1
|
Stuhrmann HB. Polarised neutron scattering from dynamic polarised nuclei 1972-2022. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:41. [PMID: 37278890 DOI: 10.1140/epje/s10189-023-00295-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023]
Abstract
With the inauguration of the small-angle instrument D11 of the Institute Laue-Langevin (ILL) in September 1972 neutron scattering revolutionized methods of contrast variation. Very soon D11 was oversubscribed by proposals relying on isotopic substitution of hydrogen isotopes. At the same time in Oxford first experiments of polarised neutron diffraction from dynamic polarised protons in lanthanum magnesium nitrate crystals demonstrated the great utility of this approach. In the early eighties a new type of polarised target material led to a boom of contrast variation by nuclear polarisation. The new samples of frozen solutions of macromolecules lent themselves to small-angle scattering. Often in collaboration with research centres of High Energy Physics various groups in Europe and Japan started experiments of polarized neutron scattering from dynamic polarised protons. Techniques of NMR and EPR considerably enlarged the spectrum of nuclear contrast variation. This is shown with time-resolved polarised neutron scattering from dynamic polarized proton spins of a free radical and of tyrosyl doped catalase using D22 at the ILL.
Collapse
Affiliation(s)
- Heinrich B Stuhrmann
- Institut de Biologie Structurale, 38000, Grenoble, France.
- Helmholtz Zentrum Hereon, 21502, Geesthacht, Germany.
| |
Collapse
|
2
|
Design of typical genes for heterologous gene expression. Sci Rep 2022; 12:9625. [PMID: 35688911 PMCID: PMC9187722 DOI: 10.1038/s41598-022-13089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 05/20/2022] [Indexed: 11/09/2022] Open
Abstract
Heterologous protein expression is an important method for analysing cellular functions of proteins, in genetic circuit engineering and in overexpressing proteins for biopharmaceutical applications and structural biology research. The degeneracy of the genetic code, which enables a single protein to be encoded by a multitude of synonymous gene sequences, plays an important role in regulating protein expression, but substantial uncertainty exists concerning the details of this phenomenon. Here we analyse the influence of a profiled codon usage adaptation approach on protein expression levels in the eukaryotic model organism Saccharomyces cerevisiae. We selected green fluorescent protein (GFP) and human α-synuclein (αSyn) as representatives for stable and intrinsically disordered proteins and representing a benchmark and a challenging test case. A new approach was implemented to design typical genes resembling the codon usage of any subset of endogenous genes. Using this approach, synthetic genes for GFP and αSyn were generated, heterologously expressed and evaluated in yeast. We demonstrate that GFP is expressed at high levels, and that the toxic αSyn can be adapted to endogenous, low-level expression. The new software is publicly available as a web-application for performing host-specific protein adaptations to a set of the most commonly used model organisms ( https://odysseus.motorprotein.de ).
Collapse
|
3
|
Ahmed N, Friedrich UA, Sormanni P, Ciryam P, Altman NS, Bukau B, Kramer G, O'Brien EP. Pairs of amino acids at the P- and A-sites of the ribosome predictably and causally modulate translation-elongation rates. J Mol Biol 2020; 432:166696. [PMID: 33152326 DOI: 10.1016/j.jmb.2020.10.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/30/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022]
Abstract
Variation in translation-elongation kinetics along a transcript's coding sequence plays an important role in the maintenance of cellular protein homeostasis by regulating co-translational protein folding, localization, and maturation. Translation-elongation speed is influenced by molecular factors within mRNA and protein sequences. For example, the presence of proline in the ribosome's P- or A-site slows down translation, but the effect of other pairs of amino acids, in the context of all 400 possible pairs, has not been characterized. Here, we study Saccharomyces cerevisiae using a combination of bioinformatics, mutational experiments, and evolutionary analyses, and show that many different pairs of amino acids and their associated tRNA molecules predictably and causally encode translation rate information when these pairs are present in the A- and P-sites of the ribosome independent of other factors known to influence translation speed including mRNA structure, wobble base pairing, tripeptide motifs, positively charged upstream nascent chain residues, and cognate tRNA concentration. The fast-translating pairs of amino acids that we identify are enriched four-fold relative to the slow-translating pairs across Saccharomyces cerevisiae's proteome, while the slow-translating pairs are enriched downstream of domain boundaries. Thus, the chemical identity of amino acid pairs contributes to variability in translation rates, elongation kinetics are causally encoded in the primary structure of proteins, and signatures of evolutionary selection indicate their potential role in co-translational processes.
