1
|
Chari CS, Heimann JE, Rosenzweig Z, Bennett JW, Faber KT. Chemical Transformations of 2D Kaolinic Clay Mineral Surfaces from Sulfuric Acid Exposure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6964-6974. [PMID: 37173121 DOI: 10.1021/acs.langmuir.3c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A combined experimental and computational approach is used to investigate the chemical transformations of kaolinite and metakaolin surfaces when exposed to sulfuric acid. These clay minerals are hydrated ternary metal oxides and are shown to be susceptible to degradation by loss of Al as the water-soluble salt Al2(SO4)3, due to interactions between H2SO4 and aluminum cations. This degradation process results in a silica-rich interfacial layer on the surfaces of the aluminosilicates, most prominently observed in metakaolin exposed to pH environments of less than 4. Our observations are supported by XPS, ATR-FTIR, and XRD experiments. Concurrently, DFT methodologies are used to probe the interactions between the clay mineral surfaces and H2SO4 as well as other sulfur-containing adsorbates. An analysis performed using a DFT + thermodynamics model shows that the surface transformation processes that lead to the loss of Al and SO4 from metakaolin are favorable at pH below 4; however, such transformations are not favorable for kaolinite, a result that agrees with our experimental efforts. The data obtained from both experimental techniques and computational studies support that the dehydrated surface of metakaolin interacts more strongly with sulfuric acid and provide atomistic insight into the acid-induced transformations of these mineral surfaces.
Collapse
Affiliation(s)
- C S Chari
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - J E Heimann
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Z Rosenzweig
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - J W Bennett
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - K T Faber
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
2
|
Kiselev A, Bachmann F, Pedevilla P, Cox SJ, Michaelides A, Gerthsen D, Leisner T. Active sites in heterogeneous ice nucleation—the example of K-rich feldspars. Science 2016; 355:367-371. [DOI: 10.1126/science.aai8034] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/23/2016] [Indexed: 11/02/2022]
Abstract
Ice formation on aerosol particles is a process of crucial importance to Earth’s climate and the environmental sciences, but it is not understood at the molecular level. This is partly because the nature of active sites, local surface features where ice growth commences, is still unclear. Here we report direct electron-microscopic observations of deposition growth of aligned ice crystals on feldspar, an atmospherically important component of mineral dust. Our molecular-scale computer simulations indicate that this alignment arises from the preferential nucleation of prismatic crystal planes of ice on high-energy (100) surface planes of feldspar. The microscopic patches of (100) surface, exposed at surface defects such as steps, cracks, and cavities, are thought to be responsible for the high ice nucleation efficacy of potassium (K)–feldspar particles.
Collapse
|
3
|
Anbalagan G, Sankari G, Ponnusamy S, Kumar RT, Gunasekaran S. Investigation of silicate mineral sanidine by vibrational and NMR spectroscopic methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2009; 74:404-409. [PMID: 19631579 DOI: 10.1016/j.saa.2009.06.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 05/16/2009] [Accepted: 06/08/2009] [Indexed: 05/28/2023]
Abstract
Sanidine, a variety of feldspar minerals has been investigated through optical absorption, vibrational (IR and Raman), EPR and NMR spectroscopic techniques. The principal reflections occurring at the d-spacings, 3.2892, 3.2431, 2.9022 and 2.6041 A confirm the presence of sanidine structure in the mineral. Sanidine shows five prominent characteristic infrared absorption bands in the region 1200-950, 770-720, 590-540 and 650-640 cm(-1). The Raman spectrum shows the strongest band at 512 cm(-1) characteristic of the feldspar structure, which contains four membered rings of tetrahedra. The UV-vis-NIR absorption spectrum had strong absorption features at 6757, 5780 and 5181 cm(-1) due to the combination of fundamental OH- stretching. The bands at 11236 and 8196 cm(-1)and the strong, well-defined band at (30303 cm(-1) attest the presence of Fe(2+) and Fe(3+), respectively, in the sample. The signals at g = 4.3 and 3.7 are interpreted in terms of Fe(3+) at two distinct tetrahedral positions Tl and T2 of the monoclinic crystal structure The (29)Si NMR spectrum shows two peaks at -97 and -101 ppm corresponding to T2 and T1, respectively, and one peak in (27)Al NMR for Al(IV).
