1
|
Mediator subunit Med15 dictates the conserved "fuzzy" binding mechanism of yeast transcription activators Gal4 and Gcn4. Nat Commun 2021; 12:2220. [PMID: 33850123 PMCID: PMC8044209 DOI: 10.1038/s41467-021-22441-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/11/2021] [Indexed: 02/05/2023] Open
Abstract
The acidic activation domain (AD) of yeast transcription factor Gal4 plays a dual role in transcription repression and activation through binding to Gal80 repressor and Mediator subunit Med15. The activation function of Gal4 arises from two hydrophobic regions within the 40-residue AD. We show by NMR that each AD region binds the Mediator subunit Med15 using a “fuzzy” protein interface. Remarkably, comparison of chemical shift perturbations shows that Gal4 and Gcn4, two intrinsically disordered ADs of different sequence, interact nearly identically with Med15. The finding that two ADs of different sequence use an identical fuzzy binding mechanism shows a common sequence-independent mechanism for AD-Mediator binding, similar to interactions within a hydrophobic cloud. In contrast, the same region of Gal4 AD interacts strongly with Gal80 via a distinct structured complex, implying that the structured binding partner of an intrinsically disordered protein dictates the type of protein–protein interaction. The intrinsically disordered acidic activation domain (AD) of the yeast transcription factor Gal4 acts through binding to the Med15 subunit of the Mediator complex. Here, the authors show that Gal4 interacts with Med15 through an identical fuzzy binding mechanism as Gcn4 AD, which has a different sequence, revealing a common sequence-independent mechanism for AD-Mediator binding. In contrast, Gal4 AD binds to the Gal80 repressor as a structured polypeptide, which strongly suggests that the structured binding partner dictates the type of protein–protein interaction for an intrinsically disordered protein.
Collapse
|
2
|
Reinhardt-Tews A, Krutyhołowa R, Günzel C, Roehl C, Glatt S, Breunig KD. A double role of the Gal80 N terminus in activation of transcription by Gal4p. Life Sci Alliance 2020; 3:3/12/e202000665. [PMID: 33037058 PMCID: PMC7556753 DOI: 10.26508/lsa.202000665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 11/24/2022] Open
Abstract
Activation of gene expression by Gal4p in K. lactis requires an element in the N terminus of KlGal80p that mediates nuclear co-import of KlGal1p and galactokinase inhibition to support the co-inducer function of KlGal1p. The yeast galactose switch operated by the Gal4p–Gal80p–Gal3p regulatory module is a textbook model of transcription regulation in eukaryotes. The Gal80 protein inhibits Gal4p-mediated transcription activation by binding to the transcription activation domain. In Saccharomyces cerevisiae, inhibition is relieved by formation of an alternative Gal80–Gal3 complex. In yeasts lacking a Gal3p ortholog, such as Kluyveromyces lactis, the Gal1 protein (KlGal1p) combines regulatory and enzymatic activity. The data presented here reveal a yet unknown role of the KlGal80 N terminus in the mechanism of Gal4p activation. The N terminus contains an NLS, which is responsible for nuclear accumulation of KlGal80p and KlGal1p and for KlGal80p-mediated galactokinase inhibition. Herein, we present a model where the N terminus of KlGal80p reaches the catalytic center of KlGal1p causing enzyme inhibition in the nucleus and stabilization of the KlGal1–KlGal80p complex. We corroborate this model by genetic analyses and structural modelling and provide a rationale for the divergent evolution of the mechanism activating Gal4p.
Collapse
Affiliation(s)
| | - Rościsław Krutyhołowa
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.,Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Christian Günzel
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Constance Roehl
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karin D Breunig
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
3
|
Joiner CM, Breen ME, Mapp AK. Electron-deficient p-benzoyl-l-phenylalanine derivatives increase covalent chemical capture yields for protein-protein interactions. Protein Sci 2019; 28:1163-1170. [PMID: 30977234 DOI: 10.1002/pro.3621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/30/2022]
Abstract
The photoactivatable amino acid p-benzoyl-l-phenylalanine (pBpa) has been used for the covalent capture of protein-protein interactions (PPIs) in vitro and in living cells. However, this technique often suffers from poor photocrosslinking yields due to the low reactivity of the active species. Here we demonstrate that the incorporation of halogenated pBpa analogs into proteins leads to increased crosslinking yields for protein-protein interactions. The analogs can be incorporated into live yeast and upon irradiation capture endogenous PPIs. Halogenated pBpas will extend the scope of PPIs that can be captured and expand the toolbox for mapping PPIs in their native environment.
Collapse
Affiliation(s)
- Cassandra M Joiner
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan.,Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Meghan E Breen
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Anna K Mapp
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan.,Life Sciences Institute, University of Michigan, Ann Arbor, Michigan.,Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
4
|
A Bifunctional Amino Acid Enables Both Covalent Chemical Capture and Isolation of in Vivo Protein-Protein Interactions. Chembiochem 2016; 18:181-184. [PMID: 27966261 DOI: 10.1002/cbic.201600578] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Indexed: 12/14/2022]
Abstract
In vivo covalent chemical capture by using photoactivatable unnatural amino acids (UAAs) is a powerful tool for the identification of transient protein-protein interactions (PPIs) in their native environment. However, the isolation and characterization of the crosslinked complexes can be challenging. Here, we report the first in vivo incorporation of the bifunctional UAA BPKyne for the capture and direct labeling of crosslinked protein complexes through post-crosslinking functionalization of a bioorthogonal alkyne handle. Using the prototypical yeast transcriptional activator Gal4, we demonstrate that BPKyne is incorporated at the same level as the commonly used photoactivatable UAA pBpa and effectively captures the Gal4-Gal80 transcriptional complex. Post-crosslinking, the Gal4-Gal80 adduct was directly labeled by treatment of the alkyne handle with a biotin-azide probe; this enabled facile isolation and visualization of the crosslinked adduct from whole-cell lysate. This bifunctional amino acid extends the utility of the benzophenone crosslinker and expands our toolbox of chemical probes for mapping PPIs in their native cellular environment.
Collapse
|
5
|
Dugan A, Majmudar CY, Pricer R, Niessen S, Lancia JK, Fung HYH, Cravatt BF, Mapp AK. Discovery of Enzymatic Targets of Transcriptional Activators via in Vivo Covalent Chemical Capture. J Am Chem Soc 2016; 138:12629-35. [PMID: 27611834 PMCID: PMC5217703 DOI: 10.1021/jacs.6b07680] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The network of activator protein-protein interactions (PPIs) that underpin transcription initiation is poorly defined, particularly in the cellular context. The transient nature of these contacts and the often low abundance of the participants present significant experimental hurdles. Through the coupling of in vivo covalent chemical capture and shotgun LC-MS/MS (MuDPIT) analysis, we can trap the PPIs of transcriptional activators in a cellular setting and identify the binding partners in an unbiased fashion. Using this approach, we discover that the prototypical activators Gal4 and VP16 target the Snf1 (AMPK) kinase complex via direct interactions with both the core enzymatic subunit Snf1 and the exchangeable subunit Gal83. Further, we use a tandem reversible formaldehyde and irreversible covalent chemical capture approach (TRIC) to capture the Gal4-Snf1 interaction at the Gal1 promoter in live yeast. Together, these data support a critical role for activator PPIs in both the recruitment and positioning of important enzymatic complexes at a gene promoter and represent a technical advancement in the discovery of new cellular binding targets of transcriptional activators.
