1
|
Nishihara A, Tsukatani Y, Azai C, Nobu MK. Illuminating the coevolution of photosynthesis and Bacteria. Proc Natl Acad Sci U S A 2024; 121:e2322120121. [PMID: 38875151 PMCID: PMC11194577 DOI: 10.1073/pnas.2322120121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/06/2024] [Indexed: 06/16/2024] Open
Abstract
Life harnessing light energy transformed the relationship between biology and Earth-bringing a massive flux of organic carbon and oxidants to Earth's surface that gave way to today's organotrophy- and respiration-dominated biosphere. However, our understanding of how life drove this transition has largely relied on the geological record; much remains unresolved due to the complexity and paucity of the genetic record tied to photosynthesis. Here, through holistic phylogenetic comparison of the bacterial domain and all photosynthetic machinery (totally spanning >10,000 genomes), we identify evolutionary congruence between three independent biological systems-bacteria, (bacterio)chlorophyll-mediated light metabolism (chlorophototrophy), and carbon fixation-and uncover their intertwined history. Our analyses uniformly mapped progenitors of extant light-metabolizing machinery (reaction centers, [bacterio]chlorophyll synthases, and magnesium-chelatases) and enzymes facilitating the Calvin-Benson-Bassham cycle (form I RuBisCO and phosphoribulokinase) to the same ancient Terrabacteria organism near the base of the bacterial domain. These phylogenies consistently showed that extant phototrophs ultimately derived light metabolism from this bacterium, the last phototroph common ancestor (LPCA). LPCA was a non-oxygen-generating (anoxygenic) phototroph that already possessed carbon fixation and two reaction centers, a type I analogous to extant forms and a primitive type II. Analyses also indicate chlorophototrophy originated before LPCA. We further reconstructed evolution of chlorophototrophs/chlorophototrophy post-LPCA, including vertical inheritance in Terrabacteria, the rise of oxygen-generating chlorophototrophy in one descendant branch near the Great Oxidation Event, and subsequent emergence of Cyanobacteria. These collectively unveil a detailed view of the coevolution of light metabolism and Bacteria having clear congruence with the geological record.
Collapse
Affiliation(s)
- Arisa Nishihara
- Department of Life Science and Biotechnology, The National Institute of Advanced Industrial Science and Technology, Ibaraki305-0817, Japan
| | - Yusuke Tsukatani
- Biogeochemistry Research Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa237-0061, Japan
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa237-0061, Japan
| | - Chihiro Azai
- College of Life Sciences, Ritsumeikan University, Shiga525-8577, Japan
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo112-8551, Japan
| | - Masaru K. Nobu
- Department of Life Science and Biotechnology, The National Institute of Advanced Industrial Science and Technology, Ibaraki305-0817, Japan
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa237-0061, Japan
| |
Collapse
|
2
|
Sattley WM, Swingley WD, Burchell BM, Dewey ED, Hayward MK, Renbarger TL, Shaffer KN, Stokes LM, Gurbani SA, Kujawa CM, Nuccio DA, Schladweiler J, Touchman JW, Wang-Otomo ZY, Blankenship RE, Madigan MT. Complete genome of the thermophilic purple sulfur Bacterium Thermochromatium tepidum compared to Allochromatium vinosum and other Chromatiaceae. PHOTOSYNTHESIS RESEARCH 2022; 151:125-142. [PMID: 34669148 DOI: 10.1007/s11120-021-00870-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
The complete genome sequence of the thermophilic purple sulfur bacterium Thermochromatium tepidum strain MCT (DSM 3771T) is described and contrasted with that of its mesophilic relative Allochromatium vinosum strain D (DSM 180T) and other Chromatiaceae. The Tch. tepidum genome is a single circular chromosome of 2,958,290 base pairs with no plasmids and is substantially smaller than the genome of Alc. vinosum. The Tch. tepidum genome encodes two forms of RuBisCO and contains nifHDK and several other genes encoding a molybdenum nitrogenase but lacks a gene encoding a protein that assembles the Fe-S cluster required to form a functional nitrogenase molybdenum-iron cofactor, leaving the phototroph phenotypically Nif-. Tch. tepidum contains genes necessary for oxidizing sulfide to sulfate as photosynthetic electron donor but is genetically unequipped to either oxidize thiosulfate as an electron donor or carry out assimilative sulfate reduction, both of which are physiological hallmarks of Alc. vinosum. Also unlike Alc. vinosum, Tch. tepidum is obligately phototrophic and unable to grow chemotrophically in darkness by respiration. Several genes present in the Alc. vinosum genome that are absent from the genome of Tch. tepidum likely contribute to the major physiological differences observed between these related purple sulfur bacteria that inhabit distinct ecological niches.
Collapse
Affiliation(s)
- W Matthew Sattley
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN, 46953, USA.
| | - Wesley D Swingley
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL, 60115, USA
| | - Brad M Burchell
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN, 46953, USA
| | - Emma D Dewey
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN, 46953, USA
| | - Mackenzie K Hayward
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN, 46953, USA
| | - Tara L Renbarger
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN, 46953, USA
| | - Kathryn N Shaffer
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN, 46953, USA
| | - Lynn M Stokes
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN, 46953, USA
| | - Sonja A Gurbani
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL, 60115, USA
| | - Catrina M Kujawa
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL, 60115, USA
| | - D Adam Nuccio
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL, 60115, USA
| | - Jacob Schladweiler
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL, 60115, USA
| | - Jeffrey W Touchman
- School of Life Sciences, Arizona State University, Tempe, AR, 85287, USA
| | | | - Robert E Blankenship
- Departments of Chemistry and Biology, Washington University, St. Louis, MO, 63130, USA
| | - Michael T Madigan
- Department of Microbiology, School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| |
Collapse
|
3
|
Orf GS, Gisriel CJ, Granstrom J, Baker PL, Redding KE. The PshX subunit of the photochemical reaction center from Heliobacterium modesticaldum acts as a low-energy antenna. PHOTOSYNTHESIS RESEARCH 2022; 151:11-30. [PMID: 34480322 DOI: 10.1007/s11120-021-00871-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
The anoxygenic phototrophic bacterium Heliobacterium modesticaldum contains a photochemical reaction center protein complex (called the HbRC) consisting of a homodimer of the PshA polypeptide and two copies of a newly discovered polypeptide called PshX, which is a single transmembrane helix that binds two bacteriochlorophyll g molecules. To assess the function of PshX, we produced a ∆pshX strain of Hbt. modesticaldum by leveraging the endogenous Hbt. modesticaldum Type I-A CRISPR-Cas system to aid in mutant selection. We optimized this system by separating the homologous recombination and CRISPR-based selection steps into two plasmid transformations, allowing for markerless gene replacement. Fluorescence and low-temperature absorbance of the purified HbRC from the wild-type and ∆pshX strains showed that the bacteriochlorophylls bound by PshX have the lowest site energies in the entire HbRC. This indicates that PshX acts as a low-energy antenna subunit, participating in entropy-assisted uphill energy transfer toward the P800 special bacteriochlorophyll g pair. We further discuss the role that PshX may play in stability of the HbRC, its conservation in other heliobacterial species, and the evolutionary pressure to produce and maintain single-TMH subunits in similar locations in other reaction centers.
Collapse
Affiliation(s)
- Gregory S Orf
- Center for Bioenergy and Photosynthesis, School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Infectious Disease Research, Abbott Diagnostics Division, Abbott Park, IL, 60064, USA
| | - Christopher J Gisriel
- Center for Bioenergy and Photosynthesis, School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Jesse Granstrom
- Center for Bioenergy and Photosynthesis, School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Patricia L Baker
- Center for Bioenergy and Photosynthesis, School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Kevin E Redding
- Center for Bioenergy and Photosynthesis, School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
4
|
Leung SW, Baker PL, Redding KE. Deletion of the cytochrome bc complex from Heliobacterium modesticaldum results in viable but non-phototrophic cells. PHOTOSYNTHESIS RESEARCH 2021; 148:137-152. [PMID: 34236566 DOI: 10.1007/s11120-021-00845-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/04/2021] [Indexed: 06/13/2023]
Abstract
The heliobacteria, a family of anoxygenic phototrophs, possess the simplest known photosynthetic apparatus. Although they are photoheterotrophs in the light, the heliobacteria can also grow chemotrophically via pyruvate metabolism in the dark. In the heliobacteria, the cytochrome bc complex is responsible for oxidizing menaquinol and reducing cytochrome c553 in the electron flow cycle used for phototrophy. However, there is no known electron acceptor for the mobile cytochrome c553 other than the photochemical reaction center. We have, therefore, hypothesized that the cytochrome bc complex is necessary for phototrophy, but unnecessary for chemotrophic growth in the dark. We used a two-step method for CRISPR-based genome editing in Heliobacterium modesticaldum to delete the genes encoding the four major subunits of the cytochrome bc complex. Genotypic analysis verified the deletion of the petCBDA gene cluster encoding the catalytic components of the complex. Spectroscopic studies revealed that re-reduction of cytochrome c553 after flash-induced photo-oxidation was over 100 times slower in the ∆petCBDA mutant compared to the wild-type. Steady-state levels of oxidized P800 (the primary donor of the photochemical reaction center) were much higher in the ∆petCBDA mutant at every light level, consistent with a limitation in electron flow to the reaction center. The ∆petCBDA mutant was unable to grow phototrophically on acetate plus CO2 but could grow chemotrophically on pyruvate as a carbon source similar to the wild-type strain in the dark. The mutants could be complemented by reintroduction of the petCBDA gene cluster on a plasmid expressed from the clostridial eno promoter.
