1
|
Burger G, Valach M. Perfection of eccentricity: Mitochondrial genomes of diplonemids. IUBMB Life 2018; 70:1197-1206. [PMID: 30304578 DOI: 10.1002/iub.1927] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 01/14/2023]
Abstract
Mitochondria are the sandbox of evolution as exemplified most particularly by the diplonemids, a group of marine microeukaryotes. These protists are uniquely characterized by their highly multipartite mitochondrial genome and systematically fragmented genes whose pieces are spread out over several dozens of chromosomes. The type species Diplonema papillatum was the first member of this group in which the expression of fragmented mitochondrial genes was investigated experimentally. We now know that gene expression involves separate transcription of gene pieces (modules), RNA editing of module transcripts, and module joining to mature mRNAs and rRNAs. The mechanism of cognate module recognition and ligation is distinct from known intron splicing and remains to be uncovered. Here, we review the current status of research on mitochondrial genome architecture, as well as gene complement, structure, and expression modes in diplonemids. Further, we discuss the potential molecular mechanisms of posttranscriptional processing, and finally reflect on the evolutionary trajectories and trends of mtDNA evolution as seen in this protist group. © 2018 IUBMB Life, 70(12):1197-1206, 2018.
Collapse
Affiliation(s)
- Gertraud Burger
- Département de Biochimie, Robert Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montréal, Québec, Canada
| | - Matus Valach
- Département de Biochimie, Robert Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
2
|
Faktorová D, Valach M, Kaur B, Burger G, Lukeš J. Mitochondrial RNA Editing and Processing in Diplonemid Protists. RNA METABOLISM IN MITOCHONDRIA 2018. [DOI: 10.1007/978-3-319-78190-7_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
3
|
Gott JM, Naegele GM, Howell SJ. Electroporation of DNA into Physarum polycephalum Mitochondria: Effects on Transcription and RNA Editing in Isolated Organelles. Genes (Basel) 2016; 7:genes7120128. [PMID: 27983641 PMCID: PMC5192504 DOI: 10.3390/genes7120128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial RNAs in the acellular slime mold Physarum polycephalum contain nucleotides that are not encoded in the mitochondrial genes from which they are transcribed. These site-specific changes are quite extensive, comprising ~4% of the residues within mRNAs and ~2% of rRNAs and tRNAs. These “extra” nucleotides are added co-transcriptionally, but the means by which this is accomplished have not been elucidated. The cox1 mRNA also contains four sites of C to U changes, which occur post-transcriptionally, most likely via targeted deamination. The currently available in vitro systems for studying P. polycephalum editing are limited in that the template is the entire ~63,000 bp mitochondrial genome. This presents a significant challenge when trying to define the signals that specify editing sites. In an attempt to overcome this issue, a method for introducing DNA into isolated P. polycephalum mitochondria via electroporation has been developed. Exogenous DNA is expressed, but the transcripts synthesized from these templates are not edited under the conditions tested. However, transcripts derived from the mitochondrial genome are accurately edited after electroporation, indicating that the editing machinery is still functional. These findings suggest that this method may ultimately provide a feasible approach to elucidating editing signals.
Collapse
Affiliation(s)
- Jonatha M Gott
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH 44120, USA.
| | - Gregory M Naegele
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH 44120, USA.
| | - Scott J Howell
- Visual Sciences Research Center, Case Western Reserve University, Cleveland, OH 44120, USA.
| |
Collapse
|
4
|
Kolesnikov AA, Gerasimov ES. Diversity of mitochondrial genome organization. BIOCHEMISTRY (MOSCOW) 2013; 77:1424-35. [PMID: 23379519 DOI: 10.1134/s0006297912130020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this review, we discuss types of mitochondrial genome structural organization (architecture), which includes the following characteristic features: size and the shape of DNA molecule, number of encoded genes, presence of cryptogenes, and editing of primary transcripts.