Collapse
Affiliation(s)
- Amanda Dugan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chinmay Y. Majmudar
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rachel Pricer
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sherry Niessen
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jody K. Lancia
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hugo Yik-Hong Fung
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Anna K. Mapp
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Erkina TY, Erkine AM. Nucleosome distortion as a possible mechanism of transcription activation domain function. Epigenetics Chromatin 2016; 9:40. [PMID: 27679670 PMCID: PMC5029090 DOI: 10.1186/s13072-016-0092-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/09/2016] [Indexed: 11/24/2022] Open
Abstract
After more than three decades since the discovery of transcription activation domains (ADs) in gene-specific activators, the mechanism of their function remains enigmatic. The widely accepted model of direct recruitment by ADs of co-activators and basal transcriptional machinery components, however, is not always compatible with the short size yet very high degree of sequence randomness and intrinsic structural disorder of natural and synthetic ADs. In this review, we formulate the basis for an alternative and complementary model, whereby sequence randomness and intrinsic structural disorder of ADs are necessary for transient distorting interactions with promoter nucleosomes, triggering promoter nucleosome translocation and subsequently gene activation.
Collapse
Affiliation(s)
- Tamara Y Erkina
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208 USA
| | - Alexandre M Erkine
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208 USA
| |
Collapse
|
7
|
Lancia JK, Nwokoye A, Dugan A, Joiner C, Pricer R, Mapp AK. Sequence context and crosslinking mechanism affect the efficiency of in vivo capture of a protein-protein interaction. Biopolymers 2016; 101:391-7. [PMID: 24037947 DOI: 10.1002/bip.22395] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 07/22/2013] [Indexed: 12/18/2022]
Abstract
Protein-protein interactions (PPIs) are essential for implementing cellular processes and thus methods for the discovery and study of PPIs are highly desirable. An emerging method for capturing PPIs in their native cellular environment is in vivo covalent chemical capture, a method that uses nonsense suppression to site specifically incorporate photoactivable unnatural amino acids (UAAs) in living cells. However, in one study we found that this method did not capture a PPI for which there was abundant functional evidence, a complex formed between the transcriptional activator Gal4 and its repressor protein Gal80. Here we describe the factors that influence the success of covalent chemical capture and show that the innate reactivity of the two UAAs utilized, (p-benzoylphenylalanine (pBpa) and p-azidophenylalanine (pAzpa)), plays a profound role in the capture of Gal80 by Gal4. Based upon these data, guidelines are outlined for the successful use of in vivo photo-crosslinking to capture novel PPIs and to characterize the interfaces.
Collapse
Affiliation(s)
- Jody K Lancia
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109
| | | | | | | | | | | |
Collapse
|
8
|
A sequence-specific transcription activator motif and powerful synthetic variants that bind Mediator using a fuzzy protein interface. Proc Natl Acad Sci U S A 2014; 111:E3506-13. [PMID: 25122681 DOI: 10.1073/pnas.1412088111] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although many transcription activators contact the same set of coactivator complexes, the mechanism and specificity of these interactions have been unclear. For example, do intrinsically disordered transcription activation domains (ADs) use sequence-specific motifs, or do ADs of seemingly different sequence have common properties that encode activation function? We find that the central activation domain (cAD) of the yeast activator Gcn4 functions through a short, conserved sequence-specific motif. Optimizing the residues surrounding this short motif by inserting additional hydrophobic residues creates very powerful ADs that bind the Mediator subunit Gal11/Med15 with high affinity via a "fuzzy" protein interface. In contrast to Gcn4, the activity of these synthetic ADs is not strongly dependent on any one residue of the AD, and this redundancy is similar to that of some natural ADs in which few if any sequence-specific residues have been identified. The additional hydrophobic residues in the synthetic ADs likely allow multiple faces of the AD helix to interact with the Gal11 activator-binding domain, effectively forming a fuzzier interface than that of the wild-type cAD.
Collapse
|
9
|
Dissecting allosteric effects of activator-coactivator complexes using a covalent small molecule ligand. Proc Natl Acad Sci U S A 2014; 111:12061-6. [PMID: 25049401 DOI: 10.1073/pnas.1406033111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Allosteric binding events play a critical role in the formation and stability of transcriptional activator-coactivator complexes, perhaps in part due to the often intrinsically disordered nature of one or more of the constituent partners. The kinase-inducible domain interacting (KIX) domain of the master coactivator CREB binding protein/p300 is a conformationally dynamic domain that complexes with transcriptional activators at two discrete binding sites in allosteric communication. The complexation of KIX with the transcriptional activation domain of mixed-lineage leukemia protein leads to an enhancement of binding by the activation domain of CREB (phosphorylated kinase-inducible domain of CREB) to the second site. A transient kinetic analysis of the ternary complex formation aided by small molecule ligands that induce positive or negative cooperative binding reveals that positive cooperativity is largely governed by stabilization of the bound complex as indicated by a decrease in koff. Thus, this suggests the increased binding affinity for the second ligand is not due to an allosteric creation of a more favorable binding interface by the first ligand. This is consistent with data from us and from others indicating that the on rates of conformationally dynamic proteins approach the limits of diffusion. In contrast, negative cooperativity is manifested by alterations in both kon and koff, suggesting stabilization of the binary complex.
Collapse
|
10
|
Majmudar CY, Højfeldt JW, Arevang CJ, Pomerantz WC, Gagnon JK, Schultz PJ, Cesa LC, Doss CH, Rowe SP, Vásquez V, Tamayo-Castillo G, Cierpicki T, Brooks CL, Sherman DH, Mapp AK. Sekikaic Acid and Lobaric Acid Target a Dynamic Interface of the Coactivator CBP/p300. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206815] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Majmudar CY, Højfeldt JW, Arevang CJ, Pomerantz WC, Gagnon JK, Schultz PJ, Cesa LC, Doss CH, Rowe SP, Vásquez V, Tamayo-Castillo G, Cierpicki T, Brooks CL, Sherman DH, Mapp AK. Sekikaic acid and lobaric acid target a dynamic interface of the coactivator CBP/p300. Angew Chem Int Ed Engl 2012; 51:11258-62. [PMID: 23042634 DOI: 10.1002/anie.201206815] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Indexed: 12/25/2022]
Abstract
Capturing a coactivator, naturally: the natural products sekikaic acid and lobaric acid, isolated after a high-throughput screen of a structurally diverse extract collection, effectively target the dynamic binding interfaces of the GACKIX domain of the coactivator CBP/p300. These molecules are the most effective inhibitors of the GACKIX domain yet described and are uniquely selective for this domain.
Collapse
|
12
|
Brzovic PS, Heikaus CC, Kisselev L, Vernon R, Herbig E, Pacheco D, Warfield L, Littlefield P, Baker D, Klevit RE, Hahn S. The acidic transcription activator Gcn4 binds the mediator subunit Gal11/Med15 using a simple protein interface forming a fuzzy complex. Mol Cell 2012; 44:942-53. [PMID: 22195967 DOI: 10.1016/j.molcel.2011.11.008] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/19/2011] [Accepted: 10/07/2011] [Indexed: 10/14/2022]
Abstract
The structural basis for binding of the acidic transcription activator Gcn4 and one activator-binding domain of the Mediator subunit Gal11/Med15 was examined by NMR. Gal11 activator-binding domain 1 has a four-helix fold with a small shallow hydrophobic cleft at its center. In the bound complex, eight residues of Gcn4 adopt a helical conformation, allowing three Gcn4 aromatic/aliphatic residues to insert into the Gal11 cleft. The protein-protein interface is dynamic and surprisingly simple, involving only hydrophobic interactions. This allows Gcn4 to bind Gal11 in multiple conformations and orientations, an example of a "fuzzy" complex, where the Gcn4-Gal11 interface cannot be described by a single conformation. Gcn4 uses a similar mechanism to bind two other unrelated activator-binding domains. Functional studies in yeast show the importance of residues at the protein interface, define the minimal requirements for a functional activator, and suggest a mechanism by which activators bind to multiple unrelated targets.