Collapse
Affiliation(s)
- Sabrina W Leung
- School of Molecular Sciences, Arizona State University, 1711 S Rural Rd, Box 871604, Tempe, AZ, 85287-1604, USA
| | - Patricia L Baker
- School of Molecular Sciences, Arizona State University, 1711 S Rural Rd, Box 871604, Tempe, AZ, 85287-1604, USA
| | - Kevin E Redding
- School of Molecular Sciences, Arizona State University, 1711 S Rural Rd, Box 871604, Tempe, AZ, 85287-1604, USA.
| |
Collapse
|
5
|
Antonov IV. Two Cobalt Chelatase Subunits Can Be Generated from a Single chlD Gene via Programed Frameshifting. Mol Biol Evol 2020; 37:2268-2278. [PMID: 32211852 DOI: 10.1093/molbev/msaa081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Magnesium chelatase chlIDH and cobalt chelatase cobNST enzymes are required for biosynthesis of (bacterio)chlorophyll and cobalamin (vitamin B12), respectively. Each enzyme consists of large, medium, and small subunits. Structural and primary sequence similarities indicate common evolutionary origin of the corresponding subunits. It has been reported earlier that some of vitamin B12 synthesizing organisms utilized unusual cobalt chelatase enzyme consisting of a large cobalt chelatase subunit (cobN) along with a medium (chlD) and a small (chlI) subunits of magnesium chelatase. In attempt to understand the nature of this phenomenon, we analyzed >1,200 diverse genomes of cobalamin and/or chlorophyll producing prokaryotes. We found that, surprisingly, genomes of many cobalamin producers contained cobN and chlD genes only; a small subunit gene was absent. Further on, we have discovered a diverse group of chlD genes with functional programed ribosomal frameshifting signals. Given a high similarity between the small subunit and the N-terminal part of the medium subunit, we proposed that programed translational frameshifting may allow chlD mRNA to produce both subunits. Indeed, in genomes where genes for small subunits were absent, we observed statistically significant enrichment of programed frameshifting signals in chlD genes. Interestingly, the details of the frameshifting mechanisms producing small and medium subunits from a single chlD gene could be prokaryotic taxa specific. All over, this programed frameshifting phenomenon was observed to be highly conserved and present in both bacteria and archaea.
Collapse
Affiliation(s)
- Ivan V Antonov
- Institute of Bioengineering, Federal Research Centre Fundamentals of Biotechnology, Moscow, Russia
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
6
|
Selective oxidation of B800 bacteriochlorophyll a in photosynthetic light-harvesting protein LH2. Sci Rep 2019; 9:3636. [PMID: 30842503 PMCID: PMC6403449 DOI: 10.1038/s41598-019-40082-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/04/2019] [Indexed: 11/15/2022] Open
Abstract
Engineering chlorophyll (Chl) pigments that are bound to photosynthetic light-harvesting proteins is one promising strategy to regulate spectral coverage for photon capture and to improve the photosynthetic efficiency of these proteins. Conversion from the bacteriochlorophyll (BChl) skeleton (7,8,17,18-tetrahydroporphyrin) to the Chl skeleton (17,18-dihydroporphyrin) produces the most drastic change of the spectral range of absorption by light-harvesting proteins. We demonstrated in situ selective oxidation of B800 BChl a in light-harvesting protein LH2 from a purple bacterium Rhodoblastus acidophilus by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. The newly formed pigment, 3-acetyl Chl a, interacted with the LH2 polypeptides in the same manner as native B800. B850 BChl a was not oxidized in this reaction. CD spectroscopy indicated that the B850 orientation and the content of the α-helices were unchanged by the B800 oxidation. The nonameric circular arrangement of the oxidized LH2 protein was visualized by AFM; its diameter was almost the same as that of native LH2. The in situ oxidation of B800 BChl a in LH2 protein with no structural change will be useful not only for manipulation of the photofunctional properties of photosynthetic pigment-protein complexes but also for understanding the substitution of BChl to Chl pigments in the evolution from bacterial to oxygenic photosynthesis.
Collapse
|
7
|
Orf GS, Gisriel C, Redding KE. Evolution of photosynthetic reaction centers: insights from the structure of the heliobacterial reaction center. PHOTOSYNTHESIS RESEARCH 2018; 138:11-37. [PMID: 29603081 DOI: 10.1007/s11120-018-0503-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/22/2018] [Indexed: 05/24/2023]
Abstract
The proliferation of phototrophy within early-branching prokaryotes represented a significant step forward in metabolic evolution. All available evidence supports the hypothesis that the photosynthetic reaction center (RC)-the pigment-protein complex in which electromagnetic energy (i.e., photons of visible or near-infrared light) is converted to chemical energy usable by an organism-arose once in Earth's history. This event took place over 3 billion years ago and the basic architecture of the RC has diversified into the distinct versions that now exist. Using our recent 2.2-Å X-ray crystal structure of the homodimeric photosynthetic RC from heliobacteria, we have performed a robust comparison of all known RC types with available structural data. These comparisons have allowed us to generate hypotheses about structural and functional aspects of the common ancestors of extant RCs and to expand upon existing evolutionary schemes. Since the heliobacterial RC is homodimeric and loosely binds (and reduces) quinones, we support the view that it retains more ancestral features than its homologs from other groups. In the evolutionary scenario we propose, the ancestral RC predating the division between Type I and Type II RCs was homodimeric, loosely bound two mobile quinones, and performed an inefficient disproportionation reaction to reduce quinone to quinol. The changes leading to the diversification into Type I and Type II RCs were separate responses to the need to optimize this reaction: the Type I lineage added a [4Fe-4S] cluster to facilitate double reduction of a quinone, while the Type II lineage heterodimerized and specialized the two cofactor branches, fixing the quinone in the QA site. After the Type I/II split, an ancestor to photosystem I fixed its quinone sites and then heterodimerized to bind PsaC as a new subunit, as responses to rising O2 after the appearance of the oxygen-evolving complex in an ancestor of photosystem II. These pivotal events thus gave rise to the diversity that we observe today.
Collapse
Affiliation(s)
- Gregory S Orf
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, AZ, 85287, USA
| | - Christopher Gisriel
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, AZ, 85287, USA
- The Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287, USA
| | - Kevin E Redding
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
- Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
8
|
Martin WF, Bryant DA, Beatty JT. A physiological perspective on the origin and evolution of photosynthesis. FEMS Microbiol Rev 2018; 42:205-231. [PMID: 29177446 PMCID: PMC5972617 DOI: 10.1093/femsre/fux056] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022] Open
Abstract
The origin and early evolution of photosynthesis are reviewed from an ecophysiological perspective. Earth's first ecosystems were chemotrophic, fueled by geological H2 at hydrothermal vents and, required flavin-based electron bifurcation to reduce ferredoxin for CO2 fixation. Chlorophyll-based phototrophy (chlorophototrophy) allowed autotrophs to generate reduced ferredoxin without electron bifurcation, providing them access to reductants other than H2. Because high-intensity, short-wavelength electromagnetic radiation at Earth's surface would have been damaging for the first chlorophyll (Chl)-containing cells, photosynthesis probably arose at hydrothermal vents under low-intensity, long-wavelength geothermal light. The first photochemically active pigments were possibly Zn-tetrapyrroles. We suggest that (i) after the evolution of red-absorbing Chl-like pigments, the first light-driven electron transport chains reduced ferredoxin via a type-1 reaction center (RC) progenitor with electrons from H2S; (ii) photothioautotrophy, first with one RC and then with two, was the bridge between H2-dependent chemolithoautotrophy and water-splitting photosynthesis; (iii) photothiotrophy sustained primary production in the photic zone of Archean oceans; (iv) photosynthesis arose in an anoxygenic cyanobacterial progenitor; (v) Chl a is the ancestral Chl; and (vi), anoxygenic chlorophototrophic lineages characterized so far acquired, by horizontal gene transfer, RCs and Chl biosynthesis with or without autotrophy, from the architects of chlorophototrophy-the cyanobacterial lineage.
Collapse
Affiliation(s)
- William F Martin
- Institute for Molecular Evolution, University of Düsseldorf, D-40225 Düsseldorf, Germany
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - J Thomas Beatty
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
9
|
Nagashima H, Kishimoto H, Mutoh R, Terashima N, Oh-Oka H, Kurisu G, Mino H. Hyperfine Sublevel Correlation Spectroscopy Studies of Iron-Sulfur Cluster in Rieske Protein from Green Sulfur Bacterium Chlorobaculum tepidum. J Phys Chem B 2017; 121:2543-2553. [PMID: 28252967 DOI: 10.1021/acs.jpcb.6b12968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The magnetic properties of the Rieske protein purified from Chlorobaculum tepidum were investigated using electron paramagnetic resonance and hyperfine sublevel correlation spectroscopy (HYSCORE). The g-values of the Fe2S2 center were gx = 1.81, gy = 1.90, and gz = 2.03. Four classes of nitrogen signals were obtained by HYSCORE. Nitrogens 1 and 2 had relatively strong magnetic hyperfine couplings and were assigned as the nitrogen directly ligated to Fe. Nitrogens 3 and 4 had relatively weak magnetic hyperfine couplings and were assigned as the other nitrogen of the His ligands and peptide nitrogen connected to the sulfur atom via hydrogen bonding, respectively. The anisotropy of nitrogen 3 reflects the different spin density distributions on the His ligands, which influences the electron transfer to quinone.
