1
|
Ferrara N, Giuliani G, Maimaris M, Prioli S, Manathunga M, Blancafort L, Léonard J, Cappelli A, Olivucci M, Paolino M. Design, Synthesis, and Characterization of pH-Resettable Photoswitches Mimicking the GFP Fluorophore Structure. J Phys Chem B 2025; 129:2845-2855. [PMID: 40047805 DOI: 10.1021/acs.jpcb.4c07003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Light-controlled molecular switches based on double bond isomerization can represent classical binary systems in logic gates. Here, starting from the biomimetic photoswitch 1 and combining computational and experimental techniques, we designed the insertion of a third control element (the "reset button"), proposing an appropriate structural modification capable of altering the electronic distribution within the molecule. Thus, the substitution on the pyrrolidinone nitrogen atom of 1 with a methane sulfonic (in 2a) or toluene sulfonic (in 2b) functional groups furnished molecules capable of alternating between two stable equilibrium forms by light irradiation. The addition of KOH deprotonates the phenolic moiety of the molecular photoswitches, providing systems in which the Z isomer becomes thermally unstable and spontaneously evolves into the starting E isomer. Re-establishing the initial phenolic form (e.g., by addition of acetic acid), the two molecules re-establish both isomers relative stability and their photochemical properties. These molecules represent a prototype of a potentially pH-resettable photoswitch with possible applications in pH-sensitive organic materials.
Collapse
Affiliation(s)
- Nicola Ferrara
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Germano Giuliani
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Marios Maimaris
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg & CNRS, UMR 7504 Strasbourg, France
| | - Salvatore Prioli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Madushanka Manathunga
- Chemistry Department, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Lluís Blancafort
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, C/M. A. Capmany 69, 17003 Girona, Spain
| | - Jérémie Léonard
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg & CNRS, UMR 7504 Strasbourg, France
| | - Andrea Cappelli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
- Chemistry Department, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Marco Paolino
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
2
|
Paul D, Sahoo P, Sengupta A, Tripathy U, Chatterjee S. Revealing the Role of Electronic Effect to Modulate the Photophysics and Z-Scan Responses of o-Locked GFP Chromophores. J Phys Chem B 2025; 129:692-711. [PMID: 39480189 DOI: 10.1021/acs.jpcb.4c04104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Three novel core green fluorescent protein (GFP) chromophore analogues, based on a doubly locked conformation and variable electronic effects by replacing one hydrogen with bromine, iodine, and methyl, respectively, have been synthesized to modulate the push-pull effect. These chromophores exhibited intramolecular H-bonding, as evidenced by single-crystal X-ray and 1H NMR studies. The fluorescence quantum yields (ϕf) of all of the chromophores were found to be more than an order of magnitude higher (∼0.2) than the unlocked chromophores (∼0.01). It was found that the electronic effect did affect the nonradiative rates, as the quantum yields were found to vary with respect to different analogues in the same solvents. The effect of the push-pull effect was also evident by a higher Stokes-shifted emission in the case of the methyl derivative with respect to the bromo- and iodo-analogues. Furthermore, the emission spectra of these GFP chromophores were found to show positive solvatochromism, which was supported by a quantum chemical calculation. A detailed study, correlating the observed spectral changes with various solvent functions and supported by computational results, established a facile proton transfer, followed by twisted intramolecular charge transfer (TICT) to be the major nonradiative channels of these chromophores. Besides, a completely novel usage of these chromophores was explored for the first time by studying their third-order nonlinear optical characteristics in DMSO using a single-beam Z-scan technique. All of the chromophores exhibited tunable nonlinear refraction (NLR) and nonlinear absorption (NLA) properties that depend upon different substituent groups present in the chromophores. Here, the NLR was due to the effect of self-defocusing, whereas the NLA was triggered by reverse saturable absorption, which is attributed to the two-photon absorption (TPA) process. Surprisingly, the efficiency of the TPA ability of the chromophores was found to be a function of the induced electronic effect. Hence, this work opens a new route for the utility of the ortho-locked GFP chromophores in the field of nonlinear optical applications.