Collapse
Affiliation(s)
- Peter S Brzovic
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rapid GAL gene switch of Saccharomyces cerevisiae depends on nuclear Gal3, not nucleocytoplasmic trafficking of Gal3 and Gal80. Genetics 2011; 189:825-36. [PMID: 21890741 DOI: 10.1534/genetics.111.131839] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The yeast transcriptional activator Gal4 localizes to UAS(GAL) sites even in the absence of galactose but cannot activate transcription due to an association with the Gal80 protein. By 4 min after galactose addition, Gal4-activated gene transcription ensues. It is well established that this rapid induction arises through a galactose-triggered association between the Gal80 and Gal3 proteins that decreases the association of Gal80 and Gal4. How this happens mechanistically remains unclear. Strikingly different hypotheses prevail concerning the possible roles of nucleocytoplasmic distribution and trafficking of Gal3 and Gal80 and where in the cell the initial Gal3-Gal80 association occurs. Here we tested two conflicting hypotheses by evaluating the subcellular distribution and dynamics of Gal3 and Gal80 with reference to induction kinetics. We determined that the rates of nucleocytoplasmic trafficking for both Gal80 and Gal3 are slow relative to the rate of induction. We find that depletion of the nuclear pool of Gal3 slows the induction kinetics. Thus, nuclear Gal3 is critical for rapid induction. Fluorescence-recovery-after-photobleaching experiments provided data suggesting that the Gal80-Gal4 complex exhibits kinetic stability in the absence of galactose. Finally, we detect Gal3 at the UAS(GAL) only if Gal80 is covalently linked to the DNA-binding domain. Taken altogether, these new findings lead us to propose that a transient interaction of Gal3 with Gal4-associated Gal80 could explain the rapid response of this system. This notion could also explain earlier observations.
Collapse
|
14
|
Wands AM, Wang N, Lum JK, Hsieh J, Fierke CA, Mapp AK. Transient-state kinetic analysis of transcriptional activator·DNA complexes interacting with a key coactivator. J Biol Chem 2011; 286:16238-45. [PMID: 21317429 DOI: 10.1074/jbc.m110.207589] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Several lines of evidence suggest that the prototypical amphipathic transcriptional activators Gal4, Gcn4, and VP16 interact with the key coactivator Med15 (Gal11) during transcription initiation despite little sequence homology. Recent cross-linking data further reveal that at least two of the activators utilize the same binding surface within Med15 for transcriptional activation. To determine whether these three activators use a shared binding mechanism for Med15 recruitment, we characterized the thermodynamics and kinetics of Med15·activator·DNA complex formation by fluorescence titration and stopped-flow techniques. Combination of each activator·DNA complex with Med15 produced biphasic time courses. This is consistent with a minimum two-step binding mechanism composed of a bimolecular association step limited by diffusion, followed by a conformational change in the Med15·activator·DNA complex. Furthermore, the equilibrium constant for the conformational change (K(2)) correlates with the ability of an activator to stimulate transcription. VP16, the most potent of the activators, has the largest K(2) value, whereas Gcn4, the least potent, has the smallest value. This correlation is consistent with a model in which transcriptional activation is regulated at least in part by the rearrangement of the Med15·activator·DNA ternary complex. These results are the first detailed kinetic characterization of the transcriptional activation machinery and provide a framework for the future design of potent transcriptional activators.
Collapse
Affiliation(s)
- Amberlyn M Wands
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
15
|
Refined LexA transactivators and their use in combination with the Drosophila Gal4 system. Proc Natl Acad Sci U S A 2010; 107:16166-71. [PMID: 20805468 DOI: 10.1073/pnas.1005957107] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The use of binary transcriptional systems offers many advantages for experimentally manipulating gene activity, as exemplified by the success of the Gal4/UAS system in Drosophila. To expand the number of applications, a second independent transactivator (TA) is desirable. Here, we present the optimization of an additional system based on LexA and show how it can be applied. We developed a series of LexA TAs, selectively suppressible via Gal80, that exhibit high transcriptional activity and low detrimental effects when expressed in vivo. In combination with Gal4, an appropriately selected LexA TA permits to program cells with a distinct balance and independent outputs of the two TAs. We demonstrate how the two systems can be combined for manipulating communicating cell populations, converting transient tissue-specific expression patterns into heritable, constitutive activities, and defining cell territories by intersecting TA expression domains. Finally, we describe a versatile enhancer trap system that allows swapping TA and generating mosaics composed of Gal4 and LexA TA-expressing cells. The optimized LexA system facilitates precise analyses of complex biological phenomena and signaling pathways in Drosophila.
Collapse
|
16
|
Majmudar CY, Wang B, Lum JK, Håkansson K, Mapp AK. A high-resolution interaction map of three transcriptional activation domains with a key coactivator from photo-cross-linking and multiplexed mass spectrometry. Angew Chem Int Ed Engl 2009; 48:7021-4. [PMID: 19681084 DOI: 10.1002/anie.200902669] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chinmay Y Majmudar
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, MI, USA
| | | | | | | | | |
Collapse
|
17
|
Majmudar CY, Lee LW, Lancia JK, Nwokoye A, Wang Q, Wands AM, Wang L, Mapp AK. Impact of nonnatural amino acid mutagenesis on the in vivo function and binding modes of a transcriptional activator. J Am Chem Soc 2009; 131:14240-2. [PMID: 19764747 DOI: 10.1021/ja904378z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein-protein interactions play an essential role in cellular function, and methods to discover and characterize them in their native context are of paramount importance for gaining a deeper understanding of biological networks. In this study, an enhanced nonsense suppression system was utilized to incorporate the nonnatural amino acid p-benzoyl-L-phenylalanine (pBpa) throughout the transcriptional activation domain of the prototypical eukaryotic transcriptional activator Gal4 in vivo (S. cerevisiae). Functional studies of the pBpa-containing Gal4 mutants suggest that this essential binding interface of Gal4 is minimally impacted by these substitutions, with both transcriptional activity and sensitivity to growth conditions maintained. Further supporting this are in vivo cross-linking studies, including the detection of a key binding partner of Gal4, the inhibitor protein Gal80. Cross-linking with a range of pBpa-containing mutants revealed a Gal4 x Gal80 binding interface that extends beyond that previously predicted by conventional strategies. Thus, this approach can be broadened to the discovery of novel binding partners of transcription factors, information that will be critical for the development of therapeutically useful small molecule modulators of these protein-protein interactions.
Collapse
Affiliation(s)
- Chinmay Y Majmudar
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Majmudar C, Wang B, Lum J, Håkansson K, Mapp A. A High-Resolution Interaction Map of Three Transcriptional Activation Domains with a Key Coactivator from Photo-Cross-Linking and Multiplexed Mass Spectrometry. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200902669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Majmudar CY, Labut AE, Mapp AK. Tra1 as a screening target for transcriptional activation domain discovery. Bioorg Med Chem Lett 2009; 19:3733-5. [PMID: 19497740 PMCID: PMC4322765 DOI: 10.1016/j.bmcl.2009.05.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 05/09/2009] [Accepted: 05/12/2009] [Indexed: 01/20/2023]
Abstract
There is tremendous interest in developing activator artificial transcription factors that functionally mimic endogenous transcriptional activators for use as mechanistic probes, as components of synthetic cell circuitry, and in transcription-targeted therapies. Here, we demonstrate that a phage display selection against the transcriptional activation domain binding motif of the coactivator Tra1(TRRAP) produces distinct sequences that function with similar binding modes and potency as natural activators. These findings set the stage for binding screens with small molecule libraries against TAD binding motifs to yield next-generation small molecule TADs.