Collapse
Affiliation(s)
- Nabeel Ahmed
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Ulrike A Friedrich
- Center for Molecular Biology of the Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Pietro Sormanni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Prajwal Ciryam
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Naomi S Altman
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA; Department of Statistics, Pennsylvania State University, University Park, PA, 16802, USA
| | - Bernd Bukau
- Center for Molecular Biology of the Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Günter Kramer
- Center for Molecular Biology of the Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Edward P O'Brien
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA; Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA; Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
4
|
Guo FB, Ye YN, Zhao HL, Lin D, Wei W. Universal pattern and diverse strengths of successive synonymous codon bias in three domains of life, particularly among prokaryotic genomes. DNA Res 2012; 19:477-85. [PMID: 23132389 PMCID: PMC3514858 DOI: 10.1093/dnares/dss027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
There has been significant progress in understanding the process of protein translation in recent years. One of the best examples is the discovery of usage bias in successive synonymous codons and its role in eukaryotic translation efficiency. We observed here a similar type of bias in the other two life domains, bacteria and archaea, although the bias strength was much smaller than in eukaryotes. Among 136 prokaryotic genomes, 98 were found to have significant bias from random use of successive synonymous codons with Z scores larger than three. Furthermore, significantly different bias strengths were found between prokaryotes grouped by various genomic or biochemical characteristics. Interestingly, the bias strength measured by a general Z score could be fitted well (R = 0.83, P < 10−15) by three genomic variables: genome size, G + C content, and tRNA gene number based on multiple linear regression. A different distribution of synonymous codon pairs between protein-coding genes and intergenic sequences suggests that bias is caused by translation selection. The present results indicate that protein translation is tuned by codon (pair) usage, and the intensity of the regulation is associated with genome size, tRNA gene number, and G + C content.
Collapse
Affiliation(s)
- Feng-Biao Guo
- Center of Bioinformatics and Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | | | | | | | | |
Collapse
|
5
|
Lakey JH. Neutrons for biologists: a beginner's guide, or why you should consider using neutrons. J R Soc Interface 2009; 6 Suppl 5:S567-73. [PMID: 19656821 DOI: 10.1098/rsif.2009.0156.focus] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
From the structures of isolated protein complexes to the molecular dynamics of whole cells, neutron methods can achieve a resolution in complex systems that is inaccessible to other techniques. Biology is fortunate in that it is rich in water and hydrogen, and this allows us to exploit the differential sensitivity of neutrons to this element and its major isotope, deuterium. Furthermore, neutrons exhibit wave properties that allow us to use them in similar ways to light, X-rays and electrons. This review aims to explain the basics of biological neutron science to encourage its greater use in solving difficult problems in the life sciences.
Collapse
Affiliation(s)
- Jeremy H Lakey
- Institute for Cell and Molecular Biosciences, University of Newcastle, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK.
| |
Collapse
|
6
|
Li XQ, Fan P, Fan J. Polarity and hydrophobicity interactions in protein synthesis process. J Theor Biol 2005; 240:87-97. [PMID: 16257010 DOI: 10.1016/j.jtbi.2005.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 08/17/2005] [Accepted: 08/31/2005] [Indexed: 11/18/2022]
Abstract
About 30 years ago, experiments found that there are polarity and hydrophobicity (P and H) correlations and affinity between amino acids and their anticodons. Although it is shown that these experimental findings are important for explaining the origins of the genetic code, the great potential of P and H interactions in investigating other bio-functions have not been fully explored. Here, through raising, discussing and answering seven relevant questions hidden in tRNA aminoacylation, the formation of peptide bonds, and the ending of translations, etc., we show our theoretical findings that the P and H correlations and affinity take vital roles in the protein synthesis process. We found the relationship between the 3' end ACCN sequences of tRNA molecules and the activated amino acids and its biological significance, the rRNAs' consensus sequences 5'NCC...TGG3' or 5'TGG...NCC3' which may perform as functional segments of rRNAs to help triggering the reaction of peptide formation, and common nature of releasing factors that the first amino acid residue of releasing factors ERF, RF1 and RF2 are all Methionine, except a few Alanine, which may be necessary for releasing the translated polypeptide and stopping the translating process. In the terms of P and H correlations and affinity, we provide explanations of why only using the poly (G) as mRNA template cannot get the poly (Gly) in experiments deciphering the genetic code, why Gly often appears in beta turns and why translational bypassing might occur when translating 5'GGAUGA on mRNA. Since amino acids and nucleotides are the subunits, respectively, for composing proteins and nucleic acids, these findings will help in further understanding interactions among the bio-macromolecules. These findings are also helpful for investigating rRNAs, further understanding the protein synthesis process and analysing similar bio-problems, and should be proved useful for experimental biologists.