Collapse
Affiliation(s)
- G Anbalagan
- Department of Physics, Presidency College, Chennai 600005, India.
| | | | | | | | | |
Collapse
|
4
|
Peterson JW, O'Meara TA, Seymour MD, Wang W, Gu B. Sorption mechanisms of cephapirin, a veterinary antibiotic, onto quartz and feldspar minerals as detected by Raman spectroscopy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:1849-1856. [PMID: 19246140 DOI: 10.1016/j.envpol.2009.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 01/21/2009] [Accepted: 01/23/2009] [Indexed: 05/27/2023]
Abstract
Raman spectroscopy was used to investigate sorption mechanisms of cephapirin (CHP), a veterinary antibiotic, onto quartz (SiO(2)) and feldspar (KAlSi(3)O(8)) at different pH. Sorption occurs by electrostatic attraction, monodentate and bidentate complexation. The zwitterion (CHP(o)) adsorbs to a quartz((+)) surface by electrostatic attraction of the carboxylate anion group (-COO(-)) at low pH, but adsorbs to a quartz((-)) surface through electrostatic attraction of the pyridinium cation, and possibly COO(-) bridge complexes, at higher pH. CHP(-) bonds to quartz((-)) surfaces by bidentate complexation between one oxygen of -COO(-) and oxygen from carbonyl of an acetoxymethyl group. On a feldspar((+/-)) surface, CHP(o) forms monodentate complexes between CO, and possible -COO(-) bridges and/or electrostatic attachments to localized edge (hydr)oxy-Al surfaces. CHP(-) adsorbs to feldspar((-)) through monodentate CO complexation. Similar mechanisms may operate for other cephalosporins. Results demonstrate, for the first time, that Raman techniques can be effective for evaluating sorption mechanisms of antibiotics.
Collapse
Affiliation(s)
- Jonathan W Peterson
- Department of Geological & Environmental Sciences, Hope College, P.O. Box 9000, Holland, MI 49422-9000, USA.
| | | | | | | | | |
Collapse
|
5
|
Provis JL, Vlachos DG. Silica Nanoparticle Formation in the TPAOH−TEOS−H2O System: A Population Balance Model. J Phys Chem B 2006; 110:3098-108. [PMID: 16494315 DOI: 10.1021/jp056658m] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A model describing the kinetics of silica nanoparticle formation in the TPAOH-TEOS-H(2)O system is presented. These nanoparticles are an important intermediate in the clear-solution synthesis of silicalite-1, so understanding the mechanisms by which they are formed and stabilized is a key step in determining the crystallization behavior of pure-silica zeolites. The model presented here is based on the mass-conserving form of the Becker-Döring population balance equations, describing growth and fragmentation by addition or removal of monomeric units, and modified to account for rapid equilibration of small silicate species and electrostatic and/or template stabilization of nanoparticles. The model predictions compare favorably with the experimental results. It is found that nanoparticle evolution exhibits distinct time regimes consisting of TEOS hydrolysis, condensation, nanoparticle formation, Ostwald ripening, and a self-sharpening mechanism in particle size distribution toward equilibrium due to stabilization during which no apparent changes in average particle size and pH are observed. Finally, the model provides an alternative, to a recent hypothesis, kinetics point of view to explain the enhanced stability of nanoparticles over extended periods of time.
Collapse
Affiliation(s)
- John L Provis
- Department of Chemical and Biomolecular Engineering, University of Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
6
|
Smith JV, Arnold FP, Parsons I, Lee MR. Biochemical evolution III: polymerization on organophilic silica-rich surfaces, crystal-chemical modeling, formation of first cells, and geological clues. Proc Natl Acad Sci U S A 1999; 96:3479-85. [PMID: 10097060 PMCID: PMC34290 DOI: 10.1073/pnas.96.7.3479] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Catalysis at organophilic silica-rich surfaces of zeolites and feldspars might generate replicating biopolymers from simple chemicals supplied by meteorites, volcanic gases, and other geological sources. Crystal-chemical modeling yielded packings for amino acids neatly encapsulated in 10-ring channels of the molecular sieve silicalite-ZSM-5-(mutinaite). Calculation of binding and activation energies for catalytic assembly into polymers is progressing for a chemical composition with one catalytic Al-OH site per 25 neutral Si tetrahedral sites. Internal channel intersections and external terminations provide special stereochemical features suitable for complex organic species. Polymer migration along nano/micrometer channels of ancient weathered feldspars, plus exploitation of phosphorus and various transition metals in entrapped apatite and other microminerals, might have generated complexes of replicating catalytic biomolecules, leading to primitive cellular organisms. The first cell wall might have been an internal mineral surface, from which the cell developed a protective biological cap emerging into a nutrient-rich "soup." Ultimately, the biological cap might have expanded into a complete cell wall, allowing mobility and colonization of energy-rich challenging environments. Electron microscopy of honeycomb channels inside weathered feldspars of the Shap granite (northwest England) has revealed modern bacteria, perhaps indicative of Archean ones. All known early rocks were metamorphosed too highly during geologic time to permit simple survival of large-pore zeolites, honeycombed feldspar, and encapsulated species. Possible microscopic clues to the proposed mineral adsorbents/catalysts are discussed for planning of systematic study of black cherts from weakly metamorphosed Archaean sediments.
