCID: PMC1112066 DOI: 10.1128/jb.187.11.3779-3785.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One proposed mechanism of replication inhibition in iteron-containing plasmids (ICPs) is "handcuffing," in which the coupling of origins via iteron-bound replication initiator (Rep) protein turns off origin function. In minimal R6K replicons, copy number control requires the interaction of plasmid-encoded pi protein with the seven 22-bp iterons of the gamma origin of replication. Like other related Rep proteins, pi exists as both monomers and dimers. However, the ability of pi dimers to bind iterons distinguishes R6K from most other ICPs, where only monomers have been observed to bind iterons. Here, we describe experiments to determine if monomers or dimers of pi protein are involved in the formation of handcuffed complexes. Standard ligation enhancement assays were done using pi variants with different propensities to bind iterons as monomers or dimers. Consistent with observations from several ICPs, a hyperreplicative variant (pi.P106L(wedge)F107S) exhibits deficiencies in handcuffing. Additionally, a novel dimer-biased variant of pi protein (pi.M36A(wedge)M38A), which lacks initiator function, handcuffs iteron-containing DNA more efficiently than does wild-type pi. The data suggest that pi dimers mediate handcuffing, supporting our previously proposed model of handcuffing in the gamma ori system. Thus, dimers of pi appear to possess three distinct inhibitory functions with respect to R6K replication: transcriptional autorepression of pi expression, in cis competition (for origin binding) with monomeric activator pi, and handcuffing-mediated inhibition of replication in trans.
Collapse
Affiliation(s)
- Selvi Kunnimalaiyaan
- Department of Bacteriology, University of Wisconsin-Madison, 420 Henry Mall, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
9
|
Bowers LM, Lapoint K, Anthony L, Pluciennik A, Filutowicz M. Bacterial expression system with tightly regulated gene expression and plasmid copy number. Gene 2004; 340:11-8. [PMID: 15556290 DOI: 10.1016/j.gene.2004.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 06/01/2004] [Accepted: 06/03/2004] [Indexed: 11/28/2022]
Abstract
A new Escherichia coli host/vector system has been engineered to allow tight and uniform modulation of gene expression and gamma origin (ori) plasmid copy number. Regulation of gamma ori plasmid copy number is achieved through arabinose-inducible expression of the necessary Rep protein, pi, whose gene was integrated into the chromosome of the host strain under control of the P(BAD) promoter. gamma ori replication can be uniformly modulated over 100-fold by changing the concentration of l-arabinose in the growth medium. This strain avoids the problem of all-or-nothing induction of P(BAD) because it is deficient in both arabinose uptake and degradation genes. Arabinose enters the cell by a mutant LacY transporter, LacYA177C, which is expressed from the host chromosome. Although this strain could be compatible with any gamma ori plasmid, we describe the utility of a gamma ori expression vector that allows especially tight regulation of gene expression. With this host/vector system, it is possible to independently modulate gene expression and gene dosage, facilitating the cloning and overproduction of toxic gene products. We describe the successful use of this system for cloning a highly potent toxin, Colicin E3, in the absence of its cognate immunity protein. This system could be useful for cloning genes encoding other potent toxins, screening libraries for potential toxins, and maintaining any gamma ori vector at precise copy levels in a cell.
Collapse
Affiliation(s)
- Lisa M Bowers
- Department of Bacteriology, University of Wisconsin-Madison, 420 Henry Mall Room 151, 1550 Linden Drive, Madison, WI 53706-1567, USA
| | | | | | | | | |
Collapse
|
10
|
Soubrier F, Laborderie B, Cameron B. Improvement of pCOR plasmid copy number for pharmaceutical applications. Appl Microbiol Biotechnol 2004; 66:683-8. [PMID: 15349701 DOI: 10.1007/s00253-004-1729-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Accepted: 07/23/2004] [Indexed: 10/26/2022]
Abstract
Production of pharmaceutical-grade plasmid DNA is becoming important as the demand for clinical batches is steadily growing. pCOR plasmids have been specifically designed and used for gene delivery into humans, and have been produced by high cell-density fermentation with a yield of 100 mg/l. This yield could probably be increased as long as the release specifications of bulk plasmid remain the same, particularly in terms of plasmid sequence. We report here the use of genetic approaches in Escherichia coli to increase the copy number of pCOR. The bacterial gene encoding the pi initiator-protein, which plays a pivotal role in pCOR replication, was mutagenized. A fluorescence-based screening methodology in E. coli was used to identify novel copy-up mutations. A particular combination of copy-up mutations translated into a 3-5-fold increase in monomer pCOR plasmid DNA per biomass unit.