Collapse
Affiliation(s)
- Xu-Qing Li
- Department of Biomedical Engineering, Kunming University of Science and Technology, Kunming 650051, PR China
| | | | | |
Collapse
|
7
|
Blaha G, Wilson DN, Stoller G, Fischer G, Willumeit R, Nierhaus KH. Localization of the trigger factor binding site on the ribosomal 50S subunit. J Mol Biol 2003; 326:887-97. [PMID: 12581648 DOI: 10.1016/s0022-2836(02)01436-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In Escherichia coli, protein folding is undertaken by three distinct sets of chaperones, the DnaK-DnaJ and GroEL-GroES systems and the trigger factor (TF). TF has been proposed to be the first chaperone to interact with the nascent polypeptide chain as it emerges from the tunnel of the 70S ribosome and thus probably plays an important role in co-translational protein folding. We have made complexes with deuterated ribosomes (50S subunits and 70S ribosomes) and protated TF and determined the TF binding site on the respective complexes using the neutron scattering technique of spin-contrast variation. Our data suggest that the TF binds in the form of a homodimer. On both the 50S subunit and the 70S ribosome, the TF position is in proximity to the tunnel exit site, near ribosomal proteins L23 and L29, located on the back of the 50S subunit. The positions deviate from one another, such that the position on the 70S ribosome is located slightly further from the tunnel than that determined for the 50S subunit alone. Nevertheless, from both determined positions interaction between TF and a short nascent chain of 57 amino acid residues would be plausible, compatible with a role for TF participation in co-translational protein folding.
Collapse
Affiliation(s)
- Gregor Blaha
- Max-Planck-Institut für Molekulare Genetik, AG Ribosomen, Ihnestrasse 73, D-14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Willumeit R, Diedrich G, Forthmann S, Beckmann J, May RP, Stuhrmann HB, Nierhaus KH. Mapping proteins of the 50S subunit from Escherichia coli ribosomes. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1520:7-20. [PMID: 11470155 DOI: 10.1016/s0167-4781(01)00245-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Mapping of protein positions in the ribosomal subunits was first achieved for the 30S subunit by means of neutron scattering about 15 years ago. Since the 50S subunit is almost twice as large as the 30S subunit and consists of more proteins, it was difficult to apply classical contrast variation techniques for the localisation of the proteins. Polarisation dependent neutron scattering (spin-contrast variation) helped to overcome this restriction. Here a map of 14 proteins within the 50S subunit from Escherichia coli ribosomes is presented including the proteins L17 and L20 that are not present in archeal ribosomes. The results are compared with the recent crystallographic map of the 50S subunit from the archea Haloarcula marismortui.
Collapse
Affiliation(s)
- R Willumeit
- GKSS Forschungszentrum Geesthacht GmbH, Institut für Werkstoffforschung, WFS, Germany.
| | | | | | | | | | | | | |
Collapse
|
9
|
Brockwell D, Yu L, Cooper S, McCleland S, Cooper A, Attwood D, Gaskell SJ, Barber J. Physicochemical consequences of the perdeuteriation of glutathione S-transferase from S. japonicum. Protein Sci 2001; 10:572-80. [PMID: 11344325 PMCID: PMC2374125 DOI: 10.1110/ps.46001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Glutathione S:-transferase (GST) from Schistosoma japonicum has been prepared in both normal protiated (pGST) and fully deuteriated (dGST) form by recombinant DNA technology. Electrospray mass spectrometry showed that the level of deuteriation in dGST was 96% and was homogeneous across the sample. This result is attributed to the use of a deuterium-tolerant host Escherichia coli strain in the preparation of the protein. 10 heteroatom-bound deuteriums (in addition to the carbon-bound deuteriums) were resistant to exchange when dGST was incubated in protiated buffer. The physicochemical and biological properties of the two proteins were compared. dGST was relatively less stable to heat denaturation and to proteolytic cleavage than was pGST. The midpoint transition temperature for pGST was 54.9 degrees C, whereas that for dGST was 51.0 degrees C. Static light-scattering measurements revealed that the association behavior of dGST is also different from that of pGST. The perdeuteriated enzyme shows a tendency to associate into dimers of the fundamental dimer. This is in contrast with results that have been obtained for other perdeuteriated proteins in which perdeuteriation has been shown to promote dissociation of aggregates. dGST showed a similar K(m) to pGST; similar results had been obtained previously with bacterial alkaline phosphatase. However, whereas the alkaline phosphatase showed a reduced rate of catalysis on deuteriation, dGST exhibited a slightly higher rate of catalysis than pGST. It is clear that the bulk substitution of deuterium for protium has significant effects on the properties of proteins. Until many more examples have been studied, it will be difficult to predict these effects for any given protein. Nevertheless, deuteriation represents an intriguing method of preparing functional analogs of recombinant proteins.