Collapse
Affiliation(s)
- Hiroki Nagashima
- Division of Material Science, Graduate School of Science, Nagoya University , Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Hiraku Kishimoto
- Department of Biological Sciences, Graduate School of Science, Osaka University , Toyanaka, Osaka 560-0043, Japan
| | - Risa Mutoh
- Institute for Protein Research, Osaka University , Suita, Osaka 565-0871, Japan
| | - Naotaka Terashima
- Division of Material Science, Graduate School of Science, Nagoya University , Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Hirozo Oh-Oka
- Department of Biological Sciences, Graduate School of Science, Osaka University , Toyanaka, Osaka 560-0043, Japan
| | - Genji Kurisu
- Department of Biological Sciences, Graduate School of Science, Osaka University , Toyanaka, Osaka 560-0043, Japan.,Institute for Protein Research, Osaka University , Suita, Osaka 565-0871, Japan
| | - Hiroyuki Mino
- Division of Material Science, Graduate School of Science, Nagoya University , Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
10
|
Xue X, Wang Q, Qu Y, Wu H, Dong F, Cao H, Wang HL, Xiao J, Shen Y, Wan Y. Development of the photosynthetic apparatus of Cunninghamia lanceolata in light and darkness. THE NEW PHYTOLOGIST 2017; 213:300-313. [PMID: 27401059 DOI: 10.1111/nph.14096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/05/2016] [Indexed: 05/27/2023]
Abstract
Here, we compared the development of dark- and light-grown Chinese fir (Cunninghamia lanceolata) cotyledons, which synthesize chlorophyll in the dark, representing a different phenomenon from angiosperm model plants. We determined that the grana lamellar membranes were well developed in both chloroplasts and etiochloroplasts. The accumulation of thylakoid membrane protein complexes was similar between chloroplasts and etiochloroplasts. Measurement of chlorophyll fluorescence parameters indicated that photosystem II (PSII) had low photosynthetic activities, whereas the photosystem I (PSI)-driven cyclic electron flow (CEF) rate exceeded the rate of PSII-mediated photon harvesting in etiochloroplasts. Analysis of the protein contents in etiochloroplasts indicated that the light-harvesting complex II remained mostly in its monomeric conformation. The ferredoxin NADP+ oxidoreductase and NADH dehydrogenase-like complexes were relatively abundantly expressed in etiochloroplasts for Chinese fir. Our transcriptome analysis contributes a global expression database for Chinese fir cotyledons, providing background information on the regulatory mechanisms of different genes involved in the development of dark- and light-grown cotyledons. In conclusion, we provide a novel description of the early developmental status of the light-dependent and light-independent photosynthetic apparatuses in gymnosperms.
Collapse
Affiliation(s)
- Xian Xue
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471003, China
| | - Qi Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanli Qu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Hongyang Wu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Fengqin Dong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Haoyan Cao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Hou-Ling Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jianwei Xiao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yingbai Shen
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yinglang Wan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
11
|
Saravanakumar K, Fan L, Fu K, Yu C, Wang M, Xia H, Sun J, Li Y, Chen J. Cellulase from Trichoderma harzianum interacts with roots and triggers induced systemic resistance to foliar disease in maize. Sci Rep 2016; 6:35543. [PMID: 27830829 PMCID: PMC5103226 DOI: 10.1038/srep35543] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/29/2016] [Indexed: 01/06/2023] Open
Abstract
Trichoderma harzianum is well known to exhibit induced systemic resistance (ISR) to Curvularia leaf spot. We previously reported that a C6 zinc finger protein (Thc6) is responsible for a major contribution to the ISR to the leaf disease, but the types of effectors and the signals mediated by Thc6 from Trichoderma are unclear. In this work, we demonstrated that two hydrolases, Thph1 and Thph2, from T. harzianum were regulated by Thc6. Furthermore, an electrophoretic mobility shift assay (EMSA) study revealed that Thc6 regulated mRNA expression by binding to GGCTAA and GGCTAAA in the promoters of the Thph1 and Thph2 genes, respectively. Moreover, the Thph1 and Thph2 proteins triggered the transient production of reactive oxygen species (ROS) and elevated the free cytosolic calcium levels in maize leaf. Furthermore, the genes related to the jasmonate/ethylene signaling pathway were up-regulated in the wild-type maize strain. However, the ΔThph1- or ΔThph2-deletion mutants could not activate the immune defense-related genes in maize to protect against leaf disease. Therefore, we conclude that functional Thph1 and Thph2 may be required in T. harzianum to activate ISR in maize.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P.R. China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, P.R. China
| | - Lili Fan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P.R. China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, P.R. China
| | - Kehe Fu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P.R. China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, P.R. China
| | - Chuanjin Yu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P.R. China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, P.R. China
| | - Meng Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P.R. China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, P.R. China
| | - Hai Xia
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P.R. China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, P.R. China
| | - Jianan Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P.R. China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, P.R. China
| | - Yaqian Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P.R. China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, P.R. China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P.R. China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, P.R. China
| |
Collapse
|
12
|
Tavares NK, Escalante-Semerena JC. A snapshot of evolution in action: emergence of new heme transport function derived from a coenzyme B 12 biosynthetic enzyme. Environ Microbiol 2016; 19:8-10. [PMID: 27588714 DOI: 10.1111/1462-2920.13517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 09/02/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Norbert K Tavares
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | | |
Collapse
|
13
|
Gupta RS. Impact of genomics on the understanding of microbial evolution and classification: the importance of Darwin's views on classification. FEMS Microbiol Rev 2016; 40:520-53. [PMID: 27279642 DOI: 10.1093/femsre/fuw011] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2016] [Indexed: 12/24/2022] Open
Abstract
Analyses of genome sequences, by some approaches, suggest that the widespread occurrence of horizontal gene transfers (HGTs) in prokaryotes disguises their evolutionary relationships and have led to questioning of the Darwinian model of evolution for prokaryotes. These inferences are critically examined in the light of comparative genome analysis, characteristic synapomorphies, phylogenetic trees and Darwin's views on examining evolutionary relationships. Genome sequences are enabling discovery of numerous molecular markers (synapomorphies) such as conserved signature indels (CSIs) and conserved signature proteins (CSPs), which are distinctive characteristics of different prokaryotic taxa. Based on these molecular markers, exhibiting high degree of specificity and predictive ability, numerous prokaryotic taxa of different ranks, currently identified based on the 16S rRNA gene trees, can now be reliably demarcated in molecular terms. Within all studied groups, multiple CSIs and CSPs have been identified for successive nested clades providing reliable information regarding their hierarchical relationships and these inferences are not affected by HGTs. These results strongly support Darwin's views on evolution and classification and supplement the current phylogenetic framework based on 16S rRNA in important respects. The identified molecular markers provide important means for developing novel diagnostics, therapeutics and for functional studies providing important insights regarding prokaryotic taxa.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
14
|
Gupta RS, Khadka B. Evidence for the presence of key chlorophyll-biosynthesis-related proteins in the genus Rubrobacter (Phylum Actinobacteria) and its implications for the evolution and origin of photosynthesis. PHOTOSYNTHESIS RESEARCH 2016; 127:201-18. [PMID: 26174026 DOI: 10.1007/s11120-015-0177-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/06/2015] [Indexed: 05/18/2023]
Abstract
Homologs showing high degree of sequence similarity to the three subunits of the protochlorophyllide oxidoreductase enzyme complex (viz. BchL, BchN, and BchB), which carries out a central role in chlorophyll-bacteriochlorophyll (Bchl) biosynthesis, are uniquely found in photosynthetic organisms. The results of BLAST searches and homology modeling presented here show that proteins exhibiting a high degree of sequence and structural similarity to the BchB and BchN proteins are also present in organisms from the high G+C Gram-positive phylum of Actinobacteria, specifically in members of the genus Rubrobacter (R. x ylanophilus and R. r adiotolerans). The results presented exclude the possibility that the observed BLAST hits are for subunits of the nitrogenase complex or the chlorin reductase complex. The branching in phylogenetic trees and the sequence characteristics of the Rubrobacter BchB/BchN homologs indicate that these homologs are distinct from those found in other photosynthetic bacteria and that they may represent ancestral forms of the BchB/BchN proteins. Although a homolog showing high degree of sequence similarity to the BchL protein was not detected in Rubrobacter, another protein, belonging to the ParA/Soj/MinD family, present in these bacteria, exhibits high degree of structural similarity to the BchL. In addition to the BchB/BchN homologs, Rubrobacter species also contain homologs showing high degree of sequence similarity to different subunits of magnesium chelatase (BchD, BchH, and BchI) as well as proteins showing significant similarity to the BchP and BchG proteins. Interestingly, no homologs corresponding to the BchX, BchY, and BchZ proteins were detected in the Rubrobacter species. These results provide the first suggestive evidence that some form of photosynthesis either exists or was anciently present within the phylum Actinobacteria (high G+C Gram-positive) in members of the genus Rubrobacter. The significance of these results concerning the origin of the Bchl-based photosynthesis is also discussed.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry, McMaster University, Hamilton, ON, L8N 3Z5, Canada.