Collapse
Affiliation(s)
- A A Kolesnikov
- Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | | |
Collapse
|
5
|
Chen C, Frankhouser D, Bundschuh R. Comparison of insertional RNA editing in Myxomycetes. PLoS Comput Biol 2012; 8:e1002400. [PMID: 22383871 PMCID: PMC3285571 DOI: 10.1371/journal.pcbi.1002400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 01/11/2012] [Indexed: 11/23/2022] Open
Abstract
RNA editing describes the process in which individual or short stretches of nucleotides in a messenger or structural RNA are inserted, deleted, or substituted. A high level of RNA editing has been observed in the mitochondrial genome of Physarum polycephalum. The most frequent editing type in Physarum is the insertion of individual Cs. RNA editing is extremely accurate in Physarum; however, little is known about its mechanism. Here, we demonstrate how analyzing two organisms from the Myxomycetes, namely Physarum polycephalum and Didymium iridis, allows us to test hypotheses about the editing mechanism that can not be tested from a single organism alone. First, we show that using the recently determined full transcriptome information of Physarum dramatically improves the accuracy of computational editing site prediction in Didymium. We use this approach to predict genes in the mitochondrial genome of Didymium and identify six new edited genes as well as one new gene that appears unedited. Next we investigate sequence conservation in the vicinity of editing sites between the two organisms in order to identify sites that harbor the information for the location of editing sites based on increased conservation. Our results imply that the information contained within only nine or ten nucleotides on either side of the editing site (a distance previously suggested through experiments) is not enough to locate the editing sites. Finally, we show that the codon position bias in C insertional RNA editing of these two organisms is correlated with the selection pressure on the respective genes thereby directly testing an evolutionary theory on the origin of this codon bias. Beyond revealing interesting properties of insertional RNA editing in Myxomycetes, our work suggests possible approaches to be used when finding sequence motifs for any biological process fails. RNA is an important biomolecule that is deeply involved in all aspects of molecular biology, such as protein production, gene regulation, and viral replication. However, many significant aspects such as the mechanism of RNA editing are not well understood. RNA editing is the process in which an organism's RNA is modified through the insertion, deletion, or substitution of single or short stretches of nucleotides. The slime mold Physarum polycephalum is a model organism for the study of RNA editing; however, hardly anything is known about its editing machinery. We show that the combination of two organisms (Physarum polycephalum and Didymium iridis) can provide a better understanding of insertional RNA editing than one organism alone. We predict several new edited genes in Didymium. By comparing the sequences of the two organisms in the vicinity of the editing sites we establish minimal requirements for the location of the information by which these editing sites are recognized. Lastly, we directly verify a theory for one of the most striking features of the editing sites, namely their codon bias.
Collapse
Affiliation(s)
- Cai Chen
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio, United States of America
| | - David Frankhouser
- Department of Physics, The Ohio State University, Columbus, Ohio, United States of America
| | - Ralf Bundschuh
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Physics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
6
|
Knoop V. When you can't trust the DNA: RNA editing changes transcript sequences. Cell Mol Life Sci 2011; 68:567-86. [PMID: 20938709 PMCID: PMC11114842 DOI: 10.1007/s00018-010-0538-9] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/13/2010] [Accepted: 09/23/2010] [Indexed: 12/25/2022]
Abstract
RNA editing describes targeted sequence alterations in RNAs so that the transcript sequences differ from their DNA template. Since the original discovery of RNA editing in trypanosomes nearly 25 years ago more than a dozen such processes of nucleotide insertions, deletions, and exchanges have been identified in evolutionarily widely separated groups of the living world including plants, animals, fungi, protists, bacteria, and viruses. In many cases gene expression in mitochondria is affected, but RNA editing also takes place in chloroplasts and in nucleocytosolic genetic environments. While some RNA editing systems largely seem to repair defect genes (cryptogenes), others have obvious functions in modulating gene activities. The present review aims for an overview on the current states of research in the different systems of RNA editing by following a historic timeline along the respective original discoveries.
Collapse
Affiliation(s)
- Volker Knoop
- Abteilung Molekulare Evolution, Institut für Zelluläre und Molekulare Botanik (IZMB), Bonn, Germany.
| |
Collapse
|
7
|
Chateigner-Boutin AL, Small I. Organellar RNA editing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:493-506. [PMID: 21957039 DOI: 10.1002/wrna.72] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA editing is a term used for a number of mechanistically different processes that alter the nucleotide sequence of RNA molecules to differ from the gene sequence. RNA editing occurs in a wide variety of organisms and is particularly frequent in organelle transcripts of eukaryotes. The discontiguous phylogenetic distribution of mRNA editing, the mechanistic differences observed in different organisms, and the nonhomologous editing machinery described in different taxonomic groups all suggest that RNA editing has appeared independently several times. This raises questions about the selection pressures acting to maintain editing that are yet to be completely resolved. Editing tends to be frequent in organisms with atypical organelle genomes and acts to correct the effect of DNA mutations that would otherwise compromise the synthesis of functional proteins. Additional functions of editing in generating protein diversity or regulating gene expression have been proposed but so far lack widespread experimental evidence, at least in organelles.