Collapse
Affiliation(s)
- Chinmay Y. Majmudar
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109, USA
| | - Anne E. Labut
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109, USA
| | - Anna K. Mapp
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109, USA
| |
Collapse
|
20
|
Abstract
The paradigm of gene regulation was forever changed by the discovery that short RNA duplexes could directly regulate gene expression. Most regulatory roles attributed to noncoding RNA were often repressive. Recent observations are beginning to reveal that duplex RNA molecules can stimulate gene transcription. These RNA activators employ a wide array of mechanisms to up-regulate transcription of target genes, including functioning as DNA-tethered activation domains, as coactivators and modulators of general transcriptional machinery, and as regulators of other noncoding transcripts. The discoveries over the past few years defy "Moore's law" in the breath-taking rapidity with which new roles for noncoding RNA in gene expression are being revealed. As gene regulatory networks are reconstructed to accommodate the influence of noncoding RNAs, their importance in maintenance of cellular health will become increasingly apparent. In fact, a new generation of therapeutic agents will focus on modulating the function of noncoding RNA.
Collapse
Affiliation(s)
- Aseem Z Ansari
- Department of Biochemistry & The Genome Center of Wisconsin, University of Wisconsin-Madison, 53706, USA.
| |
Collapse
|
21
|
Fuxreiter M, Tompa P, Simon I, Uversky VN, Hansen JC, Asturias FJ. Malleable machines take shape in eukaryotic transcriptional regulation. Nat Chem Biol 2008; 4:728-37. [PMID: 19008886 DOI: 10.1038/nchembio.127] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Transcriptional control requires the spatially and temporally coordinated action of many macromolecular complexes. Chromosomal proteins, transcription factors, co-activators and components of the general transcription machinery, including RNA polymerases, often use structurally or stoichiometrically ill-defined regions for interactions that convey regulatory information in processes ranging from chromatin remodeling to mRNA processing. Determining the functional significance of intrinsically disordered protein regions and developing conceptual models of their action will help to illuminate their key role in transcription regulation. Complexes comprising disordered regions often display short recognition elements embedded in flexible and sequentially variable environments that can lead to structural and functional malleability. This provides versatility to recognize multiple targets having different structures, facilitate conformational rearrangements and physically communicate with many partners in response to environmental changes. All these features expand the capacities of ordered complexes and give rise to efficient regulatory mechanisms.
Collapse
Affiliation(s)
- Monika Fuxreiter
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Karolina ut 29, H-1113, H-1518 Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
22
|
Thoden JB, Ryan LA, Reece RJ, Holden HM. The interaction between an acidic transcriptional activator and its inhibitor. The molecular basis of Gal4p recognition by Gal80p. J Biol Chem 2008; 283:30266-72. [PMID: 18701455 DOI: 10.1074/jbc.m805200200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The GAL genes, which encode the enzymes required for normal galactose metabolism in yeast, are transcriptionally regulated by three proteins: Gal4p, an activator; Gal80p, an inhibitor; and Gal3p, a galactose sensor. These proteins control the switch between inert and active gene expression. The transcriptional activation function of Gal4p is rendered inactive in the presence of Gal80p. Here we present the three-dimensional structure of a complex between the acidic activation domain of Gal4p and Gal80p. The transactivation domain initiates with an extended region of polypeptide chain followed by two turns of an amphipathic alpha-helix. It fits into and across a deep cleft within the Gal80p dimer with the protein-protein interface defined primarily by hydrophobic interactions. A disordered loop in the apo-Gal80p structure (Asp-309 to Ser-316) becomes well-defined upon binding of the transactivation domain. This investigation provides a new molecular scaffold for understanding previous biochemical and genetic studies.
Collapse
Affiliation(s)
- James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
23
|
Sellick CA, Campbell RN, Reece RJ. Galactose metabolism in yeast-structure and regulation of the leloir pathway enzymes and the genes encoding them. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 269:111-50. [PMID: 18779058 DOI: 10.1016/s1937-6448(08)01003-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The enzymes of the Leloir pathway catalyze the conversion of galactose to a more metabolically useful version, glucose-6-phosphate. This pathway is required as galactose itself cannot be used for glycolysis directly. In most organisms, including the yeast Saccharomyces cerevisiae, five enzymes are required to catalyze this conversion: a galactose mutarotase, a galactokinase, a galactose-1-phosphate uridyltransferase, a UDP-galactose-4-epimerase, and a phosphoglucomutase. In yeast, the genes encoding these enzymes are tightly controlled at the level of transcription and are only transcribed under specific sets of conditions. In the presence of glucose, the genes encoding the Leloir pathway enzymes (often called the GAL genes) are repressed through the action of a transcriptional repressor Mig1p. In the presence of galactose, but in the absence of glucose, the concerted actions of three other proteins Gal4p, Gal80p, and Gal3p, and two small molecules (galactose and ATP) enable the rapid and high-level activation of the GAL genes. The precise molecular mechanism of the GAL genetic switch is controversial. Recent work on solving the three-dimensional structures of the various GAL enzymes proteins and the GAL transcriptional switch proteins affords a unique opportunity to delve into the precise, and potentially unambiguous, molecular mechanism of a highly exploited transcriptional circuit. Understanding the details of the transcriptional and metabolic events that occur in this pathway can be used as a paradigm for understanding the integration of metabolism and transcriptional control more generally, and will assist our understanding of fundamental biochemical processes and how these might be exploited.
Collapse
|
24
|
Abstract
Designer molecules that can be used to impose exogenous control on gene transcription, artificial transcription factors (ATFs), are highly desirable as mechanistic probes of gene regulation, as potential therapeutic agents, and as components of cell-based devices. Recently, several advances have been made in the design of ATFs that activate gene transcription (activator ATFs), including reports of small-molecule-based systems and ATFs that exhibit potent activity. However, the many open mechanistic questions about transcriptional activators, in particular, the structure and function of the transcriptional activation domain (TAD), have hindered rapid development of synthetic ATFs. A compelling need thus exists for chemical tools and insights toward a more detailed portrait of the dynamic process of gene activation.
Collapse
Affiliation(s)
- Anna K Mapp
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
25
|
Anders A, Lilie H, Franke K, Kapp L, Stelling J, Gilles ED, Breunig KD. The Galactose Switch in Kluyveromyces lactis Depends on Nuclear Competition between Gal4 and Gal1 for Gal80 Binding. J Biol Chem 2006; 281:29337-48. [PMID: 16867978 DOI: 10.1074/jbc.m604271200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Gal4 protein represents a universally functional transcription activator, which in yeast is regulated by protein-protein interaction of its transcription activation domain with the inhibitor Gal80. Gal80 inhibition is relieved via galactose-mediated Gal80-Gal1-Gal3 interaction. The Gal4-Gal80-Gal1/3 regulatory module is conserved between Saccharomyces cerevisiae and Kluyveromyces lactis. Here we demonstrate that K. lactis Gal80 (KlGal80) is a nuclear protein independent of the Gal4 activity status, whereas KlGal1 is detected throughout the entire cell, which implies that KlGal80 and KlGal1 interact in the nucleus. Consistently KlGal1 accumulates in the nucleus upon KlGAL80 overexpression. Furthermore, we show that the KlGal80-KlGal1 interaction blocks the galactokinase activity of KlGal1 and is incompatible with KlGal80-KlGal4-AD interaction. Thus, we propose that dissociation of KlGal80 from the AD forms the basis of KlGal4 activation in K. lactis. Quantitation of the dissociation constants for the KlGal80 complexes gives a much lower affinity for KlGal1 as compared with Gal4. Mathematical modeling shows that with these affinities a switch based on competition between Gal1 and Gal4 for Gal80 binding is nevertheless efficient provided two monomeric Gal1 molecules interact with dimeric Gal80. Consistent with such a mechanism, analysis of the sedimentation behavior by analytical ultracentrifugation demonstrates the formation of a heterotetrameric KlGal80-KlGal1 complex of 2:2 stoichiometry.