Collapse
Affiliation(s)
- Debasish Paul
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad826004, Jharkhand, India
| | - Priyadarshi Sahoo
- Department of Physics, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad 826004, Jharkhand, India
| | - Arunava Sengupta
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad826004, Jharkhand, India
| | - Umakanta Tripathy
- Department of Physics, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad 826004, Jharkhand, India
| | - Soumit Chatterjee
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad826004, Jharkhand, India
| |
Collapse
|
3
|
Kinoshita Y, Shigeno M, Ishino K, Minato H, Yamada N, Hosoi H. Unified Role of the 145th Residue on the Fluorescence Lifetime of Fluorescent Proteins from the Jellyfish Aequorea victoria. J Phys Chem B 2024; 128:9061-9073. [PMID: 39267290 DOI: 10.1021/acs.jpcb.4c01739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Finding a unified fluorescence mechanism is essential to develop and utilize fluorescent proteins appropriately. Here, we report the unified role of the 145th residue on the fluorescence efficiency of fluorescent proteins developed from the jellyfish Aequorea victoria by demonstrating the difference and similarity between two representative fluorescent proteins, enhanced green fluorescent protein (eGFP), and enhanced yellow fluorescent protein (eYFP). We determined the fluorescence lifetimes of the 19 different Y145 mutants of eGFP and eYFP by picosecond time-resolved fluorescence spectroscopy. We found that the effect of the 145th mutation on the fluorescence lifetime is significant for eYFP but moderate for eGFP. We compared known crystal structures to clarify the observed difference between eGFP and eYFP. As a result, we conclude that the efficiency of the steric restriction of the chromophore motion by the 145th side chain is essentially the same for both eGFP and eYFP. Meanwhile, the restriction of the chromophore motion by hydrogen bonds is more pronounced for eGFP than for YFP. Balance of the steric effect and hydrogen bonding controls the lifetime of the Y145 mutants for eGFP and eYFP. Furthermore, the steric restriction is induced by the electrostatic effect; the different 145th residue induces a different electrostatic environment around the chromophore. The finding in this study reasonably explains the reported lifetimes of other fluorescent proteins and allows the prediction of the lifetime of unknown fluorescent proteins from jellyfish.
Collapse
Affiliation(s)
- Yuna Kinoshita
- Department of Biomolecular Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Mamoru Shigeno
- Department of Biomolecular Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Kana Ishino
- Department of Biomolecular Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Haruna Minato
- Department of Biomolecular Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Natsumi Yamada
- Department of Biomolecular Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Haruko Hosoi
- Department of Biomolecular Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| |
Collapse
|
4
|
Chen C, Henderson JN, Ruchkin DA, Kirsh JM, Baranov MS, Bogdanov AM, Mills JH, Boxer SG, Fang C. Structural Characterization of Fluorescent Proteins Using Tunable Femtosecond Stimulated Raman Spectroscopy. Int J Mol Sci 2023; 24:11991. [PMID: 37569365 PMCID: PMC10418586 DOI: 10.3390/ijms241511991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The versatile functions of fluorescent proteins (FPs) as fluorescence biomarkers depend on their intrinsic chromophores interacting with the protein environment. Besides X-ray crystallography, vibrational spectroscopy represents a highly valuable tool for characterizing the chromophore structure and revealing the roles of chromophore-environment interactions. In this work, we aim to benchmark the ground-state vibrational signatures of a series of FPs with emission colors spanning from green, yellow, orange, to red, as well as the solvated model chromophores for some of these FPs, using wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS) in conjunction with quantum calculations. We systematically analyzed and discussed four factors underlying the vibrational properties of FP chromophores: sidechain structure, conjugation structure, chromophore conformation, and the protein environment. A prominent bond-stretching mode characteristic of the quinoidal resonance structure is found to be conserved in most FPs and model chromophores investigated, which can be used as a vibrational marker to interpret chromophore-environment interactions and structural effects on the electronic properties of the chromophore. The fundamental insights gained for these light-sensing units (e.g., protein active sites) substantiate the unique and powerful capability of wavelength-tunable FSRS in delineating FP chromophore properties with high sensitivity and resolution in solution and protein matrices. The comprehensive characterization for various FPs across a colorful palette could also serve as a solid foundation for future spectroscopic studies and the rational engineering of FPs with diverse and improved functions.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA;
| | - J. Nathan Henderson
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.N.H.); (J.H.M.)
| | - Dmitry A. Ruchkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (D.A.R.); (M.S.B.); (A.M.B.)
| | - Jacob M. Kirsh
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; (J.M.K.); (S.G.B.)
| | - Mikhail S. Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (D.A.R.); (M.S.B.); (A.M.B.)
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Alexey M. Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (D.A.R.); (M.S.B.); (A.M.B.)
| | - Jeremy H. Mills
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.N.H.); (J.H.M.)
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; (J.M.K.); (S.G.B.)