Collapse
|
8
|
Hendrickson PG, Silliker ME. RNA editing is absent in a single mitochondrial gene of Didymium iridis. Mycologia 2010; 102:1288-94. [PMID: 20943545 DOI: 10.3852/10-019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
An open reading frame (ORF) was found in the mitochondrial genome of the Pan2-16 strain of Didymium iridis that showed high similarity to the NADH dehydrogenase subunit 3 (nad3) gene in other organisms. So far all other typical mitochondrial genes identified in this organism require RNA editing to generate ORFs capable of directing protein synthesis. The D. iridis sequence was compared to the putative nad3 gene in the related myxomycete Physarum polycephalum, which would require editing. Based on this comparison, editing sites could be predicted for the P. polycelphalum gene that would result in the synthesis of a highly conserved ND3 protein between the two organisms. To determine the editing status of the nad3 gene in other D. iridis strains, PCR was used to amplify this region from eight other independent isolates of the A1 Central American interbreeding series. In each case a 378 base pair ORF was detected by PCR amplification and sequencing. Three patterns of sequence variation were observed; however all base substitutions were in the third codon position and silent with respect to the amino acids encoded. The distribution of the sequence variants was mapped geographically. The requirement for RNA editing in all other typical mitochondrial genes of D. iridis and P. polycephalum and the presence of RNA editing in the nad3 gene of P. polycephalum suggest that the D. iridis nad3 gene might have been edited at one time. We propose that the D. iridis nad3 gene may have lost the requirement for RNA editing by reverse transcription of an edited transcript that subsequently was inserted into the genome.
Collapse
Affiliation(s)
- Peter G Hendrickson
- Children's Memorial Research Center, Immunology Department, 2300 Children's Plaza, Mailstop 212, Chicago, Illinois 60614, USA
| | | |
Collapse
|
9
|
Nassonova E, Smirnov A, Fahrni J, Pawlowski J. Barcoding Amoebae: Comparison of SSU, ITS and COI Genes as Tools for Molecular Identification of Naked Lobose Amoebae. Protist 2010; 161:102-15. [DOI: 10.1016/j.protis.2009.07.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Accepted: 07/30/2009] [Indexed: 10/20/2022]
|
10
|
Rhee AC, Somerlot BH, Parimi N, Gott JM. Distinct roles for sequences upstream of and downstream from Physarum editing sites. RNA (NEW YORK, N.Y.) 2009; 15:1753-1765. [PMID: 19605532 PMCID: PMC2743052 DOI: 10.1261/rna.1668309] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 06/06/2009] [Indexed: 05/28/2023]
Abstract
RNAs in the mitochondria of Physarum polycephalum contain nonencoded nucleotides that are added during RNA synthesis. Essentially all steady-state RNAs are accurately and fully edited, yet the signals guiding these precise nucleotide insertions are presently unknown. To localize the regions of the template that are required for editing, we constructed a series of chimeric templates that substitute varying amounts of DNA either upstream of or downstream from C insertion sites. Remarkably, all sequences necessary for C addition are contained within approximately 9 base pairs on either side of the insertion site. In addition, our data strongly suggest that sequences within this critical region affect different steps in the editing reaction. Template alterations upstream of an editing site influence nucleotide selection and/or insertion, while downstream changes affect editing site recognition and templated extension from the added, unpaired nucleotide. The data presented here provide the first evidence that individual regions of the DNA template play discrete mechanistic roles and represent a crucial initial step toward defining the source of the editing specificity in Physarum mitochondria. In addition, these findings have mechanistic implications regarding the potential involvement of the mitochondrial RNA polymerase in the editing reaction.
Collapse
Affiliation(s)
- Amy C Rhee
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
11
|
Beargie C, Liu T, Corriveau M, Lee HY, Gott J, Bundschuh R. Genome annotation in the presence of insertional RNA editing. Bioinformatics 2008; 24:2571-8. [PMID: 18819938 DOI: 10.1093/bioinformatics/btn487] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Insertional RNA editing renders gene prediction very difficult compared to organisms without such RNA editing. A case in point is the mitochondrial genome of Physarum polycephalum in which only about one-third of the number of genes that are to be expected given its length are annotated. Thus, gene prediction methods that explicitly take into account insertional editing are needed for successful annotation of such genomes. RESULTS We annotate the mitochondrial genome of P.polycephalum using several different approaches for gene prediction in organisms with insertional RNA editing. We computationally validate our annotations by comparing the results from different methods against each other and as proof of concept experimentally validate two of the newly predicted genes. We more than double the number of annotated putative genes in this organism and find several intriguing candidate genes that are not expected in a mitochondrial genome. AVAILABILITY The C source code of the programs described here are available upon request from the corresponding author.