| | - Bijendra Khadka
- Department of Biochemistry, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| |
Collapse
|
15
|
Cardona T. A fresh look at the evolution and diversification of photochemical reaction centers. PHOTOSYNTHESIS RESEARCH 2015; 126:111-34. [PMID: 25512103 PMCID: PMC4582080 DOI: 10.1007/s11120-014-0065-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 12/05/2014] [Indexed: 05/18/2023]
Abstract
In this review, I reexamine the origin and diversification of photochemical reaction centers based on the known phylogenetic relations of the core subunits, and with the aid of sequence and structural alignments. I show, for example, that the protein folds at the C-terminus of the D1 and D2 subunits of Photosystem II, which are essential for the coordination of the water-oxidizing complex, were already in place in the most ancestral Type II reaction center subunit. I then evaluate the evolution of reaction centers in the context of the rise and expansion of the different groups of bacteria based on recent large-scale phylogenetic analyses. I find that the Heliobacteriaceae family of Firmicutes appears to be the earliest branching of the known groups of phototrophic bacteria; however, the origin of photochemical reaction centers and chlorophyll synthesis cannot be placed in this group. Moreover, it becomes evident that the Acidobacteria and the Proteobacteria shared a more recent common phototrophic ancestor, and this is also likely for the Chloroflexi and the Cyanobacteria. Finally, I argue that the discrepancies among the phylogenies of the reaction center proteins, chlorophyll synthesis enzymes, and the species tree of bacteria are best explained if both types of photochemical reaction centers evolved before the diversification of the known phyla of phototrophic bacteria. The primordial phototrophic ancestor must have had both Type I and Type II reaction centers.
Collapse
Affiliation(s)
- Tanai Cardona
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| |
Collapse
|
16
|
Zhang Y, Majumder ELW, Yue H, Blankenship RE, Gross ML. Structural analysis of diheme cytochrome c by hydrogen-deuterium exchange mass spectrometry and homology modeling. Biochemistry 2014; 53:5619-30. [PMID: 25138816 PMCID: PMC4159202 DOI: 10.1021/bi500420y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
A lack
of X-ray or nuclear magnetic resonance structures of proteins
inhibits their further study and characterization, motivating the
development of new ways of analyzing structural information without
crystal structures. The combination of hydrogen–deuterium exchange
mass spectrometry (HDX-MS) data in conjunction with homology modeling
can provide improved structure and mechanistic predictions. Here a
unique diheme cytochrome c (DHCC) protein from Heliobacterium modesticaldum is studied with both HDX and homology modeling to bring some definition of the structure of the
protein and its role. Specifically, HDX data were used to guide the
homology modeling to yield a more functionally relevant structural
model of DHCC.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Chemistry, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | | | | | | | | |
Collapse
|
17
|
Exchange and complementation of genes coding for photosynthetic reaction center core subunits among purple bacteria. J Mol Evol 2014; 79:52-62. [PMID: 25080366 DOI: 10.1007/s00239-014-9634-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/11/2014] [Indexed: 10/25/2022]
Abstract
A mutant of the phototrophic species belonging to the β-proteobacteria, Rubrivivax gelatinosus, lacking the photosynthetic growth ability was constructed by the removal of genes coding for the L, M, and cytochrome subunits of the photosynthetic reaction center complex. The L, M, and cytochrome genes derived from five other species of proteobacteria, Acidiphilium rubrum, Allochromatium vinosum, Blastochloris viridis, Pheospirillum molischianum, and Roseateles depolymerans, and the L and M subunits from two other species, Rhodobacter sphaeroides and Rhodopseudomonas palustris, respectively, have been introduced into this mutant. Introduction of the genes from three of these seven species, Rte. depolymerans, Ach. vinosum, and Psp. molischianum, restored the photosynthetic growth ability of the mutant of Rvi. gelatinosus, although the growth rates were 1.5, 9.4, and 10.7 times slower, respectively, than that of the parent strain. Flash-induced kinetic measurements for the intact cells of these three mutants showed that the photo-oxidized cytochrome c bound to the introduced reaction center complex could be rereduced by electron donor proteins of Rvi. gelatinosus with a t1/2 of less than 10 ms. The reaction center core subunits of photosynthetic proteobacteria appear to be exchangeable if the sequence identities of the LM core subunits between donor and acceptor species are high enough, i.e., 70% or more.
Collapse
|
18
|
Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proc Natl Acad Sci U S A 2014; 111:7795-800. [PMID: 24821787 DOI: 10.1073/pnas.1400295111] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photosynthetic bacteria emerged on Earth more than 3 Gyr ago. To date, despite a long evolutionary history, species containing (bacterio)chlorophyll-based reaction centers have been reported in only 6 out of more than 30 formally described bacterial phyla: Cyanobacteria, Proteobacteria, Chlorobi, Chloroflexi, Firmicutes, and Acidobacteria. Here we describe a bacteriochlorophyll a-producing isolate AP64 that belongs to the poorly characterized phylum Gemmatimonadetes. This red-pigmented semiaerobic strain was isolated from a freshwater lake in the western Gobi Desert. It contains fully functional type 2 (pheophytin-quinone) photosynthetic reaction centers but does not assimilate inorganic carbon, suggesting that it performs a photoheterotrophic lifestyle. Full genome sequencing revealed the presence of a 42.3-kb-long photosynthesis gene cluster (PGC) in its genome. The organization and phylogeny of its photosynthesis genes suggests an ancient acquisition of PGC via horizontal transfer from purple phototrophic bacteria. The data presented here document that Gemmatimonadetes is the seventh bacterial phylum containing (bacterio)chlorophyll-based phototrophic species. To our knowledge, these data provide the first evidence that (bacterio)chlorophyll-based phototrophy can be transferred between distant bacterial phyla, providing new insights into the evolution of bacterial photosynthesis.
Collapse
|
19
|
Energy Conservation in Heliobacteria: Photosynthesis and Central Carbon Metabolism. THE STRUCTURAL BASIS OF BIOLOGICAL ENERGY GENERATION 2014. [DOI: 10.1007/978-94-017-8742-0_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
20
|
Dibrova DV, Cherepanov DA, Galperin MY, Skulachev VP, Mulkidjanian AY. Evolution of cytochrome bc complexes: from membrane-anchored dehydrogenases of ancient bacteria to triggers of apoptosis in vertebrates. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1827:1407-27. [PMID: 23871937 PMCID: PMC3839093 DOI: 10.1016/j.bbabio.2013.07.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 07/02/2013] [Accepted: 07/08/2013] [Indexed: 12/30/2022]
Abstract
This review traces the evolution of the cytochrome bc complexes from their early spread among prokaryotic lineages and up to the mitochondrial cytochrome bc1 complex (complex III) and its role in apoptosis. The results of phylogenomic analysis suggest that the bacterial cytochrome b6f-type complexes with short cytochromes b were the ancient form that preceded in evolution the cytochrome bc1-type complexes with long cytochromes b. The common ancestor of the b6f-type and the bc1-type complexes probably resembled the b6f-type complexes found in Heliobacteriaceae and in some Planctomycetes. Lateral transfers of cytochrome bc operons could account for the several instances of acquisition of different types of bacterial cytochrome bc complexes by archaea. The gradual oxygenation of the atmosphere could be the key evolutionary factor that has driven further divergence and spread of the cytochrome bc complexes. On the one hand, oxygen could be used as a very efficient terminal electron acceptor. On the other hand, auto-oxidation of the components of the bc complex results in the generation of reactive oxygen species (ROS), which necessitated diverse adaptations of the b6f-type and bc1-type complexes, as well as other, functionally coupled proteins. A detailed scenario of the gradual involvement of the cardiolipin-containing mitochondrial cytochrome bc1 complex into the intrinsic apoptotic pathway is proposed, where the functioning of the complex as an apoptotic trigger is viewed as a way to accelerate the elimination of the cells with irreparably damaged, ROS-producing mitochondria. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
Affiliation(s)
- Daria V Dibrova
- School of Physics, University of Osnabrueck, D-49069 Osnabrueck, Germany; School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia; Institute of Mitoengineering, Lomonosov Moscow State University, Moscow 119992, Russia
| | | | | | | | | |
Collapse
|
21
|
Sousa FL, Shavit-Grievink L, Allen JF, Martin WF. Chlorophyll biosynthesis gene evolution indicates photosystem gene duplication, not photosystem merger, at the origin of oxygenic photosynthesis. Genome Biol Evol 2013; 5:200-16. [PMID: 23258841 PMCID: PMC3595025 DOI: 10.1093/gbe/evs127] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
An open question regarding the evolution of photosynthesis is how cyanobacteria came to possess the two reaction center (RC) types, Type I reaction center (RCI) and Type II reaction center (RCII). The two main competing theories in the foreground of current thinking on this issue are that either 1) RCI and RCII are related via lineage divergence among anoxygenic photosynthetic bacteria and became merged in cyanobacteria via an event of large-scale lateral gene transfer (also called "fusion" theories) or 2) the two RC types are related via gene duplication in an ancestral, anoxygenic but protocyanobacterial phototroph that possessed both RC types before making the transition to using water as an electron donor. To distinguish between these possibilities, we studied the evolution of the core (bacterio)chlorophyll biosynthetic pathway from protoporphyrin IX (Proto IX) up to (bacterio)chlorophyllide a. The results show no dichotomy of chlorophyll biosynthesis genes into RCI- and RCII-specific chlorophyll biosynthetic clades, thereby excluding models of fusion at the origin of cyanobacteria and supporting the selective-loss hypothesis. By considering the cofactor demands of the pathway and the source genes from which several steps in chlorophyll biosynthesis are derived, we infer that the cell that first synthesized chlorophyll was a cobalamin-dependent, heme-synthesizing, diazotrophic anaerobe.