Collapse
Affiliation(s)
- D Brockwell
- School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, M13 9PL, UK
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Willumeit R, Forthmann S, Beckmann J, Diedrich G, Ratering R, Stuhrmann HB, Nierhaus KH. Localization of the protein L2 in the 50 S subunit and the 70 S E. coli ribosome. J Mol Biol 2001; 305:167-77. [PMID: 11114255 DOI: 10.1006/jmbi.2000.4289] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The protein L2 is found in all ribosomes and is one of the best conserved proteins of this mega-dalton complex. The protein was localized within both the isolated 50 S subunit and the 70 S ribosome of the Escherichia coli bacteria with the neutron-scattering technique of spin-contrast variation. L2 is elongated, exposing one end of the protein to the surface of the intersubunit interface of the 50 S subunit. The protein changes its conformation slightly when the 50 S subunit reassociates with the 30 S subunit to form a 70 S ribosome, becoming more elongated and moving approximately 30 A into the 50 S matrix. The results support a recent observation that L2 is essential for the association of the ribosomal subunits and might participate in the binding and translocation of the tRNAs.
Collapse
Affiliation(s)
- R Willumeit
- GKSS Forschungszentrum Geesthacht GmbH, Institut für Werkstofforschung WFS, Max-Planck-Strasse, Geesthacht, D-21502, Germany.
| | | | | | | | | | | | | |
Collapse
|
11
|
Agrawal RK, Spahn CM, Penczek P, Grassucci RA, Nierhaus KH, Frank J. Visualization of tRNA movements on the Escherichia coli 70S ribosome during the elongation cycle. J Cell Biol 2000; 150:447-60. [PMID: 10931859 PMCID: PMC2175196 DOI: 10.1083/jcb.150.3.447] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2000] [Accepted: 06/16/2000] [Indexed: 11/22/2022] Open
Abstract
Three-dimensional cryomaps have been reconstructed for tRNA-ribosome complexes in pre- and posttranslocational states at 17-A resolution. The positions of tRNAs in the A and P sites in the pretranslocational complexes and in the P and E sites in the posttranslocational complexes have been determined. Of these, the P-site tRNA position is the same as seen earlier in the initiation-like fMet-tRNA(f)(Met)-ribosome complex, where it was visualized with high accuracy. Now, the positions of the A- and E-site tRNAs are determined with similar accuracy. The positions of the CCA end of the tRNAs at the A site are different before and after peptide bond formation. The relative positions of anticodons of P- and E-site tRNAs in the posttranslocational state are such that a codon-anticodon interaction at the E site appears feasible.