Collapse
|
12
|
Non-DNA-templated addition of nucleotides to the 3' end of RNAs by the mitochondrial RNA polymerase of Physarum polycephalum. Mol Cell Biol 2008; 28:5795-802. [PMID: 18573885 DOI: 10.1128/mcb.00356-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial gene expression is necessary for proper mitochondrial biogenesis. Genes on the mitochondrial DNA are transcribed by a dedicated mitochondrial RNA polymerase (mtRNAP) that is encoded in the nucleus and imported into mitochondria. In the myxomycete Physarum polycephalum, nucleotides that are not specified by the mitochondrial DNA templates are inserted into some RNAs, a process called RNA editing. This is an essential step in the expression of these RNAs, as the insertion of the nontemplated nucleotides creates open reading frames for the production of proteins from mRNAs or produces required secondary structure in rRNAs and tRNAs. The nontemplated nucleotide is added to the 3' end of the RNA as the RNA is being synthesized during mitochondrial transcription. Because RNA editing is cotranscriptional, the mtRNAP is implicated in RNA editing as well as transcription. We have cloned the cDNA for the mtRNAP of Physarum and have expressed the mtRNAP in Escherichia coli. We have used in vitro transcription assays based on the Physarum mtRNAP to identify a novel activity associated with the mtRNAP in which non-DNA-templated nucleotides are added to the 3' end of RNAs. Any of the four ribonucleoside triphosphates (rNTPs) can act as precursors for this process, and this novel activity is observed when only one rNTP is supplied, a condition under which transcription does not occur. The implications of this activity for the mechanism of RNA editing are discussed.
Collapse
|
13
|
Byrne EM, Visomirski-Robic L, Cheng YW, Rhee AC, Gott JM. RNA editing in Physarum mitochondria: assays and biochemical approaches. Methods Enzymol 2007; 424:143-72. [PMID: 17662840 DOI: 10.1016/s0076-6879(07)24007-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Mitochondrial RNAs in the myxomycete Physarum polycephalum differ from the templates from which they are transcribed in defined ways. Most transcripts contain nucleotides that are not present in their respective genes. These "extra" nucleotides are added during RNA synthesis by an unknown mechanism. Other differences observed between Physarum mitochondrial RNAs and the mitochondrial genome include nucleotide deletions, C to U changes, and the replacement of one nucleotide for another at the 5' end of tRNAs. All of these alterations are remarkably precise and highly efficient in vivo. Many of these editing events can be replicated in vitro, and here we describe both the in vitro systems used to study editing in Physarum mitochondria and the assays that have been developed to assess the extent of editing of RNAs generated in these systems at individual sites.
Collapse
Affiliation(s)
- Elaine M Byrne
- Trinity Centre for Engineering, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | |
Collapse
|
14
|
|
15
|
Miller ML, Antes TJ, Qian F, Miller DL. Identification of a putative mitochondrial RNA polymerase from Physarum polycephalum: characterization, expression, purification, and transcription in vitro. Curr Genet 2006; 49:259-71. [PMID: 16402203 DOI: 10.1007/s00294-005-0053-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2005] [Revised: 12/08/2005] [Accepted: 12/11/2005] [Indexed: 10/25/2022]
Abstract
Mitochondrial RNA polymerases (mtRNAPs) are necessary for the biogenesis of mitochondria and for proper mitochondrial function since they transcribe genes on mtDNA for tRNAs, rRNAs, and mRNAs. The unique type of RNA editing identified in mitochondria of Physarum polycephalum is thought to be closely associated with transcription, and as such, RNA editing activity would be expected to be closely associated with the mtRNAP. In order to better characterize the role of mtRNAPs in mitochondrial biogenesis and to determine the role of the Physarum mtRNAP in RNA editing, the cDNA of the Physarum mtRNAP was identified using PCR and degenerate primers designed from conserved motifs in mtRNAPs. This amplification product was used to screen a cDNA library for the cDNA corresponding to the Physarum mtRNAP. A cDNA corresponding to a 3.2 kb transcript containing a 997 codon open reading frame was identified. The amino acid sequence inferred from the open reading frame contains motifs characteristic of mtRNAPs. To confirm that a cDNA for an RNA polymerase had been isolated, the cDNA was expressed in E. coli as an N-terminal maltose binding protein (MBP) fusion protein. The fusion protein was purified by affinity chromatography and shown to have DNA-directed RNA polymerase activity. This functional mtRNAP will be useful for in vitro studies of mitochondrial transcription and RNA editing.