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA;
| |
Collapse
|
5
|
Nienhaus K, Nienhaus GU. Genetically encodable fluorescent protein markers in advanced optical imaging. Methods Appl Fluoresc 2022; 10. [PMID: 35767981 DOI: 10.1088/2050-6120/ac7d3f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/29/2022] [Indexed: 11/12/2022]
Abstract
Optical fluorescence microscopy plays a pivotal role in the exploration of biological structure and dynamics, especially on live specimens. Progress in the field relies, on the one hand, on technical advances in imaging and data processing and, on the other hand, on progress in fluorescent marker technologies. Among these, genetically encodable fluorescent proteins (FPs) are invaluable tools, as they allow facile labeling of live cells, tissues or organisms, as these produce the FP markers all by themselves after introduction of a suitable gene. Here we cover FP markers from the GFP family of proteins as well as tetrapyrrole-binding proteins, which further complement the FP toolbox in important ways. A broad range of FP variants have been endowed, by using protein engineering, with photophysical properties that are essential for specific fluorescence microscopy techniques, notably those offering nanoscale image resolution. We briefly introduce various advanced imaging methods and show how they utilize the distinct properties of the FP markers in exciting imaging applications, with the aim to guide researchers toward the design of powerful imaging experiments that are optimally suited to address their biological questions.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, Wolfgang Gaede Str. 1, Karlsruhe, 76131, GERMANY
| | - Gerd Ulrich Nienhaus
- Karlsruhe Institute of Technology, Wolfgang Gaede Str. 1, Karlsruhe, 76131, GERMANY
| |
Collapse
|
6
|
Hostetter ER, Keyes JR, Poon I, Nguyen JP, Nite JM, Jimenez Hoyos CA, Smith CA. Prediction of Fluorophore Brightness in Designed Mini Fluorescence Activating Proteins. J Chem Theory Comput 2022; 18:3190-3203. [PMID: 35417158 DOI: 10.1021/acs.jctc.1c00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The de novo computational design of proteins with predefined three-dimensional structure is becoming much more routine due to advancements both in force fields and algorithms. However, creating designs with functions beyond folding is more challenging. In that regard, the recent design of small beta barrel proteins that activate the fluorescence of an exogenous small molecule chromophore (DFHBI) is noteworthy. These proteins, termed mini fluorescence activating proteins (mFAPs), have been shown to increase the brightness of the chromophore more than 100-fold upon binding to the designed ligand pocket. The design process created a large library of variants with different brightness levels but gave no rational explanation for why one variant was brighter than another. Here, we use quantum mechanics and molecular dynamics simulations to investigate how molecular flexibility in the ground and excited states influences brightness. We show that the ability of the protein to resist dihedral angle rotation of the chromophore is critical for predicting brightness. Our simulations suggest that the mFAP/DFHBI complex has a rough energy landscape, requiring extensive ground-state sampling to achieve converged predictions of excited-state kinetics. While computationally demanding, this roughness suggests that mFAP protein function can be enhanced by reshaping the energy landscape toward conformations that better resist DFHBI bond rotation.
Collapse
Affiliation(s)
- Emma R Hostetter
- Department of Chemistry, Wesleyan University, 52 Lawn Ave, Middletown, Connecticut 06459, United States
| | - Jeffrey R Keyes
- Department of Chemistry, Wesleyan University, 52 Lawn Ave, Middletown, Connecticut 06459, United States
| | - Ivy Poon
- Department of Chemistry, Wesleyan University, 52 Lawn Ave, Middletown, Connecticut 06459, United States
| | - Justin P Nguyen
- Department of Chemistry, Wesleyan University, 52 Lawn Ave, Middletown, Connecticut 06459, United States
| | - Jacob M Nite
- Department of Chemistry, Wesleyan University, 52 Lawn Ave, Middletown, Connecticut 06459, United States
| | -
- Department of Chemistry, Wesleyan University, 52 Lawn Ave, Middletown, Connecticut 06459, United States
| | - Carlos A Jimenez Hoyos
- Department of Chemistry, Wesleyan University, 52 Lawn Ave, Middletown, Connecticut 06459, United States
| | - Colin A Smith
- Department of Chemistry, Wesleyan University, 52 Lawn Ave, Middletown, Connecticut 06459, United States
| |
Collapse
|
7
|
John AM, Sekhon H, Ha JH, Loh SN. Engineering a Fluorescent Protein Color Switch Using Entropy-Driven β-Strand Exchange. ACS Sens 2022; 7:263-271. [PMID: 35006676 DOI: 10.1021/acssensors.1c02239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein conformational switches are widely used in biosensing. They are often composed of an input domain (which binds a target ligand) fused to an output domain (which generates an optical readout). A central challenge in designing such switches is to develop mechanisms for coupling the input and output signals via conformational changes. Here, we create a biosensor in which binding-induced folding of the input domain drives a conformational shift in the output domain that results in a sixfold green-to-yellow ratiometric fluorescence change in vitro and a 35-fold intensiometric fluorescence increase in cultured cells. The input domain consists of circularly permuted FK506 binding protein (cpFKBP) that folds upon binding its target ligand (FK506 or rapamycin). cpFKBP folding induces the output domain, an engineered green fluorescent protein (GFP) variant, to replace one of its β-strands (containing T203 and specifying green fluorescence) with a duplicate β-strand (containing Y203 and specifying yellow fluorescence) in an intramolecular exchange reaction. This mechanism employs the loop-closure entropy principle, embodied by the folding of the partially disordered cpFKBP domain, to couple ligand binding to the GFP color shift. This study highlights the high-energy barriers present in GFP folding which cause β-strand exchange to be slow and are also likely responsible for the shift from the β-strand exchange mechanism in vitro to ligand-induced chromophore maturation in cells. The proof-of-concept design has the advantages of full genetic encodability and potential for modularity. The latter attribute is enabled by the natural coupling of binding and folding and circular permutation of the input domain, which theoretically allows different binding domains to be compatible for insertion into the GFP surface loop.
Collapse
Affiliation(s)
- Anna Miriam John
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, United States
| | - Harsimranjit Sekhon
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, United States
| | - Jeung-Hoi Ha
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, United States
| | - Stewart N Loh
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, United States
| |
Collapse
|
8
|
Mukherjee S, Thomas C, Wilson R, Simmerman E, Hung ST, Jimenez R. Characterizing Dark State Kinetics and Single Molecule Fluorescence of FusionRed and FusionRed-MQ at Low Irradiances. Phys Chem Chem Phys 2022; 24:14310-14323. [DOI: 10.1039/d2cp00889k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The presence of dark states causes fluorescence intermittency of single molecules due to transitions between “on” and “off” states. Genetically encodable markers such as fluorescent proteins (FPs) exhibit dark states...