Collapse
Affiliation(s)
- Rajendra K. Agrawal
- Wadsworth Center, Department of Biomedical Sciences, State University of New York, Albany, New York 12201
| | - Christian M.T. Spahn
- Howard Hughes Medical Institute, Health Research, Incorporated at Wadsworth Center, Albany, New York 12201
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany
| | - Pawel Penczek
- Wadsworth Center, Department of Biomedical Sciences, State University of New York, Albany, New York 12201
| | - Robert A. Grassucci
- Howard Hughes Medical Institute, Health Research, Incorporated at Wadsworth Center, Albany, New York 12201
| | - Knud H. Nierhaus
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany
| | - Joachim Frank
- Wadsworth Center, Department of Biomedical Sciences, State University of New York, Albany, New York 12201
- Howard Hughes Medical Institute, Health Research, Incorporated at Wadsworth Center, Albany, New York 12201
| |
Collapse
|
12
|
Joseph S, Whirl ML, Kondo D, Noller HF, Altman RB. Calculation of the relative geometry of tRNAs in the ribosome from directed hydroxyl-radical probing data. RNA (NEW YORK, N.Y.) 2000; 6:220-32. [PMID: 10688361 PMCID: PMC1369908 DOI: 10.1017/s1355838200992112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The many interactions of tRNA with the ribosome are fundamental to protein synthesis. During the peptidyl transferase reaction, the acceptor ends of the aminoacyl and peptidyl tRNAs must be in close proximity to allow peptide bond formation, and their respective anticodons must base pair simultaneously with adjacent trinucleotide codons on the mRNA. The two tRNAs in this state can be arranged in two nonequivalent general configurations called the R and S orientations, many versions of which have been proposed for the geometry of tRNAs in the ribosome. Here, we report the combined use of computational analysis and tethered hydroxyl-radical probing to constrain their arrangement. We used Fe(II) tethered to the 5' end of anticodon stem-loop analogs (ASLs) of tRNA and to the 5' end of deacylated tRNA(Phe) to generate hydroxyl radicals that probe proximal positions in the backbone of adjacent tRNAs in the 70S ribosome. We inferred probe-target distances from the resulting RNA strand cleavage intensities and used these to calculate the mutual arrangement of A-site and P-site tRNAs in the ribosome, using three different structure estimation algorithms. The two tRNAs are constrained to the S configuration with an angle of about 45 degrees between the respective planes of the molecules. The terminal phosphates of 3'CCA are separated by 23 A when using the tRNA crystal conformations, and the anticodon arms of the two tRNAs are sufficiently close to interact with adjacent codons in mRNA.
Collapse
Affiliation(s)
- S Joseph
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz 95064, USA
| | | | | | | | | |
Collapse
|
13
|
Moreno JM, Drskjøtersen L, Kristensen JE, Mortensen KK, Sperling-Petersen HU. Characterization of the domains of E. coli initiation factor IF2 responsible for recognition of the ribosome. FEBS Lett 1999; 455:130-4. [PMID: 10428486 DOI: 10.1016/s0014-5793(99)00858-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have studied the interactions between the ribosome and the domains of Escherichia coli translation initiation factor 2, using an in vitro ribosomal binding assay with wild-type forms, N- and C-terminal truncated forms of IF2 as well as isolated structural domains. A deletion mutant of the factor consisting of the two N-terminal domains of IF2, binds to both 30S and 50S ribosomal subunits as well as to 70S ribosomes. Furthermore, a truncated form of IF2, lacking the two N-terminal domains, binds to 30S ribosomal subunits in the presence of IF1. In addition, this N-terminal deletion mutant IF2 possess a low but significant affinity for the 70S ribosome which is increased by addition of IF1. The isolated C-terminal domain of IF2 has no intrinsic affinity for the ribosome nor does the deletion of this domain from IF2 affect the ribosomal binding capability of IF2. We conclude that the N-terminus of IF2 is required for optimal interaction of the factor with both 30S and 50S ribosomal subunits. A structural model for the interaction of IF2 with the ribosome is presented.
Collapse
Affiliation(s)
- J M Moreno
- Department of Biostructural Chemistry, Institute of Molecular and Structural Biology, Aarhus University, Denmark
| | | | | | | | | |
Collapse
|
14
|
Dabrowski M, Spahn CM, Schäfer MA, Patzke S, Nierhaus KH. Protection patterns of tRNAs do not change during ribosomal translocation. J Biol Chem 1998; 273:32793-800. [PMID: 9830024 DOI: 10.1074/jbc.273.49.32793] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The translocation reaction of two tRNAs on the ribosome during elongation of the nascent peptide chain is one of the most puzzling reactions of protein biosynthesis. We show here that the ribosomal contact patterns of the two tRNAs at A and P sites, although strikingly different from each other, hardly change during the translocation reaction to the P and E sites, respectively. The results imply that the ribosomal micro-environment of the tRNAs remains the same before and after translocation and thus suggest that a movable ribosomal domain exists that tightly binds two tRNAs and carries them together with the mRNA during the translocation reaction from the A-P region to the P-E region. These findings lead to a new explanation for the translocation reaction.