Collapse
Affiliation(s)
- F Soubrier
- GENCELL SAS, 72-82 rue Léon Geffroy, 94400, Vitry-Sur-Seine, France.
| | | | | |
Collapse
|
11
|
Kunnimalaiyaan S, Krüger R, Ross W, Rakowski SA, Filutowicz M. Binding modes of the initiator and inhibitor forms of the replication protein pi to the gamma ori iteron of plasmid R6K. J Biol Chem 2004; 279:41058-66. [PMID: 15247259 DOI: 10.1074/jbc.m403151200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Discerning the interactions between initiator protein and the origin of replication should provide insights into the mechanism of DNA replication initiation. In the gamma origin of plasmid R6K, the Rep protein, pi, is distinctive in that it can bind the seven 22-bp iterons in two forms; pi monomers activate replication, whereas pi dimers act as inhibitors. In this work, we used wild type and variants of the pi protein with altered monomer/dimer ratios to study iteron/pi interactions. High resolution contact mapping was conducted using multiple techniques (missing base contact probing, methylation protection, base modification, and hydroxyl radical footprinting), and the electrophoretic separation of nucleoprotein complexes allowed us to discriminate between contact patterns produced by pi monomers and dimers. We also isolated iteron mutants that affected the binding of pi monomers (only) or both monomers and dimers. The mutational studies and footprinting analyses revealed that, when binding DNA, pi monomers interact with nucleotides spanning the entire length of the iteron. In contrast, pi dimers interact with only the left half of the iteron; however, the retained interactions are strikingly similar to those seen with monomers. These results support a model in which Rep protein dimerization disturbs one of two DNA binding domains important for monomer/iteron interaction; the dimer/iteron interaction utilizes only one DNA binding domain.
Collapse
Affiliation(s)
- Selvi Kunnimalaiyaan
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
12
|
Krüger R, Filutowicz M. pi protein- and ATP-dependent transitions from 'closed' to 'open' complexes at the gamma ori of plasmid R6K. Nucleic Acids Res 2004; 31:5993-6003. [PMID: 14530447 PMCID: PMC219486 DOI: 10.1093/nar/gkg809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
R6K-encoded pi protein can bind to the seven, 22 bp tandem iterons of the gamma origin. In this work, we use a variant of pi, His-pi.F107S, that is hyperactive in replication. In vitro, His-pi.F107S-dependent local DNA melting (open complex formation) occurs in the absence of host proteins (IHF/HU or DnaA) and it is positioned in the A + T-rich region adjacent to iterons. Experiments described here examine the effects of ATP, Mg2+ and temperature on the opening reaction. We show that the opening of the gamma origin can occur in the presence of ATP as well as AMP-PCP (a non-hydrolyzable ATP analog). This suggests that, for gamma origin, ATP hydrolysis may be unnecessary for open complex formation facilitated by His-pi.F107S. In the absence of ATP or Mg2+, His-pi.F107S yielded data suggestive of distortions in the iteron attributable to DNA bending rather than DNA melting. Our findings also demonstrate that ATP and pi stimulate open complex formation over a wide range of temperatures, but not at 0 degrees C. These and other results indicate that ATP and/or Mg2+ are not needed for His-pi.F107S binding to iterons and that ATP effects an allosteric change in the protein bound to gamma origin.
Collapse
Affiliation(s)
- Ricardo Krüger
- Department of Bacteriology, University of Wisconsin-Madison, 420 Henry Mall, Madison, WI 53706, USA
| | | |
Collapse
|
13
|
Abstract
The pi protein of plasmid R6K is a multifunctional replication (Rep) protein, its different activities attributable, in part, to different oligomeric states: monomers and dimers. We have previously shown that His-tagged variants of the protein can exhibit alterations in dimer stability. Herein, we examined the functional properties of selected His-tagged derivatives of pi (His-pi x wt and three hyperactive replication variants) to determine if the functionality of these proteins in replication, DNA binding, and oligomerization is altered. Our results indicate that these tagged proteins retain the characteristics previously demonstrated for their non-tagged counterparts making them suitable for ongoing studies of pi protein structure and functions in replication and transcription.