Collapse
|
9
|
E/ Z Molecular Photoswitches Activated by Two-Photon Absorption: Comparison between Different Families. Molecules 2021; 26:molecules26237379. [PMID: 34885961 PMCID: PMC8659108 DOI: 10.3390/molecules26237379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Nonlinear optical techniques as two-photon absorption (TPA) have raised relevant interest within the last years due to the capability to excite chromophores with photons of wavelength equal to only half of the corresponding one-photon absorption energy. At the same time, its probability being proportional to the square of the light source intensity, it allows a better spatial control of the light-induced phenomenon. Although a consistent number of experimental studies focus on increasing the TPA cross section, very few of them are devoted to the study of photochemical phenomena induced by TPA. Here, we show a design strategy to find suitable E/Z photoswitches that can be activated by TPA. A theoretical approach is followed to predict the TPA cross sections related to different excited states of various photoswitches’ families, finally concluding that protonated Schiff-bases (retinal)-like photoswitches outperform compared to the others. The donor-acceptor substitution effect is therefore rationalized for the successful TPA activatable photoswitch, in order to maximize its properties, finally also forecasting a possible application in optogenetics. Some experimental measurements are also carried out to support our conclusions.
Collapse
|
10
|
Kochman MA, Palczewski K, Kubas A. Theoretical Study of the Photoisomerization Mechanism of All- Trans-Retinyl Acetate. J Phys Chem A 2021; 125:8358-8372. [PMID: 34546761 PMCID: PMC8488936 DOI: 10.1021/acs.jpca.1c05533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
The compound 9-cis-retinyl acetate (9-cis-RAc) is a precursor
to 9-cis-retinal,
which has potential application in the treatment of some hereditary
diseases of the retina. An attractive synthetic route to 9-cis-RAc is based on the photoisomerization reaction of the
readily available all-trans-RAc. In the present study,
we examine the mechanism of the photoisomerization reaction with the
use of state-of-the-art electronic structure calculations for two
polyenic model compounds: tEtEt-octatetraene and tEtEtEc-2,6-dimethyl-1,3,5,7,9-decapentaene. The occurrence
of photoisomerization is attributed to a chain-kinking mechanism,
whereby a series of S1/S0 conical intersections
associated with kinking deformations at different positions along
the polyenic chain mediate internal conversion to the S0 state, and subsequent isomerization around one of the double bonds.
Two other possible photoisomerization mechanisms are taken into account,
but they are rejected as incompatible with simulation results and/or
the available spectroscopic data.
Collapse
Affiliation(s)
- Michał Andrzej Kochman
- Institute of Physical Chemistry, Polish Academy of Sciences, Ul. Marcina Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, California 92697, United States.,Department of Physiology and Biophysics, University of California, Irvine, California 92697, United States.,Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Adam Kubas
- Institute of Physical Chemistry, Polish Academy of Sciences, Ul. Marcina Kasprzaka 44/52, 01-224 Warszawa, Poland
| |
Collapse
|
11
|
Grigorenko BL, Domratcheva T, Polyakov IV, Nemukhin AV. Protonation States of Molecular Groups in the Chromophore-Binding Site Modulate Properties of the Reversibly Switchable Fluorescent Protein rsEGFP2. J Phys Chem Lett 2021; 12:8263-8271. [PMID: 34424693 DOI: 10.1021/acs.jpclett.1c02415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The role of protonation states of the chromophore and its neighboring amino acid side chains of the reversibly switching fluorescent protein rsEGFP2 upon photoswitching is characterized by molecular modeling methods. Numerous conformations of the chromophore-binding site in computationally derived model systems are obtained using the quantum chemistry and QM/MM approaches. Excitation energies are computed using the extended multiconfigurational quasidegenerate perturbation theory (XMCQDPT2). The obtained structures and absorption spectra allow us to provide an interpretation of the observed structural and spectral properties of rsEGFP2 in the active ON and inactive OFF states. The results demonstrate that in addition to the dominating anionic and neutral forms of the chromophore, the cationic and zwitterionic forms may participate in the photoswitching of rsEGFP2. Conformations and protonation forms of the Glu223 and His149 side chains in the chromophore-binding site play an essential role in stabilizing specific protonation forms of the chromophore.