Collapse
Affiliation(s)
- Alexander Anders
- Institut für Genetik and Institut für Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Heyken WT, Repenning A, Kumme J, Schüller HJ. Constitutive expression of yeast phospholipid biosynthetic genes by variants of Ino2 activator defective for interaction with Opi1 repressor. Mol Microbiol 2005; 56:696-707. [PMID: 15819625 DOI: 10.1111/j.1365-2958.2004.04499.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Regulated expression of structural genes involved in yeast phospholipid biosynthesis is mediated by inositol/choline-responsive element (ICRE) upstream motifs, bound by the heterodimeric activator complex Ino2 + Ino4. Gene repression occurs in the presence of sufficient inositol and choline, requiring an intact Opi1 repressor which binds to Ino2. For a better understanding of interactions among regulators, we mapped an 18 aa repressor interaction domain (RID, aa 118-135) within Ino2 necessary and sufficient for binding by Opi1. By alanine scanning mutagenesis of the entire RID we were able to identify nine residues critical for Opi1-dependent repression of Ino2 function. Consequently, the corresponding dominant Ino2 variants conferred constitutive expression of an ICRE-dependent reporter gene and were no longer inhibited even by overproduction of Opi1. Interestingly, Ino2 RID partially overlaps with transcriptional activation domain TAD2. As certain mutations exclusively affect repression while others affect both repression and activation, both functions of Ino2 can be functionally uncoupled. Correspondingly, we mapped the RID-binding activator interaction domain (AID, aa 321-380) at the C-terminus of Opi1 and introduced missense mutations at selected positions. An Opi1 variant simultaneously mutated at three highly conserved positions showed complete loss of repressor function, confirming RID-AID interaction as the crucial step of regulated expression of ICRE-dependent genes.
Collapse
Affiliation(s)
- Willm-Thomas Heyken
- Institut für Mikrobiologie, Abteilung Genetik und Biochemie, Ernst-Moritz-Arndt Universität Greifswald, Jahnstr. 15a, D-17487 Greifswald, Germany
| | | | | | | |
Collapse
|
27
|
Ferreira ME, Hermann S, Prochasson P, Workman JL, Berndt KD, Wright APH. Mechanism of Transcription Factor Recruitment by Acidic Activators. J Biol Chem 2005; 280:21779-84. [PMID: 15826952 DOI: 10.1074/jbc.m502627200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many transcriptional activators are intrinsically unstructured yet display unique, defined conformations when bound to target proteins. Target-induced folding provides a mechanism by which activators could form specific interactions with an array of structurally unrelated target proteins. Evidence for such a binding mechanism has been reported previously in the context of the interaction between the cancer-related c-Myc protein and the TATA-binding protein, which can be modeled as a two-step process in which a rapidly forming, low affinity complex slowly converts to a more stable form, consistent with a coupled binding and folding reaction. To test the generality of the target-induced folding model, we investigated the binding of two widely studied acidic activators, Gal4 and VP16, to a set of target proteins, including TATA-binding protein and the Swi1 and Snf5 subunits of the Swi/Snf chromatin remodeling complex. Using surface plasmon resonance, we show that these activator-target combinations also display bi-phasic kinetics suggesting two distinct steps. A fast initial binding phase that is inhibited by high ionic strength is followed by a slow phase that is favored by increased temperature. In all cases, overall affinity increases with temperature and, in most cases, with increased ionic strength. These results are consistent with a general mechanism for recruitment of transcriptional components to promoters by naturally occurring acidic activators, by which the initial contact is mediated predominantly through electrostatic interactions, whereas subsequent target-induced folding of the activator results in a stable complex.
Collapse
Affiliation(s)
- Monica E Ferreira
- Department of Life Sciences, Södertörns Högskola, S-141 89 Huddinge, Sweden.
| | | | | | | | | | | |
Collapse
|
28
|
Lu Z, Rowe SP, Brennan BB, Davis SE, Metzler RE, Nau JJ, Majmudar CY, Mapp AK, Ansari AZ. Unraveling the mechanism of a potent transcriptional activator. J Biol Chem 2005; 280:29689-98. [PMID: 15886204 DOI: 10.1074/jbc.m504895200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite their enormous potential as novel research tools and therapeutic agents, artificial transcription factors (ATFs) that up-regulate transcription robustly in vivo remain elusive. In investigating an ATF that does function exceptionally well in vivo, we uncovered an unexpected relationship between transcription function and a binding interaction between the activation domain and an adjacent region of the DNA binding domain. Disruption of this interaction leads to complete loss of function in vivo, even though the activation domain is still able to bind to its target in the transcriptional machinery. We propose that this interaction parallels those between natural activation domains and their regulatory proteins, concealing the activation domain from solvent and the cellular milieu until it binds to its transcriptional machinery target. Inclusion of this property in the future design of ATFs should enhance their efficacy in vivo.
Collapse
Affiliation(s)
- Zhen Lu
- Department of Biochemistry, University of Wisconsin, Madison, 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Larschan E, Winston F. The Saccharomyces cerevisiae Srb8-Srb11 complex functions with the SAGA complex during Gal4-activated transcription. Mol Cell Biol 2005; 25:114-23. [PMID: 15601835 PMCID: PMC538787 DOI: 10.1128/mcb.25.1.114-123.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae SAGA (Spt-Ada-Gcn5-acetyltransferase) complex functions as a coactivator during Gal4-activated transcription. A functional interaction between the SAGA component Spt3 and TATA-binding protein (TBP) is important for TBP binding at Gal4-activated promoters. To better understand the role of SAGA and other factors in Gal4-activated transcription, we selected for suppressors that bypass the requirement for SAGA. We obtained eight complementation groups and identified the genes corresponding to three of the groups as NHP10, HDA1, and SRB9. In contrast to the srb9 suppressor mutation that we identified, an srb9Delta mutation causes a strong defect in Gal4-activated transcription. Our studies have focused on this requirement for Srb9. Srb9 is part of the Srb8-Srb11 complex, associated with the Mediator coactivator. Srb8-Srb11 contains the Srb10 kinase, whose activity is important for GAL1 transcription. Our data suggest that Srb8-Srb11, including Srb10 kinase activity, is directly involved in Gal4 activation. By chromatin immunoprecipitation studies, Srb9 is present at the GAL1 promoter upon induction and facilitates the recruitment or stable association of TBP. Furthermore, the association of Srb9 with the GAL1 upstream activation sequence requires SAGA and specifically Spt3. Finally, Srb9 association also requires TBP. These results suggest that Srb8-Srb11 associates with the GAL1 promoter subsequent to SAGA binding, and that the binding of TBP and Srb8-Srb11 is interdependent.
Collapse
Affiliation(s)
- Erica Larschan
- Department of Genetics, Harvard Medical School, 77 Ave. Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
30
|
Mizutani A, Tanaka M. Regions of GAL4 critical for binding to a promoter in vivo revealed by a visual DNA-binding analysis. EMBO J 2003; 22:2178-87. [PMID: 12727884 PMCID: PMC156092 DOI: 10.1093/emboj/cdg220] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Binding of transcriptional activators to specific sites on DNA, mediated by their DNA-binding domain, is a key regulatory point in transcriptional regulation. With a GFP-based microscopic assay, we investigated how the prototypical activator GAL4 effectively binds to a promoter in living yeast cells. We show that GAL4 relies on a previously unrevealed mechanism involving 'DNA-binding enhancers' (DBEs), the regions of GAL4 that assist DNA-binding domain association with DNA. GAL4 contains two DBEs, one, but not the other, physically overlapping the principal transcriptional activation domain. Either of the DBEs, however, can function independently of transcriptional activation, indicating a discrete mechanism responsible for DNA-binding enhancement. The effect of DBEs, while not limited to natural target promoters, is still not universal and can be profoundly affected by the binding-site context. The GAL4 DBEs can also enhance promoter binding of an unrelated DNA-binding domain, and possibly represent a new modular functional unit responsible for effective binding of diverse regulatory factors to DNA in vivo.