Collapse
Affiliation(s)
- Ricardo Krüger
- Department of Bacteriology, University of Wisconsin, 420 Henry Mall, Madison, WI 53706, USA
| | | |
Collapse
|
14
|
Díaz-López T, Lages-Gonzalo M, Serrano-López A, Alfonso C, Rivas G, Díaz-Orejas R, Giraldo R. Structural changes in RepA, a plasmid replication initiator, upon binding to origin DNA. J Biol Chem 2003; 278:18606-16. [PMID: 12637554 DOI: 10.1074/jbc.m212024200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RepA protein is the DNA replication initiator of the Pseudomonas plasmid pPS10. RepA dimers bind to an inversely repeated operator sequence in repA promoter, thus repressing its own synthesis, whereas monomers bind to four directly repeated sequences (iterons) to initiate DNA replication. We had proposed previously that RepA is composed of two winged-helix (WH) domains, a structural unit also present in eukaryotic and archaeal initiators. To bind to the whole iteron sequence through both domains, RepA should couple monomerization to a conformational change in the N-terminal WH, which includes a leucine zipper-like sequence motif. We show for the first time that, by itself, binding to iteron DNA in vitro dissociates RepA dimers into monomers and alters RepA conformation, suggesting an allosteric effect. Furthermore, we also show that similar changes in RepA are promoted by mutations that substitute two Leu residues of the putative leucine zipper by Ala, destabilizing the hydrophobic core of the first WH. We propose that this mutant (RepA-2L2A) resembles a transient folding intermediate in the pathway leading to active monomers. These findings, together with the known activation of other Rep-type proteins by chaperones, are relevant to understand the molecular basis of plasmid DNA replication initiation.
Collapse
Affiliation(s)
- Teresa Díaz-López
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas (CSIC), C/Velázquez, 144, 28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
15
|
Krüger R, Konieczny I, Filutowicz M. Monomer/dimer ratios of replication protein modulate the DNA strand-opening in a replication origin. J Mol Biol 2001; 306:945-55. [PMID: 11237610 DOI: 10.1006/jmbi.2000.4426] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA opening is an essential step in the initiation of replication via the Cairns mode of replication. The opening reaction was investigated in a gamma ori system by using hyperactive variants of plasmid R6K-encoded initiator protein, pi. Reactivity to KMnO4 (indicative of opening) within gamma ori DNA occurred in both strands of a superhelical template upon the combined addition of wt pi, DnaA and integration host factor (IHF), each protein known to specifically bind gamma ori. IHF, examined singly, enhanced reactivity to KMnO4. The IHF-dependent reactive residues, however, are distinct from those dependent on pi (wt and hyperactive variants). Remarkably, the DNA helix opening does not require IHF and/or DnaA when hyperactive variants of pi were used instead of wt protein. We present three lines of evidence consistent with the hypothesis that DNA strand separation is facilitated by pi monomers despite the fact that both monomers and dimers of the protein can bind to iterons (pi binding sites). Taken together, our data suggest that pi elicits its ability to modulate plasmid copy number at the DNA helix-opening step.
Collapse
Affiliation(s)
- R Krüger
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
16
|
Abstract
Replication origins of a family of bacterial plasmids have multiple sites, called iterons, for binding a plasmid-specific replication initiator protein. The iteron-initiator interactions are essential for plasmid replication as well as for inhibition of plasmid over-replication. The inhibition increases with plasmid copy number and eventually shuts plasmid replication off completely. The mechanism of inhibition appears to be handcuffing, the coupling of origins via iteron-bound initiators that block origin function. The probability of a trans-reaction such as handcuffing is expected to increase with plasmid copy number and diminish with increases in cell volume, explaining how the copy number can be maintained in a growing cell. Control is also exerted at the level of initiator synthesis and activation by chaperones. We propose that increases in active initiators promote initiation by overcoming handcuffing, but handcuffing dominates when the copy number reaches a threshold. Handcuffing should be ultrasensitive to copy number, as the negative control by iterons can be stringent (switch-like).
Collapse
Affiliation(s)
- D K Chattoraj
- Laboratory of Biochemistry, NCI, NIH, Bethesda, MD 20892-4255, USA.