Collapse
Affiliation(s)
- Filipa L Sousa
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany.
| | | | | | | |
Collapse
|
22
|
The ecology of bacterial genes and the survival of the new. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:394026. [PMID: 22900231 PMCID: PMC3415099 DOI: 10.1155/2012/394026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 06/26/2012] [Indexed: 11/18/2022]
Abstract
Much of the observed variation among closely related bacterial genomes is attributable to gains and losses of genes that are acquired horizontally as well as to gene duplications and larger amplifications. The genomic flexibility that results from these mechanisms certainly contributes to the ability of bacteria to survive and adapt in varying environmental challenges. However, the duplicability and transferability of individual genes imply that natural selection should operate, not only at the organismal level, but also at the level of the gene. Genes can be considered semiautonomous entities that possess specific functional niches and evolutionary dynamics. The evolution of bacterial genes should respond both to selective pressures that favor competition, mostly among orthologs or paralogs that may occupy the same functional niches, and cooperation, with the majority of other genes coexisting in a given genome. The relative importance of either type of selection is likely to vary among different types of genes, based on the functional niches they cover and on the tightness of their association with specific organismal lineages. The frequent availability of new functional niches caused by environmental changes and biotic evolution should enable the constant diversification of gene families and the survival of new lineages of genes.
Collapse
|
23
|
Gupta RS. Origin and Spread of Photosynthesis Based upon Conserved Sequence Features in Key Bacteriochlorophyll Biosynthesis Proteins. Mol Biol Evol 2012; 29:3397-412. [DOI: 10.1093/molbev/mss145] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
|
25
|
Williamson A, Conlan B, Hillier W, Wydrzynski T. The evolution of Photosystem II: insights into the past and future. PHOTOSYNTHESIS RESEARCH 2011; 107:71-86. [PMID: 20512415 DOI: 10.1007/s11120-010-9559-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 05/07/2010] [Indexed: 05/29/2023]
Abstract
This article attempts to address the molecular origin of Photosystem II (PSII), the central component in oxygenic photosynthesis. It discusses the possible evolution of the relevant cofactors needed for splitting water into molecular O2 with respect to the following functional domains in PSII: the reaction center (RC), the oxygen evolving complex (OEC), and the manganese stabilizing protein (MSP). Possible ancestral sources of the relevant cofactors are considered, as are scenarios of how these components may have been brought together to produce the intermediate steps in the evolution of PSII. Most importantly, the driving forces that maintained these intermediates for continued adaptation are considered. We then apply our understanding of the evolution of PSII to the bioengineering of a water oxidizing catalyst for utilization of solar energy.
Collapse
Affiliation(s)
- Adele Williamson
- Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, 0200, Australia
| | | | | | | |
Collapse
|
26
|
Azai C, Tsukatani Y, Itoh S, Oh-oka H. C-type cytochromes in the photosynthetic electron transfer pathways in green sulfur bacteria and heliobacteria. PHOTOSYNTHESIS RESEARCH 2010; 104:189-199. [PMID: 20091230 DOI: 10.1007/s11120-009-9521-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 12/17/2009] [Indexed: 05/28/2023]
Abstract
Green sulfur bacteria and heliobacteria are strictly anaerobic phototrophs that have homodimeric type 1 reaction center complexes. Within these complexes, highly reducing substances are produced through an initial charge separation followed by electron transfer reactions driven by light energy absorption. In order to attain efficient energy conversion, it is important for the photooxidized reaction center to be rapidly rereduced. Green sulfur bacteria utilize reduced inorganic sulfur compounds (sulfide, thiosulfate, and/or sulfur) as electron sources for their anoxygenic photosynthetic growth. Membrane-bound and soluble cytochromes c play essential roles in the supply of electrons from sulfur oxidation pathways to the P840 reaction center. In the case of gram-positive heliobacteria, the photooxidized P800 reaction center is rereduced by cytochrome c-553 (PetJ) whose N-terminal cysteine residue is modified with fatty acid chains anchored to the cytoplasmic membrane.
Collapse
Affiliation(s)
- Chihiro Azai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | | | | | | |
Collapse
|
27
|
Baymann F, Nitschke W. Heliobacterial Rieske/cytb complex. PHOTOSYNTHESIS RESEARCH 2010; 104:177-187. [PMID: 20091229 DOI: 10.1007/s11120-009-9524-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 12/21/2009] [Indexed: 05/28/2023]
Abstract
Data on structure and function of the Rieske/cytb complex from Heliobacteria are scarce. They indicate that the complex is related to the b (6) f complex in agreement with the phylogenetic position of the organism. It is composed of a diheme cytochrome c, and a Rieske iron-sulfur protein, together with transmembrane cytochrome b (6) and subunit IV. Additional small subunits may be part of the complex. The cofactor content comprises heme c (i), first discovered in the Q(i) binding pocket of b (6) f complexes. The redox midpoint potentials are more negative than in b (6) f complex in agreement with the lower redox midpoint potentials (by about 150 mV) of its reaction partners, menaquinone, and cytochrome c (553). The enzyme is implicated in cyclic electron transfer around the RCI. Functional studies are favored by the absence of antennae and the simple photosynthetic reaction chain but are hampered by the high oxygen sensitivity of the organism, its chlorophyll, and lipids.
Collapse
Affiliation(s)
- F Baymann
- BIP, Centre National de la Recherche Scientifique, UPR9036, IFR88, 31 Chemin Joseph Aiguier, Marseille, France.
| | | |
Collapse
|
28
|
Romberger SP, Golbeck JH. The bound iron-sulfur clusters of type-I homodimeric reaction centers. PHOTOSYNTHESIS RESEARCH 2010; 104:333-346. [PMID: 20405215 DOI: 10.1007/s11120-010-9543-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 03/08/2010] [Indexed: 05/29/2023]
Abstract
The hallmark of a Type-I photosynthetic reaction center (RC) is the presence of three [4Fe-4S](2+/1+) clusters, named F(X), F(A), and F(B) that act as terminal electron acceptors. Their function is to increase the distance, and hence the lifetime, of the initial charge-separated state so that diffusion-mediated processes, such as the reduction of ferredoxin, can occur. Type-I homodimeric RCs, such as those found in heliobacteria, green-sulfur bacteria, and Candidatus Chloracidobacterium thermophilum, are less well understood than Photosystem I, the prototypical Type-I heterodimeric RC found in cyanobacteria and plants. Here, we review recent progress that has been made in elucidating the spectroscopic and biochemical properties of the bound Fe/S clusters and their cognate proteins in homodimeric Type-I RCs. In Heliobacterium modesticaldum, the identification and characterization of two loosely bound polypeptides, PshBI and PshBII that harbor the F(A) and F(B) clusters threatens to break the long-accepted assumption that Type-I RCs harbor one tightly bound F(A)/F(B)-containing protein. Additionally, the detection of the F(X) cluster in S = 1/2 and S = 3/2 ground spin states has resolved the long-standing issue of its missing EPR spectrum. In Chlorobaculum tepidum, the focus is on the biochemical properties of the unusual extrinsic Fe/S protein, PscB, which is readily dissociable from the RC core. The C-terminal domain of PscB is constructed as a bacterial ferredoxin, harboring the F(A) and F(B) clusters, but the N-terminal domain contains a number of PxxP motifs and is rich in Lys, Pro, and Ala residues, features characteristic of proteins that interact with SH3 domains. Little is known about Candidatus Chloracidobacterium thermophilum except that the photosynthetic RC is predicted to be a Type-I homodimer with an F(X)-binding site. These findings are placed in a context that promises to unify the acceptor side of homodimeric Type-I RCs in prokaryotic phototrophs.
Collapse
Affiliation(s)
- Steven P Romberger
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
29
|
Sattley WM, Blankenship RE. Insights into heliobacterial photosynthesis and physiology from the genome of Heliobacterium modesticaldum. PHOTOSYNTHESIS RESEARCH 2010; 104:113-122. [PMID: 20130998 DOI: 10.1007/s11120-010-9529-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 01/16/2010] [Indexed: 05/28/2023]
Abstract
The complete annotated genome sequence of Heliobacterium modesticaldum strain Ice1 provides our first glimpse into the genetic potential of the Heliobacteriaceae, a unique family of anoxygenic phototrophic bacteria. H. modesticaldum str. Ice1 is the first completely sequenced phototrophic representative of the Firmicutes, and heliobacteria are the only phototrophic members of this large bacterial phylum. The H. modesticaldum genome consists of a single 3.1-Mb circular chromosome with no plasmids. Of special interest are genomic features that lend insight to the physiology and ecology of heliobacteria, including the genetic inventory of the photosynthesis gene cluster. Genes involved in transport, photosynthesis, and central intermediary metabolism are described and catalogued. The obligately heterotrophic metabolism of heliobacteria is a key feature of the physiology and evolution of these phototrophs. The conspicuous absence of recognizable genes encoding the enzyme ATP-citrate lyase prevents autotrophic growth via the reverse citric acid cycle in heliobacteria, thus being a distinguishing differential characteristic between heliobacteria and green sulfur bacteria. The identities of electron carriers that enable energy conservation by cyclic light-driven electron transfer remain in question.