Collapse
Affiliation(s)
- Mara L Miller
- Department of Cell and Molecular Biology, The University of Texas at Dallas, 2601 N. Floyd Road, Richardson, TX 75080, USA
| | | | | | | |
Collapse
|
16
|
Byrne EM, Gott JM. Unexpectedly complex editing patterns at dinucleotide insertion sites in Physarum mitochondria. Mol Cell Biol 2004; 24:7821-8. [PMID: 15340046 PMCID: PMC515060 DOI: 10.1128/mcb.24.18.7821-7828.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many of the RNAs transcribed from the mitochondrial genome of Physarum polycephalum are edited by the insertion of nonencoded nucleotides, which are added either singly or as dinucleotides. In addition, at least one mRNA is also subject to substitutional editing in which encoded C residues are changed to U residues posttranscriptionally. We have shown previously that the predominant type of editing in these organelles, the insertion of nonencoded single C residues, occurs cotranscriptionally at the growing end of the RNA chain. However, less is known about the timing of dinucleotide addition, and it has been suggested that these insertions occur at a later stage in RNA maturation. Here we examine the addition of both single nucleotides and dinucleotides into nascent RNAs synthesized in vitro and in vivo. The distribution of added nucleotides within individual cloned cDNAs supports the hypothesis that all insertion sites are processed at the same time relative to transcription. In addition, the patterns of partial editing and misediting observed within these nascent RNAs suggest that separate factors may be required at a subset of dinucleotide insertion sites and raise the possibility that in vivo, nucleotides may be added to RNA and then changed posttranscriptionally.
Collapse
Affiliation(s)
- Elaine M Byrne
- Center for RNA Molecular Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | | |
Collapse
|
17
|
Helm M, Attardi G. Nuclear Control of Cloverleaf Structure of Human Mitochondrial tRNALys. J Mol Biol 2004; 337:545-60. [PMID: 15019776 DOI: 10.1016/j.jmb.2004.01.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Revised: 01/19/2004] [Accepted: 01/20/2004] [Indexed: 11/24/2022]
Abstract
The evolutionary loss in eukaryotic cells of mitochondrial (mt) tRNA genes and of tRNA structural information in the surviving genes has led to the appearance of mt-tRNAs with highly unusual structural features. One such mt-tRNA is the human mt-tRNALys, which relies on post-transcriptional base modification to achieve correct three-dimensional structure. It has been shown that the in vitro transcript of human mt-tRNALys adopts a particular, non-cloverleaf structure when devoid of modified bases, while the native, fully modified tRNA shows the expected cloverleaf structure. Furthermore, a methyl group at position A9-N1, introduced chemically in an otherwise unmodified mt-tRNALys transcript, was found to induce a stable cloverleaf conformation, raising the question of how the specific methyltransferase recognizes the unmodified transcript. In order to shed light on this unusual case of tRNA maturation, the tRNA modification enzymes contained in protein extracts from either highly purified HeLa cell mitochondria or HeLa cell cytosol were first identified and compared, and then used to analyze the mt-tRNALys. An initial screening for modification activities, using as substrates unmodified in vitro transcripts of tRNA genes with well characterized structures, namely yeast cytosolic tRNAPhe, human cytosolic tRNA3Lys, and human mt-tRNAIle, revealed the presence of nine and 11 modification activities in the mitochondrial and cytosolic protein extracts, respectively, the mitochondrial extract including a tRNA (adenine-9,N1)-methyltransferase activity. The comparison of the level and kinetics of A9-N1 methylation and other secondary modifications in the unmodified, misfolded mt-tRNALys and in a cloverleaf-shaped structural mutant, engineered to adopt the tRNALys cloverleaf structure without post-transcriptional modifications, suggested strongly that the methylation of A9-N1 in tRNALys proceeds via a cloverleaf-shaped intermediate. Therefore, it is proposed that this intermediate is present in the in vitro transcript as part of a dynamic equilibrium, and that the mitochondrial protein extract contains an activity that stabilizes, by secondary modification, such a transient cloverleaf-shaped intermediate. Thus, countering the evolutionary loss of structural information in mt-tRNA genes, the mt-tRNA structure is maintained by a modification enzyme encoded in nuclear DNA.