| |
Collapse
|
17
|
Krüger R, Filutowicz M. Dimers of pi protein bind the A+T-rich region of the R6K gamma origin near the leading-strand synthesis start sites: regulatory implications. J Bacteriol 2000; 182:2461-7. [PMID: 10762246 PMCID: PMC111308 DOI: 10.1128/jb.182.9.2461-2467.2000] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The replication of gamma origin, a minimal replicon derived from plasmid R6K, is controlled by the Rep protein pi. At low intracellular concentrations, pi activates the gamma origin, while it inhibits replication at elevated concentrations. Additionally, pi acts as a transcription factor (auto)repressing its own synthesis. These varied regulatory functions depend on pi binding to reiterated DNA sequences bearing a TGAGNG motif. However, pi also binds to a "non-iteron" site (i.e., not TGAGNG) that resides in the A+T-rich region adjacent to the iterons. This positioning places the non-iteron site near the start sites for leading-strand synthesis that also occur in the A+T-rich region of gamma origin. We have hypothesized that origin activation (at low pi levels) would require the binding of pi monomers to iterons, while the binding of pi dimers to the non-iteron site (at high pi levels) would be required to inhibit priming. Although monomers as well as dimers can bind to an iteron, we demonstrate that only dimers bind to the non-iteron site. Two additional pieces of data support the hypothesis of negative replication control by pi binding to the non-iteron site. First, pi binds to the non-iteron site about eight times less well than it binds to a single iteron. Second, hyperactive variants of pi protein (called copy-up) either do not bind to the non-iteron site or bind to it less well than wild-type pi. We propose a replication control mechanism whereby pi would directly inhibit primer formation.
Collapse
Affiliation(s)
- R Krüger
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
18
|
Filutowicz M, Rakowski SA. Regulatory implications of protein assemblies at the gamma origin of plasmid R6K - a review. Gene 1998; 223:195-204. [PMID: 9858731 DOI: 10.1016/s0378-1119(98)00367-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recognition of the replication origin (ori) by initiator protein is a recurring theme for the regulated initiation of DNA replication in diverse biological systems. The objective of the work reviewed here is to understand the initiation process focusing specifically on the gamma-ori of the antibiotic-resistance plasmid R6K. The control of gamma-ori copy number is determined by both plasmid-encoded and host-encoded factors. The two central regulatory elements of the plasmid are a multifunctional initiator protein pi, and sequence-related DNA target sites, the inverted half-repeats (IRs) and the direct repeats (DRs). The replication activator and inhibitor activities of pi seem to be at least partially distributed between two naturally occurring pi polypeptides (designated by their molecular weights pi35.0 and pi30.5). Regulatory variants of pi with altered states of oligomerization in nucleoprotein complexes with DRs and IRs have been isolated. The properties of these mutants laid the foundation for our model of pi protein activity which proposes that different protein surfaces are required for the formation of functionally distinct complexes of pi with DRs and IRs. These mutants also suggest that pi polypeptides have a modular structure; the C-terminus contains the DNA-binding domain while the N-terminus controls protein oligomerization. Additionally, pi35.0 binds to a novel DNA sequence in the A+T-rich segment of gamma-ori. This binding site is at or near the site from which synthesis of the leading strand begins.
Collapse
Affiliation(s)
- M Filutowicz
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706,
| | | |
Collapse
|
19
|
Urh M, Wu J, Wu J, Forest K, Inman RB, Filutowicz M. Assemblies of replication initiator protein on symmetric and asymmetric DNA sequences depend on multiple protein oligomerization surfaces. J Mol Biol 1998; 283:619-31. [PMID: 9784371 DOI: 10.1006/jmbi.1998.2120] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pi35.0 protein of plasmid R6K regulates transcription and replication by binding a DNA sequence motif (TGAGR) arranged either asymmetrically into 22 bp direct repeats (DRs) in the gamma origin, or symmetrically into inverted half-repeats (IRs) in the operator of its own gene, pir. The binding patterns of the two natural forms of the pi protein and their heterodimers revealed that the predominant species, pi35.0 (35.0 kDa), can bind to a single copy of the DR as either a monomer or a dimer while pi30.5 (30.5 kDa) binds only as a dimer. We demonstrate that only one subunit of a pi35.0 dimer makes specific contact with DNA. Electron microscopic (EM) analysis of the nucleoprotein complexes formed by pi35.0 and DNA fragments containing all seven DRs revealed coupled ("hand-cuffed") DNA molecules that are aligned in a parallel orientation. Antiparallel orientations of the DNA were not observed. Thus, hand-cuffing depends on a highly ordered oligomerization of pi35.0 in such structures. The pi protein (pi35.0, pi30.5) binds to an IR as a dimer or heterodimer but not as a monomer. Moreover, a single amino acid residue substitution, F200S (pir200), introduced into pi30.5 severely destabilizes dimers of this protein in solution and concomitantly prevents binding of this protein to the IR. This mutation also changes the stability of pi35.0 dimers but it does not change the ability of pi35.0 to bind IRs. To explain these observations we propose that the diverse interactions of pi variants with DNA are controlled by multiple surfaces for protein oligomerization.