Collapse
Affiliation(s)
- W Matthew Sattley
- Department of Biology, MidAmerica Nazarene University, 2030 E. College Way, Olathe, KS 66062, USA
| | | |
Collapse
|
30
|
Swingley WD, Blankenship RE, Raymond J. Evolutionary Relationships Among Purple Photosynthetic Bacteria and the Origin of Proteobacterial Photosynthetic Systems. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-1-4020-8815-5_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Fan J, Wu M, Jiang L, Shen SH. A serine/threonine protein phosphatase-like protein, CaPTC8, from Candida albicans defines a new PPM subfamily. Gene 2008; 430:64-76. [PMID: 19049858 DOI: 10.1016/j.gene.2008.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 10/11/2008] [Accepted: 10/21/2008] [Indexed: 02/02/2023]
Abstract
Protein phosphatase M family (PPM; Mg(2+)-dependent protein phosphatases), which specifically dephosphorylates serine/threonine residues, consists of pyruvate dehydrogenase phosphatases, SpoIIE, adenylate cyclase and protein phosphatase type 2Cs (PP2Cs). To identify Candida albicans PP2Cs, the archetype of the PPM Ser/Thr phosphatases, we thoroughly searched the public C. albicans genome database and identified seven PP2C members. One of the PP2Cs in C. albicans, designated as CaPTC8 gene, represents a new member of PP2C genes. Northern blot analysis showed that the expression of CaPTC8 was positively responsive to high osmolarity, temperature or serum-stimulated filamentous growth. Gene disruption further demonstrated that deletion of CaPTC8 gene caused the defect of hyphal formation. Sequence analysis revealed that two conserved amino acids His and Asn in the prototypical members of the PPM family were substituted by Val and Asp in the PTC8p-like proteins. In addition, posterior analysis for site-specific profile showed that seven more sites are under the selection of functional divergence between these two groups of proteins. Three-dimensional homology modeling illustrated the signatures of the two groups in the conserved catalytic region of the protein phosphatases. Hence, CaPTC8 plays a role in stress responses and is required for the yeast-hyphal transition, and the CaPTC8-related genes are evolutionarily conserved. The phylogenetic relationships of all members of the PPM family strongly support the existence of a distinct and new subfamily of the PP2C-related proteins, PP2CR.
Collapse
Affiliation(s)
- Jinjiang Fan
- Mammalian Cell Genetics Group, Health Sector, Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec, Canada H4P 2R2.
| | | | | | | |
Collapse
|
32
|
Discovering functional novelty in metagenomes: examples from light-mediated processes. J Bacteriol 2008; 191:32-41. [PMID: 18849420 DOI: 10.1128/jb.01084-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The emerging coverage of diverse habitats by metagenomic shotgun data opens new avenues of discovering functional novelty using computational tools. Here, we apply three different concepts for predicting novel functions within light-mediated microbial pathways in five diverse environments. Using phylogenetic approaches, we discovered two novel deep-branching subfamilies of photolyases (involved in light-mediated repair) distributed abundantly in high-UV environments. Using neighborhood approaches, we were able to assign seven novel functional partners in luciferase synthesis, nitrogen metabolism, and quorum sensing to BLUF domain-containing proteins (involved in light sensing). Finally, by domain analysis, for RcaE proteins (involved in chromatic adaptation), we predict 16 novel domain architectures that indicate novel functionalities in habitats with little or no light. Quantification of protein abundance in the various environments supports our findings that bacteria utilize light for sensing, repair, and adaptation far more widely than previously thought. While the discoveries illustrate the opportunities in function discovery, we also discuss the immense conceptual and practical challenges that come along with this new type of data.
Collapse
|
33
|
Ducluzeau A, Chenu E, Capowiez L, Baymann F. The Rieske/cytochrome b complex of Heliobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1140-6. [DOI: 10.1016/j.bbabio.2008.04.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/28/2008] [Accepted: 04/15/2008] [Indexed: 11/27/2022]
|
34
|
Chen M, Zhang Y. Tracking the molecular evolution of photosynthesis through characterization of atomic contents of the photosynthetic units. PHOTOSYNTHESIS RESEARCH 2008; 97:255-261. [PMID: 18766462 DOI: 10.1007/s11120-008-9356-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 08/13/2008] [Indexed: 05/26/2023]
Abstract
Oxygen molecules have a great impact on protein evolution. We have performed a comparative study of key photosynthetic proteins in order to seek the answer to the question; did the evolutionary substitution of oxygen- and nitrogen-containing residues in the photosynthetic proteins correspond to nutrient constraints and metabolic optimization? The D1 peptide in RC II complexes has higher oxygen-containing amino acid residues and PufL/PufM have lower oxygen content in their peptides. In this article, we also discuss the possible influences of micro-environment and the available nutrients on the protein structure and their atomic distribution.
Collapse
Affiliation(s)
- Min Chen
- School of Biological Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| | | |
Collapse
|
35
|
Bröcker MJ, Wätzlich D, Uliczka F, Virus S, Saggu M, Lendzian F, Scheer H, Rüdiger W, Moser J, Jahn D. Substrate recognition of nitrogenase-like dark operative protochlorophyllide oxidoreductase from Prochlorococcus marinus. J Biol Chem 2008; 283:29873-81. [PMID: 18693243 DOI: 10.1074/jbc.m805206200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chlorophyll and bacteriochlorophyll biosynthesis requires the two-electron reduction of protochlorophyllide a ringDbya protochlorophyllide oxidoreductase to form chlorophyllide a. A light-dependent (light-dependent Pchlide oxidoreductase (LPOR)) and an unrelated dark operative enzyme (dark operative Pchlide oxidoreductase (DPOR)) are known. DPOR plays an important role in chlorophyll biosynthesis of gymnosperms, mosses, ferns, algae, and photosynthetic bacteria in the absence of light. Although DPOR shares significant amino acid sequence homologies with nitrogenase, only the initial catalytic steps resemble nitrogenase catalysis. Substrate coordination and subsequent [Fe-S] cluster-dependent catalysis were proposed to be unrelated. Here we characterized the first cyanobacterial DPOR consisting of the homodimeric protein complex ChlL(2) and a heterotetrameric protein complex (ChlNB)(2). The ChlL(2) dimer contains one EPR active [4Fe-4S] cluster, whereas the (ChlNB)(2) complex exhibited EPR signals for two [4Fe-4S] clusters with differences in their g values and temperature-dependent relaxation behavior. These findings indicate variations in the geometry of the individual [4Fe-4S] clusters found in (ChlNB)(2). For the analysis of DPOR substrate recognition, 11 synthetic derivatives with altered substituents on the four pyrrole rings and the isocyclic ring plus eight chlorophyll biosynthetic intermediates were tested as DPOR substrates. Although DPOR tolerated minor modifications of the ring substituents on rings A-C, the catalytic target ring D was apparently found to be coordinated with high specificity. Furthermore, protochlorophyllide a, the corresponding [8-vinyl]-derivative and protochlorophyllide b were equally utilized as substrates. Distinct differences from substrate binding by LPOR were observed. Alternative biosynthetic routes for cyanobacterial chlorophyll biosynthesis with regard to the reduction of the C8-vinyl group and the interconversion of a chlorophyll a/b type C7 methyl/formyl group were deduced.
Collapse
Affiliation(s)
- Markus J Bröcker
- Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Maresca JA, Graham JE, Bryant DA. The biochemical basis for structural diversity in the carotenoids of chlorophototrophic bacteria. PHOTOSYNTHESIS RESEARCH 2008; 97:121-40. [PMID: 18535920 DOI: 10.1007/s11120-008-9312-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 05/14/2008] [Indexed: 05/15/2023]
Abstract
Ongoing work has led to the identification of most of the biochemical steps in carotenoid biosynthesis in chlorophototrophic bacteria. In carotenogenesis, a relatively small number of modifications leads to a great diversity of carotenoid structures. This review examines the individual steps in the pathway, discusses how each contributes to structural diversity among carotenoids, and summarizes recent progress in elucidating the biosynthetic pathways for carotenoids in chlorophototrophs.
Collapse
Affiliation(s)
- Julia A Maresca
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
37
|
Raymond J, Swingley WD. Phototroph genomics ten years on. PHOTOSYNTHESIS RESEARCH 2008; 97:5-19. [PMID: 18568416 DOI: 10.1007/s11120-008-9308-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 04/23/2008] [Indexed: 05/26/2023]
Abstract
The onset of the genome era means different things to different people, but it is clear that this new age brings with it paradigm shifts that will forever affect biological research. Less clear is just how these shifts are changing the scope and scale of research. Are gigabases of raw data more useful than a single well-understood gene? Do we really need a full genome to understand the physiology of a single organism? The photosynthetic field is poised at the periphery of the bulk of genome sequencing work--understandably skewed toward health-related disciplines--and, as such, is subject to different motivations, limitations, and primary focus for each new genome. To understand some of these differences, we focus here on various indicators of the impact that genomics has had on the photosynthetic community, now a full decade since the publication of the first photosynthetic genome. Many useful indicators are indexed in public databases, providing pre- and post-genome sequence snapshots of changes in factors such as publication rate, number of proteins characterized, and sequenced genome coverage versus known diversity. As more genomes are sequenced and metagenomic projects begin to pour out billions of bases, it becomes crucial to understand how to harness this data in order to accumulate possible benefits and avoid possible pitfalls, especially as resources become increasingly directed toward natural environments governed by photosynthetic activity, ranging from hot springs to tropical forest ecosystems to the open ocean.