Collapse
Affiliation(s)
- Mark Helm
- Institut für Pharmazie und Molekulare Biotechnologie Abteilung Chemie, Im Neuenheimer Feld 364 D-69120 Heidelberg, Germany
| | | |
Collapse
|
18
|
Horton TL, Landweber LF. Rewriting the information in DNA: RNA editing in kinetoplastids and myxomycetes. Curr Opin Microbiol 2002; 5:620-6. [PMID: 12457708 DOI: 10.1016/s1369-5274(02)00379-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
RNA editing has a major impact on the genes and genomes that it modifies. Editing by insertion, deletion and base conversion exists in nuclear, mitochondrial and viral genomes throughout the eukaryotic lineage. Editing was first discovered in kinetoplastids, and recent work has resulted in the characterization of some components of the editing machinery. Two proteins with ligase activity have been identified in Trypanosoma brucei, and other proteins in the editosome complex are yielding to the probe of research. A second group of protists, myxomycetes, are unique in their use of four different types of editing within a single transcript. Phylogenetic analysis of editing in representative myxomycetes revealed a different history of the four types of editing in this lineage. Development of a soluble in vitro editing system has provided further support for the co-transcriptional nature of editing in Physarum polycephalum, and will certainly provide future opportunities for understanding this mysterious process.
Collapse
Affiliation(s)
- Tamara L Horton
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
19
|
Byrne EM, Gott JM. Cotranscriptional editing of Physarum mitochondrial RNA requires local features of the native template. RNA (NEW YORK, N.Y.) 2002; 8:1174-1185. [PMID: 12358436 PMCID: PMC1370331 DOI: 10.1017/s1355838202024081] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
RNAs in the mitochondrion of Physarum polycephalum are edited by the precise cotranscriptional addition of non-encoded nucleotides. Here we describe experiments to address the basis of editing specificity using a series of chimeric templates generated by either rearranging the DNA present in editing-competent mitochondrial transcription elongation complexes (mtTECs) or linking it to exogenous DNA. Notably, run-on transcripts synthesized from rearranged mtTECs are edited at the natural sites, even when different genes are ligated together, yet exogenous, deproteinized DNA does not support editing. Furthermore, the accuracy of nucleotide insertion in chimeric RNAs argues that any cis-acting determinants of cytidine insertion are limited to small regions surrounding editing sites. Taken together, these observations strongly suggest that template-associated factors affect read-out of the mitochondrial genome.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites/genetics
- Chimera/genetics
- Cytidine/chemistry
- DNA, Mitochondrial/biosynthesis
- DNA, Mitochondrial/chemistry
- DNA, Mitochondrial/genetics
- DNA, Protozoan/chemistry
- DNA, Protozoan/genetics
- Molecular Sequence Data
- Physarum polycephalum/genetics
- Physarum polycephalum/metabolism
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA Editing
- RNA, Mitochondrial
- RNA, Protozoan/chemistry
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Elaine M Byrne
- Center for RNA Molecular Biology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
20
|
Cheng YW, Visomirski-Robic LM, Gott JM. Non-templated addition of nucleotides to the 3' end of nascent RNA during RNA editing in Physarum. EMBO J 2001; 20:1405-14. [PMID: 11250906 PMCID: PMC145535 DOI: 10.1093/emboj/20.6.1405] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RNAs in Physarum: mitochondria contain extra nucleotides that are not encoded by the mitochondrial genome, at least in the traditional sense. While it is known that insertion of non-encoded nucleotides is linked to RNA synthesis, the exact nature of this relationship remains unclear. Here we demonstrate that the efficiency of editing is sensitive not only to the concentration of the nucleotide that is inserted, but also to the concentration of the nucleotide templated just downstream of an editing site. These data strongly support a co-transcriptional mechanism of Physarum: RNA editing in which non-encoded nucleotides are added to the 3' end of nascent RNAs. These results also suggest that transcription elongation and nucleotide insertion are competing processes and that recognition of editing sites most likely involves transient pausing by the Physarum: mitochondrial RNA polymerase. In addition, the pattern of nucleotide concentration effects, the context of editing sites and the accuracy of the mitochondrial RNA polymerase argue that the mechanism of Physarum: editing is distinct from that of other co-transcriptional editing systems.
Collapse
Affiliation(s)
| | - Linda M. Visomirski-Robic
- Center for RNA Molecular Biology, Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
Present address: Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA Corresponding author e-mail:
| | - Jonatha M. Gott
- Center for RNA Molecular Biology, Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
Present address: Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA Corresponding author e-mail:
| |
Collapse
|
21
|
Abstract
RNA editing can be broadly defined as any site-specific alteration in an RNA sequence that could have been copied from the template, excluding changes due to processes such as RNA splicing and polyadenylation. Changes in gene expression attributed to editing have been described in organisms from unicellular protozoa to man, and can affect the mRNAs, tRNAs, and rRNAs present in all cellular compartments. These sequence revisions, which include both the insertion and deletion of nucleotides, and the conversion of one base to another, involve a wide range of largely unrelated mechanisms. Recent advances in the development of in vitro editing and transgenic systems for these varied modifications have provided a better understanding of similarities and differences between the biochemical strategies, regulatory sequences, and cellular factors responsible for such RNA processing events.