Collapse
Affiliation(s)
- Bella L Grigorenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Tatiana Domratcheva
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Igor V Polyakov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Alexander V Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
12
|
Jones CM, List NH, Martínez TJ. Resolving the ultrafast dynamics of the anionic green fluorescent protein chromophore in water. Chem Sci 2021; 12:11347-11363. [PMID: 34667545 PMCID: PMC8447926 DOI: 10.1039/d1sc02508b] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022] Open
Abstract
The chromophore of the green fluorescent protein (GFP) is critical for probing environmental influences on fluorescent protein behavior. Using the aqueous system as a bridge between the unconfined vacuum system and a constricting protein scaffold, we investigate the steric and electronic effects of the environment on the photodynamical behavior of the chromophore. Specifically, we apply ab initio multiple spawning to simulate five picoseconds of nonadiabatic dynamics after photoexcitation, resolving the excited-state pathways responsible for internal conversion in the aqueous chromophore. We identify an ultrafast pathway that proceeds through a short-lived (sub-picosecond) imidazolinone-twisted (I-twisted) species and a slower (several picoseconds) channel that proceeds through a long-lived phenolate-twisted (P-twisted) intermediate. The molecule navigates the non-equilibrium energy landscape via an aborted hula-twist-like motion toward the one-bond-flip dominated conical intersection seams, as opposed to following the pure one-bond-flip paths proposed by the excited-state equilibrium picture. We interpret our simulations in the context of time-resolved fluorescence experiments, which use short- and long-time components to describe the fluorescence decay of the aqueous GFP chromophore. Our results suggest that the longer time component is caused by an energetically uphill approach to the P-twisted intersection seam rather than an excited-state barrier to reach the twisted intramolecular charge-transfer species. Irrespective of the location of the nonadiabatic population events, the twisted intersection seams are inefficient at facilitating isomerization in aqueous solution. The disordered and homogeneous nature of the aqueous solvent environment facilitates non-selective stabilization with respect to I- and P-twisted species, offering an important foundation for understanding the consequences of selective stabilization in heterogeneous and rigid protein environments.
Collapse
Affiliation(s)
- Chey M Jones
- Department of Chemistry and the PULSE Institute, Stanford University Stanford CA 94305 USA
- SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| | - Nanna H List
- Department of Chemistry and the PULSE Institute, Stanford University Stanford CA 94305 USA
- SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| | - Todd J Martínez
- Department of Chemistry and the PULSE Institute, Stanford University Stanford CA 94305 USA
- SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| |
Collapse
|
13
|
A Novel Dialkylamino GFP Chromophore as an Environment-Polarity Sensor Reveals the Role of Twisted Intramolecular Charge Transfer. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We discovered a novel fluorophore by incorporating a dimethylamino group (–NMe2) into the conformationally locked green fluorescent protein (GFP) scaffold. It exhibited a marked solvent-polarity-dependent fluorogenic behavior and can potentially find broad applications as an environment-polarity sensor in vitro and in vivo. The ultrafast femtosecond transient absorption (fs-TA) spectroscopy in combination with quantum calculations revealed the presence of a twisted intramolecular charge transfer (TICT) state, which is formed by rotation of the –NMe2 group in the electronic excited state. In contrast to the bright fluorescent state (FS), the TICT state is dark and effectively quenches fluorescence upon formation. We employed a newly developed multivariable analysis approach to the FS lifetime in various solvents and showed that the FS → TICT reaction barrier is mainly modulated by H-bonding capability instead of viscosity of the solvent, accounting for the observed polarity dependence. These deep mechanistic insights are further corroborated by the dramatic loss of fluorogenicity for two similar GFP-derived chromophores in which the rotation of the –NMe2 group is inhibited by structural locking.
Collapse
|
14
|
Nienhaus K, Nienhaus GU. Fluorescent proteins of the EosFP clade: intriguing marker tools with multiple photoactivation modes for advanced microscopy. RSC Chem Biol 2021; 2:796-814. [PMID: 34458811 PMCID: PMC8341165 DOI: 10.1039/d1cb00014d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/27/2021] [Indexed: 02/04/2023] Open
Abstract
Optical fluorescence microscopy has taken center stage in the exploration of biological structure and dynamics, especially on live specimens, and super-resolution imaging methods continue to deliver exciting new insights into the molecular foundations of life. Progress in the field, however, crucially hinges on advances in fluorescent marker technology. Among these, fluorescent proteins (FPs) of the GFP family are advantageous because they are genetically encodable, so that live cells, tissues or organisms can produce these markers all by themselves. A subclass of them, photoactivatable FPs, allow for control of their fluorescence emission by light irradiation, enabling pulse-chase imaging and super-resolution microscopy. In this review, we discuss FP variants of the EosFP clade that have been optimized by amino acid sequence modification to serve as markers for various imaging techniques. In general, two different modes of photoactivation are found, reversible photoswitching between a fluorescent and a nonfluorescent state and irreversible green-to red photoconversion. First, we describe their basic structural and optical properties. We then summarize recent research aimed at elucidating the photochemical processes underlying photoactivation. Finally, we briefly introduce various advanced imaging methods facilitated by specific EosFP variants, and show some exciting sample applications.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology 76049 Karlsruhe Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology 76049 Karlsruhe Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology 76021 Karlsruhe Germany
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology 76021 Karlsruhe Germany
- Department of Physics, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
15
|
Christou NE, Giandoreggio-Barranco K, Ayala I, Glushonkov O, Adam V, Bourgeois D, Brutscher B. Disentangling Chromophore States in a Reversibly Switchable Green Fluorescent Protein: Mechanistic Insights from NMR Spectroscopy. J Am Chem Soc 2021; 143:7521-7530. [PMID: 33966387 DOI: 10.1021/jacs.1c02442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The photophysical properties of fluorescent proteins, including phototransformable variants used in advanced microscopy applications, are influenced by the environmental conditions in which they are expressed and used. Rational design of improved fluorescent protein markers requires a better understanding of these environmental effects. We demonstrate here that solution NMR spectroscopy can detect subtle changes in the chemical structure, conformation, and dynamics of the photoactive chromophore moiety with atomic resolution, providing such mechanistic information. Studying rsFolder, a reversibly switchable green fluorescent protein, we have identified four distinct configurations of its p-HBI chromophore, corresponding to the cis and trans isomers, with each one either protonated (neutral) or deprotonated (anionic) at the benzylidene ring. The relative populations and interconversion kinetics of these chromophore species depend on sample pH and buffer composition that alter in a complex way the strength of H-bonds that contribute in stabilizing the chromophore within the protein scaffold. We show in particular the important role of histidine-149 in stabilizing the neutral trans chromophore at intermediate pH values, leading to ground-state cis-trans isomerization with a peculiar pH dependence. We discuss the potential implications of our findings on the pH dependence of the photoswitching contrast, a critical parameter in nanoscopy applications.