Collapse
Affiliation(s)
- Jason Raymond
- School of Natural Sciences, University of California, Merced, Merced, CA, USA.
| | | |
Collapse
|
38
|
The genome of Heliobacterium modesticaldum, a phototrophic representative of the Firmicutes containing the simplest photosynthetic apparatus. J Bacteriol 2008; 190:4687-96. [PMID: 18441057 DOI: 10.1128/jb.00299-08] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Despite the fact that heliobacteria are the only phototrophic representatives of the bacterial phylum Firmicutes, genomic analyses of these organisms have yet to be reported. Here we describe the complete sequence and analysis of the genome of Heliobacterium modesticaldum, a thermophilic species belonging to this unique group of phototrophs. The genome is a single 3.1-Mb circular chromosome containing 3,138 open reading frames. As suspected from physiological studies of heliobacteria that have failed to show photoautotrophic growth, genes encoding enzymes for known autotrophic pathways in other phototrophic organisms, including ribulose bisphosphate carboxylase (Calvin cycle), citrate lyase (reverse citric acid cycle), and malyl coenzyme A lyase (3-hydroxypropionate pathway), are not present in the H. modesticaldum genome. Thus, heliobacteria appear to be the only known anaerobic anoxygenic phototrophs that are not capable of autotrophy. Although for some cellular activities, such as nitrogen fixation, there is a full complement of genes in H. modesticaldum, other processes, including carbon metabolism and endosporulation, are more genetically streamlined than they are in most other low-G+C gram-positive bacteria. Moreover, several genes encoding photosynthetic functions in phototrophic purple bacteria are not present in the heliobacteria. In contrast to the nutritional flexibility of many anoxygenic phototrophs, the complete genome sequence of H. modesticaldum reveals an organism with a notable degree of metabolic specialization and genomic reduction.
Collapse
|
39
|
Genome evolution in cyanobacteria: the stable core and the variable shell. Proc Natl Acad Sci U S A 2008; 105:2510-5. [PMID: 18268351 DOI: 10.1073/pnas.0711165105] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyanobacteria are the only known prokaryotes capable of oxygenic photosynthesis, the evolution of which transformed the biology and geochemistry of Earth. The rapid increase in published genomic sequences of cyanobacteria provides the first opportunity to reconstruct events in the evolution of oxygenic photosynthesis on the scale of entire genomes. Here, we demonstrate the overall phylogenetic incongruence among 682 orthologous protein families from 13 genomes of cyanobacteria. However, using principal coordinates analysis, we discovered a core set of 323 genes with similar evolutionary trajectories. The core set is highly conserved in amino acid sequence and contains genes encoding the major components in the photosynthetic and ribosomal apparatus. Many of the key proteins are encoded by genome-wide conserved small gene clusters, which often are indicative of protein-protein, protein-prosthetic group, and protein-lipid interactions. We propose that the macromolecular interactions in complex protein structures and metabolic pathways retard the tempo of evolution of the core genes and hence exert a selection pressure that restricts piecemeal horizontal gene transfer of components of the core. Identification of the core establishes a foundation for reconstructing robust organismal phylogeny in genome space. Our phylogenetic trees constructed from 16S rRNA gene sequences, concatenated orthologous proteins, and the core gene set all suggest that the ancestral cyanobacterium did not fix nitrogen and probably was a thermophilic organism.
Collapse
|
40
|
Bröcker MJ, Virus S, Ganskow S, Heathcote P, Heinz DW, Schubert WD, Jahn D, Moser J. ATP-driven reduction by dark-operative protochlorophyllide oxidoreductase from Chlorobium tepidum mechanistically resembles nitrogenase catalysis. J Biol Chem 2008; 283:10559-67. [PMID: 18252716 DOI: 10.1074/jbc.m708010200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During chlorophyll and bacteriochlorophyll biosynthesis in gymnosperms, algae, and photosynthetic bacteria, dark-operative protochlorophyllide oxidoreductase (DPOR) reduces ring D of aromatic protochlorophyllide stereospecifically to produce chlorophyllide. We describe the heterologous overproduction of DPOR subunits BchN, BchB, and BchL from Chlorobium tepidum in Escherichia coli allowing their purification to apparent homogeneity. The catalytic activity was found to be 3.15 nmol min(-1) mg(-1) with K(m) values of 6.1 microm for protochlorophyllide, 13.5 microm for ATP, and 52.7 microm for the reductant dithionite. To identify residues important in DPOR function, 21 enzyme variants were generated by site-directed mutagenesis and investigated for their metal content, spectroscopic features, and catalytic activity. Two cysteine residues (Cys(97) and Cys(131)) of homodimeric BchL(2) are found to coordinate an intersubunit [4Fe-4S] cluster, essential for low potential electron transfer to (BchNB)(2) as part of the reduction of the protochlorophyllide substrate. Similarly, Lys(10) and Leu(126) are crucial to ATP-driven electron transfer from BchL(2). The activation energy of DPOR electron transfer is 22.2 kJ mol(-1) indicating a requirement for 4 ATP per catalytic cycle. At the amino acid level, BchL is 33% identical to the nitrogenase subunit NifH allowing a first tentative structural model to be proposed. In (BchNB)(2), we find that four cysteine residues, three from BchN (Cys(21), Cys(46), and Cys(103)) and one from BchB (Cys(94)), coordinate a second inter-subunit [4Fe-4S] cluster required for catalysis. No evidence for any type of molybdenum-containing cofactor was found, indicating that the DPOR subunit BchN clearly differs from the homologous nitrogenase subunit NifD. Based on the available data we propose an enzymatic mechanism of DPOR.
Collapse
Affiliation(s)
- Markus J Bröcker
- Institute of Microbiology, Technical University Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Xiong J, Bauer CE, Pancholy A. Insight into the haem d1 biosynthesis pathway in heliobacteria through bioinformatics analysis. MICROBIOLOGY-SGM 2007; 153:3548-3562. [PMID: 17906152 PMCID: PMC2774728 DOI: 10.1099/mic.0.2007/007930-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Haem d(1) is a unique tetrapyrrole molecule that serves as a prosthetic group of cytochrome cd(1), which reduces nitrite to nitric oxide during the process of denitrification. Very little information is available regarding the biosynthesis of haem d(1). The extreme difficulty in studying the haem d(1) biosynthetic pathway can be partly attributed to the lack of a theoretical basis for experimental investigation. We report here a gene cluster encoding enzymes involved in the biosynthesis of haem d(1) in two heliobacterial species, Heliobacillus mobilis and Heliophilum fasciatum. The gene organization of the cluster is conserved between the two species, and contains a complete set of genes that lead to the biosynthesis of uroporphyrinogen III and genes thought to be involved in the late steps of haem d(1) biosynthesis. Detailed bioinformatics analysis of some of the proteins encoded in the gene cluster revealed important clues to the precise biochemical roles of the proteins in the biosynthesis of haem d(1), as well as the membrane transport and insertion of haem d(1) into an apocytochrome during the maturation of cytochrome cd(1).
Collapse
Affiliation(s)
- Jin Xiong
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Carl E. Bauer
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Anjly Pancholy
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
42
|
Minamizaki K, Mizoguchi T, Goto T, Tamiaki H, Fujita Y. Identification of two homologous genes, chlAI and chlAII, that are differentially involved in isocyclic ring formation of chlorophyll a in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 2007; 283:2684-92. [PMID: 18039649 DOI: 10.1074/jbc.m708954200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The isocyclic ring (E-ring) is a common structural feature of chlorophylls. The E-ring is formed by two structurally unrelated Mg-protoporphyrin IX monomethylester (MPE) cyclase systems, oxygen-dependent (AcsF), and oxygen-independent (BchE) systems, which involve incorporation of an oxygen atom from molecular oxygen and water into the C-13(1) position of MPE, respectively. Which system operates in cyanobacteria that can thrive in a variety of anaerobic environments remains an open question. The cyanobacterium Synechocystis sp. PCC 6803 has two acsF-like genes, sll1214 (chlA(I)) and sll1874 (chlA(II)), and three bchE-like genes, slr0905, sll1242, and slr0309. Five mutants lacking one of these genes were isolated. The DeltachlA(I) mutant failed to grow under aerobic conditions with anomalous accumulation of a pigment with fluorescence emission peak at 595 nm, which was identified 3,8-divinyl MPE by high-performance liquid chromatography-mass spectrometry analysis. The growth defect of DeltachlA(I) was restored by the cultivation under oxygen-limited (micro-oxic) conditions. MPE accumulation was also detected in DeltachlA(II) grown under microoxic conditions, but not in any of the bchE mutants. The phenotype was consistent with the expression pattern of two chlA genes: chlA(II) was induced under micro-oxic conditions in contrast to the constitutive expression of chlA(I). These findings suggested that ChlA(I) is the sole MPE cyclase system under aerobic conditions and that the induced ChlA(II) operates together with ChlA(I) under micro-oxic conditions. In addition, the accumulation of 3,8-divinyl MPE in the DeltachlA mutants suggested that the reduction of 8-vinyl group occurs after the formation of E-ring in Synechocystis sp. PCC 6803.