Collapse
Affiliation(s)
- J M Gott
- Center for RNA Molecular Biology, Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
22
|
Horton TL, Landweber LF. Mitochondrial RNAs of myxomycetes terminate with non-encoded 3' poly(U) tails. Nucleic Acids Res 2000; 28:4750-4. [PMID: 11095686 PMCID: PMC115168 DOI: 10.1093/nar/28.23.4750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We examined the 3' ends of edited RNAs from the myxomycetes Stemonitis flavogenita and Physarum polycephalum using a modified anchor PCR approach. Surprisingly, we found that poly(A) tails are missing from the cytochrome c oxidase subunit 1 mRNA (coI) from both species and the cytochrome c oxidase subunit 3 mRNA (cox3) from P. polycephalum. Instead, non-encoded poly(U) tails of varying length were discovered at the 3' ends of these transcripts. These are the first described examples of 3' poly(U) tails on mature mRNAs in any system.
Collapse
Affiliation(s)
- T L Horton
- Departments of Ecology and Evolutionary Biology, Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
23
|
Cheng YW, Gott JM. Transcription and RNA editing in a soluble in vitro system from Physarum mitochondria. Nucleic Acids Res 2000; 28:3695-701. [PMID: 11000260 PMCID: PMC110774 DOI: 10.1093/nar/28.19.3695] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The dissection of RNA editing mechanisms in PHYSARUM: mitochondria has been hindered by the absence of a soluble in vitro system. Based on our studies in isolated mitochondria, insertion of non-encoded nucleotides into PHYSARUM: mitochondrial RNAs is closely linked to transcription. Here we have fractionated mitochondrial lysates, enriching for run-on RNA synthesis, and find that editing activity co-fractionates with pre-formed transcription elongation complexes. The establishment of this soluble transcription-editing system allows access to the components of the editing machinery and permits manipulation of transcription and editing substrates. Thus, the availability of this system provides, for the first time, a means of investigating roles for cis-acting elements, trans-acting factors and nucleotide requirements for the insertion of non-encoded nucleotides into PHYSARUM: mitochondrial RNAs. This methodology should also be broadly applicable to the study of RNA processing and editing mechanisms in a wide range of mitochondrial systems.
Collapse
Affiliation(s)
- Y W Cheng
- Center for RNA Molecular Biology, Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | |
Collapse
|
24
|
Horton TL, Landweber LF. Evolution of four types of RNA editing in myxomycetes. RNA (NEW YORK, N.Y.) 2000; 6:1339-46. [PMID: 11073211 PMCID: PMC1370006 DOI: 10.1017/s135583820000087x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The myxomycete Physarum polycephalum requires extensive RNA editing to create functional mitochondrial transcripts. The cytochrome c oxidase subunit 1 (col) transcript exhibits a combination of editing forms not found together in any other eukaryotic RNA: 66 insertions of ribonucleotides (59 Cs, a single U, and three mixed dinucleotides) as well as base conversion of four Cs to Us (Gott et al., J Biol Chem, 1993, 268:25483-25486). Through a phylogenetic survey of col DNA genes and RNA transcripts in representative myxomycetes, we have decoupled the four types of editing in this lineage. Some myxomycetes share insertional editing with P. polycephalum, yet lack C--> U conversion, consistent with previous reports of separation of insertional and base conversion editing in P. polycephalum extracts (Visomirski-Robic & Gott, RNA, 1995, 3:821-837). Most remarkably, we detect unique evolutionary histories of the three different types of insertional editing, though these have been indistinguishable in vitro. For example, Clastoderma debaryanum exhibits insertions of Us, but not Cs or dinucleotides.