Collapse
Affiliation(s)
- Nina Eleni Christou
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | | | - Isabel Ayala
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Oleksandr Glushonkov
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Virgile Adam
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Dominique Bourgeois
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Bernhard Brutscher
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| |
Collapse
|
16
|
Tang L, Zhang S, Zhao Y, Rozanov ND, Zhu L, Wu J, Campbell RE, Fang C. Switching between Ultrafast Pathways Enables a Green-Red Emission Ratiometric Fluorescent-Protein-Based Ca 2+ Biosensor. Int J Mol Sci 2021; 22:E445. [PMID: 33466257 PMCID: PMC7794744 DOI: 10.3390/ijms22010445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 01/25/2023] Open
Abstract
Ratiometric indicators with long emission wavelengths are highly preferred in modern bioimaging and life sciences. Herein, we elucidated the working mechanism of a standalone red fluorescent protein (FP)-based Ca2+ biosensor, REX-GECO1, using a series of spectroscopic and computational methods. Upon 480 nm photoexcitation, the Ca2+-free biosensor chromophore becomes trapped in an excited dark state. Binding with Ca2+ switches the route to ultrafast excited-state proton transfer through a short hydrogen bond to an adjacent Glu80 residue, which is key for the biosensor's functionality. Inspired by the 2D-fluorescence map, REX-GECO1 for Ca2+ imaging in the ionomycin-treated human HeLa cells was achieved for the first time with a red/green emission ratio change (ΔR/R0) of ~300%, outperforming many FRET- and single FP-based indicators. These spectroscopy-driven discoveries enable targeted design for the next-generation biosensors with larger dynamic range and longer emission wavelengths.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, USA; (L.T.); (N.D.R.); (L.Z.)
| | - Shuce Zhang
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (S.Z.); (Y.Z.); (J.W.); or
| | - Yufeng Zhao
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (S.Z.); (Y.Z.); (J.W.); or
| | - Nikita D. Rozanov
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, USA; (L.T.); (N.D.R.); (L.Z.)
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, USA; (L.T.); (N.D.R.); (L.Z.)
| | - Jiahui Wu
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (S.Z.); (Y.Z.); (J.W.); or
| | - Robert E. Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (S.Z.); (Y.Z.); (J.W.); or
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, USA; (L.T.); (N.D.R.); (L.Z.)
| |
Collapse
|
17
|
Kong J, Wang Y, Qi W, Huang M, Su R, He Z. Green fluorescent protein inspired fluorophores. Adv Colloid Interface Sci 2020; 285:102286. [PMID: 33164780 DOI: 10.1016/j.cis.2020.102286] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022]
Abstract
Green fluorescence proteins (GFP) are appealing to a variety of biomedical and biotechnology applications, such as protein fusion, subcellular localizations, cell visualization, protein-protein interaction, and genetically encoded sensors. To mimic the fluorescence of GFP, various compounds, such as GFP chromophores analogs, hydrogen bond-rich proteins, and aromatic peptidyl nanostructures that preclude free rotation of the aryl-alkene bond, have been developed to adapt them for a fantastic range of applications. Herein, we firstly summarize the structure and luminescent mechanism of GFP. Based on this, the design strategy, fluorescent properties, and the advanced applications of GFP-inspired fluorophores are then carefully discussed. The diverse advantages of bioinspired fluorophores, such as biocompatibility, structural simplicity, and capacity to form a variety of functional nanostructures, endow them potential candidates as the next-generation bio-organic optical materials.