Collapse
Affiliation(s)
- Akiko Mizutani
- Unit Process and Combined Circuit, PRESTO, Japan Science and Technology Corporation (JST), Kawaguchi, Saitama 332-0012, Japan
| | | |
Collapse
|
31
|
Khanday FA, Saha M, Bhat PJ. Molecular characterization of MRG19 of Saccharomyces cerevisiae. Implication in the regulation of galactose and nonfermentable carbon source utilization. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5840-50. [PMID: 12444972 DOI: 10.1046/j.1432-1033.2002.03303.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have reported previously that multiple copies of MRG19 suppress GAL genes in a wild-type but not in a gal80 strain of Saccharomyces cerevisiae. In this report we show that disruption of MRG19 leads to a decrease in GAL induction when S. cerevisiae is induced with 0.02% but not with 2.0% galactose. Disruption of MRG19 in a gal3 background (this strain shows long-term adaptation phenotype) further delays the GAL induction, supporting the notion that its function is important only under low inducing signals. As a corollary, disruption of MRG19 in a gal80 strain did not decrease the constitutive expression of GAL genes. These results suggest that MRG19 has a role in GAL regulation only when the induction signal is weak. Unlike the effect on GAL gene expression, disruption of MRG19 leads to de-repression of CYC1-driven beta-galactosidase activity. MRG19 disruptant also showed a twofold increase in the rate of oxygen uptake as compared with the wild-type strain. ADH2, CTA1, DLD1, and CYC7 promoters that are active during nonfermentative growth did not show any de-repression of beta-galactosidase activity in the MRG19 disruptant. Western blot analysis indicated that MRG19 is a glucose repressible gene and is expressed in galactose and glycerol plus lactate. Experiments using green fluorescent protein fusion constructs indicate that Mrg19p is localized in the nucleus consistent with the presence of a consensus nuclear localization signal sequence. Based on the above results, we propose that Mrg19p is a regulator of galactose and nonfermentable carbon utilization.
Collapse
Affiliation(s)
- Firdous A Khanday
- Laboratory of Molecular Genetics, Biotechnology Center, Indian Institute of Technology, Powai, Mumbai, India
| | | | | |
Collapse
|
32
|
Ansari AZ, Koh SS, Zaman Z, Bongards C, Lehming N, Young RA, Ptashne M. Transcriptional activating regions target a cyclin-dependent kinase. Proc Natl Acad Sci U S A 2002; 99:14706-9. [PMID: 12417740 PMCID: PMC137483 DOI: 10.1073/pnas.232573899] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2002] [Indexed: 11/18/2022] Open
Abstract
Several yeast activators are phosphorylated by SRB10, a cyclin-dependent kinase associated with the transcriptional machinery. Sites of phosphorylation are found outside the activating region in each case, and the modification has different physiological consequences in different cases. We show here that certain acidic transcriptional activating regions contact SRB10 as assayed both in vivo and in vitro. The interaction evidently positions each activator, as it activates transcription, so that it gets phosphorylated by SRB10, and thus a common mechanism targets disparate substrates to the kinase.
Collapse
Affiliation(s)
- Aseem Z Ansari
- Program in Molecular Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Carrozza MJ, John S, Sil AK, Hopper JE, Workman JL. Gal80 confers specificity on HAT complex interactions with activators. J Biol Chem 2002; 277:24648-52. [PMID: 11986320 DOI: 10.1074/jbc.m201965200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several yeast transcription activators have been shown to interact with and recruit histone acetyltransferase complexes to promoters in chromatin. The promiscuity of activator/HAT interactions suggests that additional factors temporally regulate these interactions in response to signaling pathways. In this study, we demonstrate that the negative regulator, Gal80, blocks interactions between the SAGA and NuA4 HAT complexes and the Gal4 activator. By contrast, Gal80 did not inhibit SAGA and NuA4 interaction with another activator Gcn4. The function of Gal80 prevented Gal4 targeting of SAGA and displaced SAGA targeted by Gal4 to a promoter within a nucleosome array. In the same set of experiments, targeting of SAGA by Gcn4 was unaffected by Gal80. These studies demonstrate that the specificity of HAT/activator interactions can be dictated by cofactors that modulate activation domain function in response to cellular signals.
Collapse
Affiliation(s)
- Michael J Carrozza
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
34
|
D'Elia AV, Tell G, Paron I, Pellizzari L, Lonigro R, Damante G. Missense mutations of human homeoboxes: A review. Hum Mutat 2001; 18:361-74. [PMID: 11668629 DOI: 10.1002/humu.1207] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The homeodomain (encoded by the homeobox) is the DNA-binding domain of a large variety of transcriptional regulators involved in controlling cell fate decisions and development. Mutations of homeobox-containing genes cause several diseases in humans. A variety of missense mutations giving rise to human diseases have been described. These mutations are an excellent model to better understand homeodomain molecular functions. To this end, homeobox missense mutations giving rise to human diseases are reviewed. Seventy-four independent homeobox mutations have been observed in 17 different genes. In the same genes, 30 missense mutations outside the homeobox have been observed, indicating that the homeodomain is more easily affected by single amino acids changes than the rest of the protein. Most missense mutations have dominant effects. Several data indicate that dominance is mostly due to haploinsufficiency. Among proteins having the homeodomain as the only DNA-binding domain, three "hot spot" regions can be delineated: 1) at codon encoding for Arg5; 2) at codon encoding for Arg31; and 3) at codons encoding for amino acids of recognition helix. In the latter, mutations at codons encoding for Arg residues at positions 52 and 53 are prevalent. In the recognition helix, Arg residues at positions 52 and 53 establish contacts with phosphates in the DNA backbone. Missense mutations of amino acids that contribute to sequence discrimination (such as those at positions 50 and 54) are present only in a minority of cases. Similar data have been obtained when missense mutations of proteins possessing an additional DNA-binding domain have been analyzed. The only exception is observed in the POU1F1 (PIT1) homeodomain, in which Arg58 is a "hot spot" for mutations, but is not involved in DNA recognition.
Collapse
Affiliation(s)
- A V D'Elia
- Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, Udine, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Larschan E, Winston F. The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4. Genes Dev 2001; 15:1946-56. [PMID: 11485989 PMCID: PMC312753 DOI: 10.1101/gad.911501] [Citation(s) in RCA: 256] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Previous studies demonstrated that the SAGA (Spt-Ada-Gcn5-Acetyltransferase) complex facilitates the binding of TATA-binding protein (TBP) during transcriptional activation of the GAL1 gene of Saccharomyces cerevisiae. TBP binding was shown to require the SAGA components Spt3 and Spt20/Ada5, but not the SAGA component Gcn5. We have now examined whether SAGA is directly required as a coactivator in vivo by using chromatin immunoprecipitation analysis. Our results demonstrate that SAGA is physically recruited in vivo to the upstream activation sequence (UAS) regions of the galactose-inducible GAL genes. This recruitment is dependent on both induction by galactose and the Gal4 activation domain. Furthermore, we demonstrate that another well-characterized activator, Gal4-VP16, also recruits SAGA in vivo. Finally, we provide evidence that a specific interaction between Spt3 and TBP in vivo is important for Gal4 transcriptional activation at a step after SAGA recruitment. These results, taken together with previous studies, demonstrate a dependent pathway for the recruitment of TBP to GAL gene promoters consisting of the recruitment of SAGA by Gal4 and the subsequent recruitment of TBP by SAGA.