Collapse
Affiliation(s)
- T L Horton
- Department of Molecular Biology, Princeton University, New Jersey 08544, USA
| | | |
Collapse
|
25
|
Hausmann S, Garcin D, Delenda C, Kolakofsky D. The versatility of paramyxovirus RNA polymerase stuttering. J Virol 1999; 73:5568-76. [PMID: 10364305 PMCID: PMC112614 DOI: 10.1128/jvi.73.7.5568-5576.1999] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/1998] [Accepted: 03/19/1999] [Indexed: 11/20/2022] Open
Abstract
Paramyxoviruses cotranscriptionally edit their P gene mRNAs by expanding the number of Gs of a conserved AnGn run. Different viruses insert different distributions of guanylates, e.g., Sendai virus inserts a single G, whereas parainfluenza virus type 3 inserts one to six Gs. The sequences conserved at the editing site, as well as the experimental evidence, suggest that the insertions occur by a stuttering process, i.e., by pseudotemplated transcription. The number of times the polymerase "stutters" at the editing site before continuing strictly templated elongation is directed by a cis-acting sequence found upstream of the insertions. We have examined the stuttering process during natural virus infections by constructing recombinant Sendai viruses with mutations in their cis-acting sequences. We found that the template stutter site is precisely determined (C1052) and that a relatively short region (approximately 6 nucleotides) just upstream of the AnGn run can modulate the overall frequency of mRNA editing as well as the distribution of the nucleotide insertions. The positions more proximal to the 5' AnGn run are the most important in this respect. We also provide evidence that the stability of the mRNA/template hybrid plays a determining role in the overall frequency and range of mRNA editing. When the template U run is extended all the way to the stutter site, adenylates rather than guanylates are added at the editing site and their distribution begins to resemble the polyadenylation associated with mRNA 3' end formation by the viral polymerase. Our data suggest how paramyxovirus mRNA editing and polyadenylation are related mechanistically and how editing sites may have evolved from poly(A)-termination sites or vice versa.
Collapse
Affiliation(s)
- S Hausmann
- Department of Genetics and Microbiology, University of Geneva School of Medicine, CH1211 Geneva, Switzerland
| | | | | | | |
Collapse
|
26
|
Abstract
The reading frame in the mRNA for the cytochrome b apoprotein in mitochondria of Physarum polycephalum is created by the insertion of 43 nucleotides in the mRNA relative to the mtDNA sequence encoding it (RNA editing). Most of these insertions (31) are single cytidines; however, single uridines are inserted at six sites, and the dinucleotides, CU and GC, are inserted at two sites and one site, respectively. These insertions create a 392-codon reading frame in the mature mRNA. The amino acid sequence inferred from this reading frame has similarity to cytochrome b apoproteins encoded by other mtDNAs. The insertions are quite evenly distributed throughout the length of the reading frame with an average spacing of 27 nucleotides. This mRNA has the highest percentage (23%) of noncytidine insertions of any Physarum RNA characterized to date. cDNAs corresponding to partially edited RNAs can be enriched by selective amplification. Some cDNAs that lack the GC dinucleotide insertion are fully edited at sites flanking the GC dinucleotide insertion site. Similarly some cDNAs lack the CT dinucleotide insertion or have a CC or TT insertion flanked by a fully edited sequence. These results imply that dinucleotide editing occurs by a process separate from the global insertion of cytidines.
Collapse
Affiliation(s)
- S S Wang
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | | | | |
Collapse
|
27
|
Antes T, Costandy H, Mahendran R, Spottswood M, Miller D. Insertional editing of mitochondrial tRNAs of Physarum polycephalum and Didymium nigripes. Mol Cell Biol 1998; 18:7521-7. [PMID: 9819437 PMCID: PMC109332 DOI: 10.1128/mcb.18.12.7521] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
tRNAs encoded on the mitochondrial DNA of Physarum polycephalum and Didymium nigripes require insertional editing for their maturation. Editing consists of the specific insertion of a single cytidine or uridine relative to the mitochondrial DNA sequence encoding the tRNA. Editing sites are at 14 different locations in nine tRNAs. Cytidine insertion sites can be located in any of the four stems of the tRNA cloverleaf and usually create a G. C base pair. Uridine insertions have been identified in the T loop of tRNALys from Didymium and tRNAGlu from Physarum. In both tRNAs, the insertion creates the GUUC sequence, which is converted to GTPsiC (Psi = pseudouridine) in most tRNAs. This type of tRNA editing is different from other, previously described types of tRNA editing and resembles the mRNA and rRNA editing in Physarum and Didymium. Analogous tRNAs in Physarum and Didymium have editing sites at different locations, indicating that editing sites have been lost, gained, or both since the divergence of Physarum and Didymium. Although cDNAs derived from single tRNAs are generally fully edited, cDNAs derived from unprocessed polycistronic tRNA precursors often lack some of the editing site insertions. This enrichment of partially edited sequences in unprocessed tRNAs may indicate that editing is required for tRNA processing or at least that RNA editing occurs as an early event in tRNA synthesis.
Collapse
Affiliation(s)
- T Antes
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | | | | | | | | |
Collapse
|