Collapse
|
18
|
Liu YH, Peng YJ, Su H, Zhu C, Lin SH. The absorption and fluorescence spectra of 4-(3-methoxybenzylidene)-2-methyl-oxazalone interpreted by Franck-Condon simulation in various pH solvent environments. Phys Chem Chem Phys 2020; 22:17559-17566. [PMID: 32716426 DOI: 10.1039/d0cp01980a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The absorption and fluorescence spectra of 4-(3-methoxybenzylidene)-2-methyl-oxazalone (m-MeOBDI) dissolved in neutral, acidic, and basic solvent environments have been investigated and assigned by using Franck-Condon (FC) simulations at the quantum TDDFT level. Four different structures of m-MeOBDI in the ground and excited states are optimized and are found to be responsible for the observed absorption and fluorescence spectra. The (absorption) fluorescence of m-MeOBDI in pure methanol and neutral/basic methanol/water (1/9 vol) mixed solvent is found to arise from the (ground neutral N-I) excited neutral N-I* and cationic C-III* species, respectively. In acidic solvent, the absorption is found to arise from ground acidic C-II species, and the excited divalent cation DC-IV* is found to be formed in its excited state due to the excess H+ in the solution, and then it emits ∼560 nm fluorescence. FC simulations have also been employed to confirm our assignments as well as interpret the vibronic band profiles. As expected, the simulated emission spectrum of the divalent cationic species is in good agreement with the experimental observation. Therefore, within the present FC simulation, the observed absorption and fluorescence spectra have been reasonably interpreted and novel fluorescence mechanisms of m-MeOBDI in various pH solvent environments have been proposed.
Collapse
Affiliation(s)
- Yu-Hui Liu
- College of Mathematics and Physics, Bohai University, Jinzhou 121013, China.
| | | | | | | | | |
Collapse
|
19
|
Prangsma JC, Molenaar R, van Weeren L, Bindels DS, Haarbosch L, Stouthamer J, Gadella TWJ, Subramaniam V, Vos WL, Blum C. Quantitative Determination of Dark Chromophore Population Explains the Apparent Low Quantum Yield of Red Fluorescent Proteins. J Phys Chem B 2020; 124:1383-1391. [PMID: 32011884 PMCID: PMC7049984 DOI: 10.1021/acs.jpcb.9b10396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/03/2020] [Indexed: 11/30/2022]
Abstract
The fluorescence quantum yield of four representative red fluorescent proteins mCherry, mKate2, mRuby2, and the recently introduced mScarlet was investigated. The excited state lifetimes were measured as a function of the distance to a gold mirror in order to control the local density of optical states (LDOS). By analyzing the total emission rates as a function of the LDOS, we obtain separately the emission rate and the nonradiative rate of the bright states. We thus obtain for the first time the bright state quantum yield of the proteins without interference from dark, nonemitting states. The bright state quantum yields are considerably higher than previously reported quantum yields that average over both bright and dark states. We determine that mCherry, mKate2, and mRuby2 have a considerable fraction of dark chromophores up to 45%, which explains both the low measured quantum yields of red emitting proteins reported in the literature and the difficulties in developing high quantum yield variants of such proteins. For the recently developed bright mScarlet, we find a much smaller dark fraction of 14%, accompanied by a very high quantum yield of the bright state of 81%. The presence of a considerable fraction of dark chromophores has implications for numerous applications of fluorescent proteins, ranging from quantitative fluorescence microscopy to FRET studies to monitoring protein expression levels. We recommend that future optimization of red fluorescent proteins should pay more attention to minimizing the fraction of dark proteins.
Collapse
Affiliation(s)
- Jord C. Prangsma
- Nanobiophysics
(NBP), MESA+ Institute for Nanotechnology and Technical Medical Centre,
Faculty of Science and Technology, University
of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Robert Molenaar
- Nanobiophysics
(NBP), MESA+ Institute for Nanotechnology and Technical Medical Centre,
Faculty of Science and Technology, University
of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Laura van Weeren
- Section
of Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE Amsterdam, The Netherlands
| | - Daphne S. Bindels
- Section
of Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE Amsterdam, The Netherlands
| | - Lindsay Haarbosch
- Section
of Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE Amsterdam, The Netherlands
| | - Jente Stouthamer
- Section
of Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE Amsterdam, The Netherlands
| | - Theodorus W. J. Gadella
- Section
of Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE Amsterdam, The Netherlands
| | - Vinod Subramaniam
- Nanobiophysics
(NBP), MESA+ Institute for Nanotechnology and Technical Medical Centre,
Faculty of Science and Technology, University
of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Willem L. Vos
- Complex
Photonic Systems (COPS), MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Christian Blum
- Nanobiophysics
(NBP), MESA+ Institute for Nanotechnology and Technical Medical Centre,
Faculty of Science and Technology, University
of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
20
|
Dolgopolova EA, Berseneva AA, Faillace MS, Ejegbavwo OA, Leith GA, Choi SW, Gregory HN, Rice AM, Smith MD, Chruszcz M, Garashchuk S, Mythreye K, Shustova NB. Confinement-Driven Photophysics in Cages, Covalent−Organic Frameworks, Metal–Organic Frameworks, and DNA. J Am Chem Soc 2020; 142:4769-4783. [DOI: 10.1021/jacs.9b13505] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ekaterina A. Dolgopolova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Anna A. Berseneva
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Martín S. Faillace
- INFIQC-UNC, CONICET, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Otega A. Ejegbavwo
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Gabrielle A. Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Seok W. Choi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Haley N. Gregory