Collapse
Affiliation(s)
- M Urh
- Department of Bacteriology, University of Wisconsis, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
20
|
Chen D, Feng J, Krüger R, Urh M, Inman RB, Filutowicz M. Replication of R6K gamma origin in vitro: discrete start sites for DNA synthesis dependent on pi and its copy-up variants. J Mol Biol 1998; 282:775-87. [PMID: 9743626 DOI: 10.1006/jmbi.1998.2055] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The regulation of the plasmid R6K gamma origin (gamma ori) is accomplished through the ability of the pi protein to act as an initiator and inhibitor of replication. Hyperactive variants of this protein, called copy-up pi, allow four to tenfold increases of gamma ori plasmid DNA in vivo. The higher activity of copy-up pi variants could be explained by an increase in the initiator function, a decrease in the inhibitor activity, or a derepression of a more efficient mechanism of replication that can be used by wt pi (pi35. 0) only under certain conditions. We have compared the replication activities of wt pi35.0 and copy-up pi mutants in vitro, and analyzed the replication products. It is shown that copy-up variants are several-fold more active than wt pi35.0 in replication. This appears to be due to enhanced specific replication activity of copy-up mutants rather than elevated fractions of protein proficient in DNA binding. Furthermore, biochemical complementation revealed that pi200 (copy-up) is dominant over wt pi35.0. The elevated activity of copy-up pi is not caused by an increased rate of replisome assembly as inferred from in vitro replication assays in which the lag periods observed were similar to that of wt pi35.0. Moreover, only one round of semiconservative, unidirectional replication occurred in all the samples analyzed indicating that copy-up pi proteins do not initiate multiple rounds of DNA synthesis. Rather, a larger fraction of DNA template replicates in the presence of copy-up pi as determined by electron microscopy. Two clusters of discrete DNA synthesis start sites are mapped by primer extension near the stability (stb) locus of the gamma ori. We show that the start sites are the same in the presence of wt pi35.0 or copy-up proteins. This comparative analysis suggests that wt pi35.0 and copy-up variants utilize fundamentally similar mechanism(s) of replication priming.
Collapse
MESH Headings
- Amino Acid Substitution
- Base Sequence
- Centrifugation, Density Gradient
- DNA Helicases/genetics
- DNA Helicases/metabolism
- DNA Primers/genetics
- DNA Replication/genetics
- DNA, Bacterial/biosynthesis
- DNA, Bacterial/genetics
- DNA, Bacterial/ultrastructure
- DNA, Single-Stranded/biosynthesis
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/ultrastructure
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Deoxyuracil Nucleotides/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Genes, Dominant/genetics
- Kinetics
- Microscopy, Electron
- Nucleic Acid Conformation
- Plasmids/genetics
- Plasmids/ultrastructure
- Protein Binding
- Replication Origin/genetics
- Templates, Genetic
- Titrimetry
- Trans-Activators/genetics
- Trans-Activators/metabolism
Collapse
Affiliation(s)
- D Chen
- Department of Bacteriology, University of Wisconsin, Madison 53706, USA
| | | | | | | | | | | |
Collapse
|
21
|
Giraldo R, Andreu JM, Díaz-Orejas R. Protein domains and conformational changes in the activation of RepA, a DNA replication initiator. EMBO J 1998; 17:4511-26. [PMID: 9687517 PMCID: PMC1170782 DOI: 10.1093/emboj/17.15.4511] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RepA is the DNA replication initiator protein of the Pseudomonas plasmid pPS10. RepA has a dual function: as a dimer, it binds to an inversely-repeated sequence acting as a repressor of its own synthesis; as a monomer, RepA binds to four directly-repeated sequences to constitute a specialized nucleoprotein complex responsible for the initiation of DNA replication. We have previously shown that a Leucine Zipper-like motif (LZ) at the N-terminus of RepA is responsible for protein dimerization. In this paper we characterize the existence in RepA of two protein globular domains C-terminal to the LZ. We propose that dissociation of RepA dimers into monomers results in a conformational change from a compact arrangement of both domains, competent for binding to the operator, to an extended species that is suited for iteron binding. This model establishes the structural basis for the activation of DNA replication initiators in plasmids from Gram-negative bacteria.
Collapse
Affiliation(s)
- R Giraldo
- Departmento de Microbiología Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | | |
Collapse
|