Collapse
Affiliation(s)
- J V Smith
- Department of Geophysical Sciences and Center for Advanced Radiation Sources, 5734 South Ellis Avenue, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
7
|
Parsons I, Lee MR, Smith JV. Biochemical evolution II: origin of life in tubular microstructures on weathered feldspar surfaces. Proc Natl Acad Sci U S A 1998; 95:15173-6. [PMID: 9860941 PMCID: PMC28015 DOI: 10.1073/pnas.95.26.15173] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mineral surfaces were important during the emergence of life on Earth because the assembly of the necessary complex biomolecules by random collisions in dilute aqueous solutions is implausible. Most silicate mineral surfaces are hydrophilic and organophobic and unsuitable for catalytic reactions, but some silica-rich surfaces of partly dealuminated feldspars and zeolites are organophilic and potentially catalytic. Weathered alkali feldspar crystals from granitic rocks at Shap, north west England, contain abundant tubular etch pits, typically 0.4-0.6 microm wide, forming an orthogonal honeycomb network in a surface zone 50 microm thick, with 2-3 x 10(6) intersections per mm2 of crystal surface. Surviving metamorphic rocks demonstrate that granites and acidic surface water were present on the Earth's surface by approximately 3.8 Ga. By analogy with Shap granite, honeycombed feldspar has considerable potential as a natural catalytic surface for the start of biochemical evolution. Biomolecules should have become available by catalysis of amino acids, etc. The honeycomb would have provided access to various mineral inclusions in the feldspar, particularly apatite and oxides, which contain phosphorus and transition metals necessary for energetic life. The organized environment would have protected complex molecules from dispersion into dilute solutions, from hydrolysis, and from UV radiation. Sub-micrometer tubes in the honeycomb might have acted as rudimentary cell walls for proto-organisms, which ultimately evolved a lipid lid giving further shelter from the hostile outside environment. A lid would finally have become a complete cell wall permitting detachment and flotation in primordial "soup." Etch features on weathered alkali feldspar from Shap match the shape of overlying soil bacteria.
Collapse
Affiliation(s)
- I Parsons
- Department of Geology and Geophysics, University of Edinburgh, Edinburgh EH9 3JW, United Kingdom
| | | | | |
Collapse
|
8
|
Smith JV. Biochemical evolution. I. Polymerization On internal, organophilic silica surfaces of dealuminated zeolites and feldspars. Proc Natl Acad Sci U S A 1998; 95:3370-5. [PMID: 9520372 PMCID: PMC19842 DOI: 10.1073/pnas.95.7.3370] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Catalysis at mineral surfaces might generate replicating biopolymers from simple chemicals supplied by meteorites, volcanic gases, and photochemical gas reactions. Many ideas are implausible in detail because the proposed mineral surfaces strongly prefer water and other ionic species to organic ones. The molecular sieve silicalite (Union Carbide; = Al-free Mobil ZSM-5 zeolite) has a three-dimensional, 10-ring channel system whose electrically neutral Si-O surface strongly adsorbs organic species over water. Three -O-Si tetrahedral bonds lie in the surface, and the fourth Si-O points inwards. In contrast, the outward Si-OH of simple quartz and feldspar crystals generates their ionic organophobicity. The ZSM-5-type zeolite mutinaite occurs in Antarctica with boggsite and tschernichite (Al-analog of Mobil Beta). Archean mutinaite might have become de-aluminated toward silicalite during hot/cold/wet/dry cycles. Catalytic activity of silicalite increases linearly with Al-OH substitution for Si, and Al atoms tend to avoid each other. Adjacent organophilic and catalytic Al-OH regions in nanometer channels might have scavenged organic species for catalytic assembly into specific polymers protected from prompt photochemical destruction. Polymer migration along weathered silicic surfaces of micrometer-wide channels of feldspars might have led to assembly of replicating catalytic biomolecules and perhaps primitive cellular organisms. Silica-rich volcanic glasses should have been abundant on the early Earth, ready for crystallization into zeolites and feldspars, as in present continental basins. Abundant chert from weakly metamorphosed Archaean rocks might retain microscopic clues to the proposed mineral adsorbent/catalysts. Other framework silicas are possible, including ones with laevo/dextro one-dimensional channels. Organic molecules, transition-metal ions, and P occur inside modern feldspars.
Collapse
Affiliation(s)
- J V Smith
- Department of Geophysical Sciences and Center for Advanced Radiation Sources, 5734 S. Ellis Avenue, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|