Collapse
Affiliation(s)
- Kei Minamizaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | | | |
Collapse
|
43
|
Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H, Wan J. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. PLANT PHYSIOLOGY 2007; 145:29-40. [PMID: 17535821 PMCID: PMC1976586 DOI: 10.1104/pp.107.100321] [Citation(s) in RCA: 244] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Chlorophyll (Chl) synthase catalyzes esterification of chlorophyllide to complete the last step of Chl biosynthesis. Although the Chl synthases and the corresponding genes from various organisms have been well characterized, Chl synthase mutants have not yet been reported in higher plants. In this study, a rice (Oryza Sativa) Chl-deficient mutant, yellow-green leaf1 (ygl1), was isolated, which showed yellow-green leaves in young plants with decreased Chl synthesis, increased level of tetrapyrrole intermediates, and delayed chloroplast development. Genetic analysis demonstrated that the phenotype of ygl1 was caused by a recessive mutation in a nuclear gene. The ygl1 locus was mapped to chromosome 5 and isolated by map-based cloning. Sequence analysis revealed that it encodes the Chl synthase and its identity was verified by transgenic complementation. A missense mutation was found in a highly conserved residue of YGL1 in the ygl1 mutant, resulting in reduction of the enzymatic activity. YGL1 is constitutively expressed in all tissues, and its expression is not significantly affected in the ygl1 mutant. Interestingly, the mRNA expression of the cab1R gene encoding the Chl a/b-binding protein was severely suppressed in the ygl1 mutant. Moreover, the expression of some nuclear genes associated with Chl biosynthesis or chloroplast development was also affected in ygl1 seedlings. These results indicate that the expression of nuclear genes encoding various chloroplast proteins might be feedback regulated by the level of Chl or Chl precursors.
Collapse
Affiliation(s)
- Ziming Wu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The reaction center (RC) of heliobacteria contains iron-sulfur centers as terminal electron acceptors, analogous to those of green sulfur bacteria as well as photosystem I in cyanobacteria and higher plants. Therefore, they all belong to the so-called type 1 RCs, in contrast to the type 2 RCs of purple bacteria and photosystem II containing quinone molecules. Although the architecture of the heliobacterial RC as a protein complex is still unknown, it forms a homodimer made up of two identical PshA core proteins, where two symmetrical electron transfer pathways along the C2 axis are assumed to be equally functional. Electrons are considered to be transferred from membrane-bound cytochrome c (PetJ) to a special pair P800, a chlorophyll a-like molecule A0, (a quinone molecule A1) and a [4Fe-4S] center Fx and, finally, to 2[4Fe-4S] centers FA/FB. No definite evidence has been obtained for the presence of functional quinone acceptor A1. An additional interesting point is that the electron transfer reaction from cytochrome c to P800 proceeds in a collisional mode. It is highly dependent on the temperature, ion strength and/or viscosity in a reaction medium, suggesting that a heme-binding moiety fluctuates in an aqueous phase with its amino-terminus anchored to membranes.
Collapse
Affiliation(s)
- Hirozo Oh-oka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan.
| |
Collapse
|
45
|
|
46
|
Mizoguchi T, Oh-oka H, Tamiaki H. Determination of Stereochemistry of Bacteriochlorophyll gF and 81-Hydroxy-chlorophyll aF from Heliobacterium modesticaldum¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2005.tb00242.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Heinnickel M, Golbeck JH. Heliobacterial photosynthesis. PHOTOSYNTHESIS RESEARCH 2007; 92:35-53. [PMID: 17457690 DOI: 10.1007/s11120-007-9162-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 03/23/2007] [Indexed: 05/15/2023]
Abstract
Heliobacteria contain Type I reaction centers (RCs) and a homodimeric core, but unlike green sulfur bacteria, they do not contain an extended antenna system. Given their simplicity, the heliobacterial RC (HbRC) should be ideal for the study of a prototypical homodimeric RC. However, there exist enormous gaps in our knowledge, particularly with regard to the nature of the secondary and tertiary electron acceptors. To paraphrase S. Neerken and J. Amesz (2001 Biochim Biophys Acta 1507:278-290): with the sole exception of primary charge separation, little progress has been made in recent years on the HbRC, either with respect to the polypeptide composition, or the nature of the electron acceptor chain, or the kinetics of forward and backward electron transfer. This situation, however, has changed. First, the low molecular mass polypeptide that contains the terminal FA and FB iron-sulfur clusters has been identified. The change in the lifetime of the flash-induced kinetics from 75 ms to 15 ms on its removal shows that the former arises from the P798+ [FA/FB]- recombination, and the latter from P798+ FX- recombination. Second, FX has been identified in HbRC cores by EPR and Mössbauer spectroscopy, and shown to be a [4Fe-4S]1+,2+ cluster with a ground spin state of S=3/2. Since all of the iron in HbRC cores is in the FX cluster, a ratio of approximately 22 Bchl g/P798 could be calculated from chemical assays of non-heme iron and Bchl g. Third, the N-terminal amino acid sequence of the FA/FB-containing polypeptide led to the identification and cloning of its gene. The expressed protein can be rebound to isolated HbRC cores, thereby regaining both the 75 ms kinetic phase resulting from P798+ [FA/FB]- recombination and the light-induced EPR resonances of FA- and FB-. The gene was named 'pshB' and the protein 'PshB' in keeping with the accepted nomenclature for Type I RCs. This article reviews the current state of knowledge on the structure and function of the HbRC.
Collapse
Affiliation(s)
- Mark Heinnickel
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
48
|
Bryant DA, Frigaard NU. Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol 2006; 14:488-96. [PMID: 16997562 DOI: 10.1016/j.tim.2006.09.001] [Citation(s) in RCA: 306] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 07/28/2006] [Accepted: 09/07/2006] [Indexed: 12/01/2022]
Abstract
Genome sequencing projects are revealing new information about the distribution and evolution of photosynthesis and phototrophy. Although coverage of the five phyla containing photosynthetic prokaryotes (Chlorobi, Chloroflexi, Cyanobacteria, Proteobacteria and Firmicutes) is limited and uneven, genome sequences are (or soon will be) available for >100 strains from these phyla. Present knowledge of photosynthesis is almost exclusively based on data derived from cultivated species but metagenomic studies can reveal new organisms with novel combinations of photosynthetic and phototrophic components that have not yet been described. Metagenomics has already shown how the relatively simple phototrophy based upon rhodopsins has spread laterally throughout Archaea, Bacteria and eukaryotes. In this review, we present examples that reflect recent advances in phototroph biology as a result of insights from genome and metagenome sequencing.
Collapse
Affiliation(s)
- Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
49
|
Mulkidjanian AY, Koonin EV, Makarova KS, Mekhedov SL, Sorokin A, Wolf YI, Dufresne A, Partensky F, Burd H, Kaznadzey D, Haselkorn R, Galperin MY. The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci U S A 2006; 103:13126-31. [PMID: 16924101 PMCID: PMC1551899 DOI: 10.1073/pnas.0605709103] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Comparative analysis of 15 complete cyanobacterial genome sequences, including "near minimal" genomes of five strains of Prochlorococcus spp., revealed 1,054 protein families [core cyanobacterial clusters of orthologous groups of proteins (core CyOGs)] encoded in at least 14 of them. The majority of the core CyOGs are involved in central cellular functions that are shared with other bacteria; 50 core CyOGs are specific for cyanobacteria, whereas 84 are exclusively shared by cyanobacteria and plants and/or other plastid-carrying eukaryotes, such as diatoms or apicomplexans. The latter group includes 35 families of uncharacterized proteins, which could also be involved in photosynthesis. Only a few components of cyanobacterial photosynthetic machinery are represented in the genomes of the anoxygenic phototrophic bacteria Chlorobium tepidum, Rhodopseudomonas palustris, Chloroflexus aurantiacus, or Heliobacillus mobilis. These observations, coupled with recent geological data on the properties of the ancient phototrophs, suggest that photosynthesis originated in the cyanobacterial lineage under the selective pressures of UV light and depletion of electron donors. We propose that the first phototrophs were anaerobic ancestors of cyanobacteria ("procyanobacteria") that conducted anoxygenic photosynthesis using a photosystem I-like reaction center, somewhat similar to the heterocysts of modern filamentous cyanobacteria. From procyanobacteria, photosynthesis spread to other phyla by way of lateral gene transfer.
Collapse
Affiliation(s)
- Armen Y. Mulkidjanian
- *School of Physics, University of Osnabrück, D-49069 Osnabrück, Germany
- A. N. Belozersky Institute of Physico–Chemical Biology, Moscow State University, Moscow 119899, Russia
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Sergey L. Mekhedov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Alexander Sorokin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Alexis Dufresne
- Station Biologique, Unité Mixte de Recherche 7144, Centre National de la Recherche Scientifique et Université Paris 6, BP74, F-29682 Roscoff Cedex, France
| | - Frédéric Partensky
- Station Biologique, Unité Mixte de Recherche 7144, Centre National de la Recherche Scientifique et Université Paris 6, BP74, F-29682 Roscoff Cedex, France
| | - Henry Burd
- Integrated Genomics, Inc., Chicago, IL 60612; and
| | | | - Robert Haselkorn
- **Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637
| | - Michael Y. Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| |
Collapse
|
50
|
Affiliation(s)
- Paul G Falkowski
- Environmental Biophysics and Molecular Ecology Program, Institute of Marine and Coastal Sciences and Department of Geological Sciences, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|