Collapse
Affiliation(s)
- E Larschan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
36
|
Abstract
Despite major advances in characterizing the eukaryotic transcriptional machinery, the function of promoter-specific transcriptional activators (activators) is still not understood. For example, in no case have the direct in vivo targets of a transcriptional activator been unambiguously identified, nor has it been resolved whether activators have a single essential target or multiple redundant targets. Here we address these issues for the prototype acidic activator yeast Gal4p. Gal4p binds to the upstream activating sequence (UAS) of GAL1 and several other GAL genes and stimulates transcription in the presence of galactose. Previous studies have shown that GAL1 transcription is dependent on the yeast SAGA (Spt/Ada/GCN5/acetyltransferase) complex. Using formaldehyde-based in vivo cross-linking, we show that the Gal4p activation domain recruits SAGA to the GAL1 UAS. If SAGA is not recruited to the UAS, the preinitiation complex (PIC) fails to assemble at the GAL1 core promoter, and transcription does not occur. SAGA, but not other transcription components, is also recruited by the Gal4p activation domain to a plasmid containing minimal Gal4p-binding sites. Recruitment of SAGA by Gal4p and stimulation of PIC assembly is dependent on several SAGA subunits but not the SAGA histone acetyl-transferase (HAT) GCN5. Based on these and other results, we conclude that SAGA is an essential target of Gal4p that, following recruitment to the UAS, facilitates PIC assembly and transcription.
Collapse
Affiliation(s)
- S R Bhaumik
- Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
37
|
Ansari AZ, Mapp AK, Nguyen DH, Dervan PB, Ptashne M. Towards a minimal motif for artificial transcriptional activators. CHEMISTRY & BIOLOGY 2001; 8:583-92. [PMID: 11410377 DOI: 10.1016/s1074-5521(01)00037-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Most transcriptional activators minimally comprise two functional modules, one for DNA binding and the other for activation. Several activators also bear an oligomerization region and bind DNA as dimers or higher order oligomers. In a previous study we substituted these domains of a protein activator with synthetic counterparts [Mapp et al., Proc. Natl. Acad. Sci. USA 97 (2000) 3930-3935]. An artificial transcriptional activator, 4.2 kDa in size, comprised of a DNA binding hairpin polyamide tethered to a 20 residue activating peptide (AH) was shown to stimulate promoter specific transcription [Mapp et al., Proc. Natl. Acad. Sci. USA 97 (2000) 3930-3935]. The question arises as to the general nature and the versatility of this minimal activator motif and whether smaller ligands can be designed which maintain potent activation function. RESULTS Here we have replaced the 20 amino acid AH peptide with eight or 16 residues derived from the activation domain of the potent viral activator VP16. The 16 residue activation module coupled to the polyamide activated transcription over two-fold better than the analogous AH conjugate. Altering the site of attachment of the activation module on the polyamide allowed reduction of the intervening linker from 36 atoms to eight without significant diminution of the activation potential. In this study we also exchanged the polyamide to target a different sequence without compromising the activation function further demonstrating the generality of this design. CONCLUSIONS The polyamide activator conjugates described here represent a class of DNA binding ligands which are tethered to a second functional moiety, viz. an activation domain, that recruits elements of the endogenous transcriptional machinery. Our results define the minimal structural elements required to construct artificial, small molecule activators. If such activators are cell-permeable and can be targeted to designated sites in the genome, this series of conjugates may then serve as a tool to study mechanistic aspects of transcriptional regulation and eventually to modulate gene expression relevant to human diseases.
Collapse
Affiliation(s)
- A Z Ansari
- Molecular Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
38
|
Hidalgo P, Ansari AZ, Schmidt P, Hare B, Simkovich N, Farrell S, Shin EJ, Ptashne M, Wagner G. Recruitment of the transcriptional machinery through GAL11P: structure and interactions of the GAL4 dimerization domain. Genes Dev 2001; 15:1007-20. [PMID: 11316794 PMCID: PMC312679 DOI: 10.1101/gad.873901] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The GAL4 dimerization domain (GAL4-dd) is a powerful transcriptional activator when tethered to DNA in a cell bearing a mutant of the GAL11 protein, named GAL11P. GAL11P (like GAL11) is a component of the RNA-polymerase II holoenzyme. Nuclear magnetic resonance (NMR) studies of GAL4-dd revealed an elongated dimer structure with C(2) symmetry containing three helices that mediate dimerization via coiled-coil contacts. The two loops between the three coiled coils form mobile bulges causing a variation of twist angles between the helix pairs. Chemical shift perturbation analysis mapped the GAL11P-binding site to the C-terminal helix alpha3 and the loop between alpha1 and alpha2. One GAL11P monomer binds to one GAL4-dd dimer rendering the dimer asymmetric and implying an extreme negative cooperativity mechanism. Alanine-scanning mutagenesis of GAL4-dd showed that the NMR-derived GAL11P-binding face is crucial for the novel transcriptional activating function of the GAL4-dd on GAL11P interaction. The binding of GAL4 to GAL11P, although an artificial interaction, represents a unique structural motif for an activating region capable of binding to a single target to effect gene expression.
Collapse
Affiliation(s)
- P Hidalgo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Nissen RM, Yamamoto KR. The glucocorticoid receptor inhibits NFkappaB by interfering with serine-2 phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev 2000; 14:2314-29. [PMID: 10995388 PMCID: PMC316928 DOI: 10.1101/gad.827900] [Citation(s) in RCA: 401] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glucocorticoids repress NFkappaB-mediated activation of proinflammatory genes such as interleukin-8 (IL-8) and ICAM-1. Our experiments suggest that the glucocorticoid receptor (GR) confers this effect by associating through protein-protein interactions with NFkappaB bound at each of these genes. That is, we show that the GR zinc binding region (ZBR), which includes the DNA binding and dimerization functions of the receptor, binds directly to the dimerization domain of the RelA subunit of NFkappaB in vitro and that the ZBR is sufficient to associate with RelA bound at NFkappaB response elements in vivo. Moreover, we demonstrate in vivo and in vitro that GR does not disrupt DNA binding by NFkappaB. In transient transfections, we found that the GR ligand binding domain is essential for repression of NFkappaB but not for association with it and that GR can repress an NFkappaB derivative bearing a heterologous activation domain. We used chromatin immunoprecipitation assays in untransfected A549 cells to infer the mechanism by which the tethered GR represses NFkappaB-activated transcription. As expected, we found that the inflammatory signal TNFalpha stimulated preinitiation complex (PIC) assembly at the IL-8 and ICAM-1 promoters and that the largest subunit of RNA polymerase II (pol II) in those complexes became phosphorylated at serines 2 and 5 in its carboxy-terminal domain (CTD) heptapeptide repeats (YSPTSPS); these modifications are required for transcription initiation. Remarkably, GR did not inhibit PIC assembly under repressing conditions, but rather interfered with phosphorylation of serine 2 of the pol II CTD.
Collapse
Affiliation(s)
- R M Nissen
- Departments of Cellular and Molecular Pharmacology, and Biochemistry and Biophysics, PIBS Biochemistry and Molecular Biology Program, University of California, San Francisco, San Francisco, California 94143-0450, USA
| | | |
Collapse
|
40
|
Han Y, Kodadek T. Peptides selected to bind the Gal80 repressor are potent transcriptional activation domains in yeast. J Biol Chem 2000; 275:14979-84. [PMID: 10809742 DOI: 10.1074/jbc.275.20.14979] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activation domain of the yeast Gal4 protein binds specifically to the Gal80 repressor and is also thought to associate with one or more coactivators in the RNA polymerase II holoenzyme and chromatin remodeling machines. This is a specific example of a common situation in biochemistry where a single protein domain can interact with multiple partners. Are these different interactions related chemically? To probe this point, phage display was employed to isolate peptides from a library based solely on their ability to bind Gal80 protein in vitro. Peptide-Gal80 protein association is shown to be highly specific and of moderate affinity. The Gal80 protein-binding peptides compete with the native activation domain for the repressor, suggesting that they bind to the same site. It was then asked if these peptides could function as activation domains in yeast when tethered to a DNA binding domain. Indeed, this is the case. Furthermore, one of the Gal80-binding peptides binds directly to a domain of the Gal11 protein, a known coactivator. The fact that Gal80-binding peptides are functional activation domains argues that repressor binding and activation/coactivator binding are intimately related properties. This peptide library-based approach should be generally useful for probing the chemical relationship of different binding interactions or functions of a given native domain.