Collapse
Affiliation(s)
- M Dabrowski
- Max-Planck-Institut für Molekulare Genetik, AG Ribosomen, Ihnestrasse 73, D-14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
15
|
Abstract
The central process for the transfer of the genetic information from the nucleic acid world into the structure of proteins is the ribosomal elongation cycle, where the sequence of codons is translated into the sequence of amino acids. The nascent polypeptide chain is elongated by one amino acid during the reactions of one cycle. Essentially, three models for the elongation cycle have been proposed. The allosteric three-site model and the hybrid-site model describe different aspects of tRNA binding and do not necessarily contradict each other. However, the alpha-epsilon model is not compatible with both models. The three models are evaluated in the light of recent results on the tRNA localization within the ribosome: the tRNAs of the elongating ribosome could be localized by two different techniques, viz. an advanced method of small-angle neutron scattering and cryo-electron microscopy. The best fit with the biochemical and structural data is obtained with the alpha-epsilon model.
Collapse
Affiliation(s)
- C M Spahn
- Max-Planck-Institut für Molekulare Genetik, AG Ribosomen, Berlin, Germany
| | | |
Collapse
|
16
|
Jünemann R, Burkhardt N, Wadzack J, Schmitt M, Willumeit R, Stuhrmann HB, Nierhaus KH. Small angle scattering in ribosomal structure research: localization of the messenger RNA within ribosomal elongation states. Biol Chem 1998; 379:807-18. [PMID: 9705144 DOI: 10.1515/bchm.1998.379.7.807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Besides EM and biochemical studies small angle scattering (SAS) examinations have contributed significantly to our current knowledge about the ribosomal structure. SAS does not only allow the validation of competing models but permits independent model building. However, the major contribution of SAS to ribosomal structure research derived from its ability to reveal the spatial distribution of the individual ribosomal components (57 in the E. coli ribosome) within the ribosomal structure. More recently, an improved scattering method (proton-spin contrast variation) made it possible also to address the question of mapping functional ligands in defined ribosomal elongation states. Here, we review the contributions of SAS to the current understanding of the ribosome. Furthermore we present the direct localization of a small mRNA fragment within 70S elongation complexes and describe its movement upon the translocation reaction. The successful mapping of this fragment comprising only about 0.6% of the total mass of the complex proves that proton-spin contrast-variation is a powerful tool in modern ribosome research.
Collapse
Affiliation(s)
- R Jünemann
- Max-Planck-Institut für Molekulare Genetik, AG Ribosomen, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Burkhardt N, Jünemann R, Spahn CM, Nierhaus KH. Ribosomal tRNA binding sites: three-site models of translation. Crit Rev Biochem Mol Biol 1998; 33:95-149. [PMID: 9598294 DOI: 10.1080/10409239891204189] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The first models of translation described protein synthesis in terms of two operationally defined tRNA binding sites, the P-site for the donor substrate, the peptidyl-tRNA, and the A-site for the acceptor substrates, the aminoacyl-tRNAs. The discovery and analysis of the third tRNA binding site, the E-site specific for deacylated tRNAs, resulted in the allosteric three-site model, the two major features of which are (1) the reciprocal relationship of A-site and E-site occupation, and (2) simultaneous codon-anticodon interactions of both tRNAs present at the elongating ribosome. However, structural studies do not support the three operationally defined sites in a simple fashion as three topographically fixed entities, thus leading to new concepts of tRNA binding and movement: (1) the hybrid-site model describes the tRNAs' movement through the ribosome in terms of changing binding sites on the 30S and 50S subunits in an alternating fashion. The tRNAs thereby pass through hybrid binding states. (2) The alpha-epsilon model introduces the concept of a movable tRNA-binding domain comprising two binding sites, termed alpha and epsilon. The translocation movement is seen as a result of a conformational change of the ribosome rather than as a diffusion process between fixed binding sites. The alpha-epsilon model reconciles most of the experimental data currently available.
Collapse
MESH Headings
- Allosteric Site/genetics
- Animals
- Base Sequence
- Escherichia coli
- Humans
- Models, Biological
- Models, Molecular
- Molecular Sequence Data
- Peptide Chain Elongation, Translational/genetics
- Protein Biosynthesis
- RNA, Transfer, Amino Acid-Specific/chemistry
- RNA, Transfer, Amino Acid-Specific/genetics
- RNA, Transfer, Amino Acid-Specific/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- N Burkhardt
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | | | | | |
Collapse
|