Collapse
Affiliation(s)
- Y Han
- Departments of Internal Medicine and Biochemistry, Center for Biomedical Inventions, Ryburn Center for Molecular Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235-8573, USA
| | | |
Collapse
|
41
|
Lu X, Ansari AZ, Ptashne M. An artificial transcriptional activating region with unusual properties. Proc Natl Acad Sci U S A 2000; 97:1988-92. [PMID: 10681438 PMCID: PMC15741 DOI: 10.1073/pnas.040573197] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe a series of transcriptional activators generated by adding amino acids (eight in one case, six in another) to fragments of the yeast Saccharomyces cerevisiae activator Gal4 that dimerize and bind DNA. One of the novel activating regions identified by this procedure is unusual, compared with previously characterized yeast activating regions, in the following ways: it works more strongly than does Gal4's natural activating region as assayed in yeast; it is devoid of acidic residues; and several lines of evidence suggest that it sees targets in the yeast transcriptional machinery at least partially distinct from those seen by Gal4's activating region.
Collapse
Affiliation(s)
- X Lu
- Program in Molecular Biology, Memorial Sloan Kettering Cancer Center, Box 595, 1275 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
42
|
Döring P, Treuter E, Kistner C, Lyck R, Chen A, Nover L. The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2. THE PLANT CELL 2000. [PMID: 10662862 DOI: 10.1105/tpc.12.2.265] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Using reporter assays in tobacco protoplasts and yeast, we investigated the function of the acidic C-terminal activation domains of tomato heat stress transcription factors HsfA1 and HsfA2. Both transcription factors contain short, essential peptide motifs with a characteristic pattern of aromatic and large hydrophobic amino acid residues embedded in an acidic context (AHA motifs). The prototype is the AHA1 motif of HsfA2, which has the sequence DDIWEELL. Our mutational analysis supports the important role of the aromatic and large hydrophobic amino acid residues in the core positions of the AHA motifs. The pattern suggests the formation of an amphipathic, negatively charged helix as the putative contact region with components of the basal transcription complex. In support of this concept, proline or positively charged residues in or adjacent to the AHA motifs markedly reduce or abolish their activity. Both AHA motifs of HsfA1 and HsfA2 contribute to activator potential, and they can substitute for each other; however, there is evidence for sequence and positional specificity.
Collapse
Affiliation(s)
- P Döring
- Department of Molecular Cell Biology, Biocenter N200, 3OG, Goethe University Frankfurt, Marie Curie Strasse 9, D-60439 Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Döring P, Treuter E, Kistner C, Lyck R, Chen A, Nover L. The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2. THE PLANT CELL 2000. [PMID: 10662862 DOI: 10.2307/3870927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Using reporter assays in tobacco protoplasts and yeast, we investigated the function of the acidic C-terminal activation domains of tomato heat stress transcription factors HsfA1 and HsfA2. Both transcription factors contain short, essential peptide motifs with a characteristic pattern of aromatic and large hydrophobic amino acid residues embedded in an acidic context (AHA motifs). The prototype is the AHA1 motif of HsfA2, which has the sequence DDIWEELL. Our mutational analysis supports the important role of the aromatic and large hydrophobic amino acid residues in the core positions of the AHA motifs. The pattern suggests the formation of an amphipathic, negatively charged helix as the putative contact region with components of the basal transcription complex. In support of this concept, proline or positively charged residues in or adjacent to the AHA motifs markedly reduce or abolish their activity. Both AHA motifs of HsfA1 and HsfA2 contribute to activator potential, and they can substitute for each other; however, there is evidence for sequence and positional specificity.
Collapse
Affiliation(s)
- P Döring
- Department of Molecular Cell Biology, Biocenter N200, 3OG, Goethe University Frankfurt, Marie Curie Strasse 9, D-60439 Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
The utilization of optical biosensors to study molecular interactions continues to expand. In 1998, 384 articles relating to the use of commercial biosensors were published in 130 different journals. While significant strides in new applications and methodology were made, a majority of the biosensor literature is of rather poor quality. Basic information about experimental conditions is often not presented and many publications fail to display the experimental data, bringing into question the credibility of the results. This review provides suggestions on how to collect, analyze and report biosensor data.
Collapse
Affiliation(s)
- D G Myszka
- University of Utah, Salt Lake City, UT 84132, USA.
| |
Collapse
|
45
|
Sil AK, Alam S, Xin P, Ma L, Morgan M, Lebo CM, Woods MP, Hopper JE. The Gal3p-Gal80p-Gal4p transcription switch of yeast: Gal3p destabilizes the Gal80p-Gal4p complex in response to galactose and ATP. Mol Cell Biol 1999; 19:7828-40. [PMID: 10523671 PMCID: PMC84853 DOI: 10.1128/mcb.19.11.7828] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gal3, Gal80, and Gal4 proteins of Saccharomyces cerevisiae comprise a signal transducer that governs the galactose-inducible Gal4p-mediated transcription activation of GAL regulon genes. In the absence of galactose, Gal80p binds to Gal4p and prohibits Gal4p from activating transcription, whereas in the presence of galactose, Gal3p binds to Gal80p and relieves its inhibition of Gal4p. We have found that immunoprecipitation of full-length Gal4p from yeast extracts coprecipitates less Gal80p in the presence than in the absence of Gal3p, galactose, and ATP. We have also found that retention of Gal80p by GSTG4AD (amino acids [aa] 768 to 881) is markedly reduced in the presence compared to the absence of Gal3p, galactose, and ATP. Consistent with these in vitro results, an in vivo two-hybrid genetic interaction between Gal80p and Gal4p (aa 768 to 881) was shown to be weaker in the presence than in the absence of Gal3p and galactose. These compiled results indicate that the binding of Gal3p to Gal80p results in destabilization of a Gal80p-Gal4p complex. The destabilization was markedly higher for complexes consisting of G4AD (aa 768 to 881) than for full-length Gal4p, suggesting that Gal80p relocated to a second site on full-length Gal4p. Congruent with the idea of a second site, we discovered a two-hybrid genetic interaction involving Gal80p and the region of Gal4p encompassing aa 225 to 797, a region of Gal4p linearly remote from the previously recognized Gal80p binding peptide within Gal4p aa 768 to 881.
Collapse
Affiliation(s)
- A K Sil
- Department of Biochemistry, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhu W, Yang B, Wills N, Johnson LB, White FF. The C terminus of AvrXa10 can be replaced by the transcriptional activation domain of VP16 from the herpes simplex virus. THE PLANT CELL 1999; 11:1665-74. [PMID: 10488234 PMCID: PMC144317 DOI: 10.1105/tpc.11.9.1665] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The avirulence gene avrXa10 of Xanthomonas oryzae pv oryzae directs the elicitation of resistance in a gene-for-gene manner in rice lines carrying the resistance gene Xa10. We have localized a transcriptional activator domain in the C terminus of AvrXa10 by using amino acid replacement mutagenesis. One mutant, with replacements at three hydrophobic amino acid residues in the C-terminal domain, was defective for transcriptional activation in yeast and avirulence activity in rice. The activation domain from the herpes virus protein VP16 restored the ability of the bacteria expressing the hybrid protein to elicit a resistance reaction. Elicitation was specific for Xa10, and the reaction had the hallmarks of the response to AvrXa10. The results indicate that a domain with the properties of a transcriptional activator plays a critical role in AvrXa10 function. The results also indicate that the protein has the potential to interact with the plant transcriptional program, although a role for the domain in the stability or conformation of the protein in the plant cannot be excluded. In a broader sense, the transcriptional activation domain of avrXa10 may represent a prokaryotic version of the acidic transcriptional activation domain, which heretofore has been found exclusively in eukaryotes.
Collapse
Affiliation(s)
- W Zhu
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | | | |
Collapse
|