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Allison M. Rice
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Mark D. Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Sophya Garashchuk
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Karthikeyan Mythreye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Natalia B. Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
21
|
Chen C, Zhu L, Boulanger SA, Baleeva NS, Myasnyanko IN, Baranov MS, Fang C. Ultrafast excited-state proton transfer dynamics in dihalogenated non-fluorescent and fluorescent GFP chromophores. J Chem Phys 2020; 152:021101. [PMID: 31941340 DOI: 10.1063/1.5138666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Green fluorescent protein (GFP) has enabled a myriad of bioimaging advances due to its photophysical and photochemical properties. To deepen the mechanistic understanding of such light-induced processes, novel derivatives of GFP chromophore p-HBDI were engineered by fluorination or bromination of the phenolic moiety into superphotoacids, which efficiently undergo excited-state proton transfer (ESPT) in aqueous solution within the short lifetime of the excited state, as opposed to p-HBDI where efficient ESPT is not observed. In addition, we tuned the excited-state lifetime from picoseconds to nanoseconds by conformational locking of the p-HBDI backbone, essentially transforming the nonfluorescent chromophores into highly fluorescent ones. The unlocked superphotoacids undergo a barrierless ESPT without much solvent activity, whereas the locked counterparts exhibit two distinct solvent-involved ESPT pathways. Comparative analysis of femtosecond transient absorption spectra of these unlocked and locked superphotoacids reveals that the ESPT rates adopt an "inverted" kinetic behavior as the thermodynamic driving force increases upon locking the backbone. Further experimental and theoretical investigations are expected to shed more light on the interplay between the modified electronic structure (mainly by dihalogenation) and nuclear motions (by conformational locking) of the functionalized GFP derivatives (e.g., fluorescence on and off).
Collapse
Affiliation(s)
- Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA
| | - Sean A Boulanger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA
| | - Nadezhda S Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Ivan N Myasnyanko
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA
| |
Collapse
|
22
|
Chatterjee S, Ahire K, Karuso P. Room-Temperature Dual Fluorescence of a Locked Green Fluorescent Protein Chromophore Analogue. J Am Chem Soc 2019; 142:738-749. [PMID: 31846319 DOI: 10.1021/jacs.9b05096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A structurally locked green fluorescent protein (GFP) chromophore with a phenyl group at C(2) of the imidazolone has been synthesized. Rotation around the exocyclic double bond is hindered, resulting in room-temperature fluorescence. The quantum yield in water is 500 times greater than that of unlocked analogues. Unlike the methyl-substituted analogue, the phenyl analogue exhibits a dual emission (cyan and red) that can be used for ultrasensitive ratiometric measurements and fluorescence microscopy. To explain this dual emission, DFT calculations were carried out along with fluorescence upconversion experiments. The Z-isomer was found to be emissive, while the origin of the dual emission was dependent on the phenyl group in the Z-isomer, which stabilizes the Franck-Condon state, resulting in a cyan fluorescence, while the zwitterionic tautomer fluoresces red. These results bring important new insights into the photophysics of the GFP chromophore and provide a new scaffold capable of dual emission with utility in biotechnology.
Collapse
Affiliation(s)
- Soumit Chatterjee
- Department of Molecular Sciences , Macquarie University , Sydney , NSW 2109 , Australia
| | - Ketan Ahire
- Department of Molecular Sciences , Macquarie University , Sydney , NSW 2109 , Australia
| | - Peter Karuso
- Department of Molecular Sciences , Macquarie University , Sydney , NSW 2109 , Australia
| |
Collapse
|
23
|
Tai Y, Takaba K, Hanazono Y, Dao HA, Miki K, Takeda K. X-ray crystallographic studies on the hydrogen isotope effects of green fluorescent protein at sub-ångström resolutions. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:1096-1106. [PMID: 31793903 DOI: 10.1107/s2059798319014608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/28/2019] [Indexed: 11/10/2022]
Abstract
Hydrogen atoms are critical to the nature and properties of proteins, and thus deuteration has the potential to influence protein function. In fact, it has been reported that some deuterated proteins show different physical and chemical properties to their protiated counterparts. Consequently, it is important to investigate protonation states around the active site when using deuterated proteins. Here, hydrogen isotope effects on the S65T/F99S/M153T/V163A variant of green fluorescent protein (GFP), in which the deprotonated B form is dominant at pH 8.5, were investigated. The pH/pD dependence of the absorption and fluorescence spectra indicates that the protonation state of the chromophore is the same in protiated GFP in H2O and protiated GFP in D2O at pH/pD 8.5, while the pKa of the chromophore became higher in D2O. Indeed, X-ray crystallographic analyses at sub-ångström resolution revealed no apparent changes in the protonation state of the chromophore between the two samples. However, detailed comparisons of the hydrogen OMIT maps revealed that the protonation state of His148 in the vicinity of the chromophore differed between the two samples. This indicates that protonation states around the active site should be carefully adjusted to be the same as those of the protiated protein when neutron crystallographic analyses of proteins are performed.
Collapse
Affiliation(s)
- Yang Tai
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kiyofumi Takaba
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yuya Hanazono
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hoang Anh Dao
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kunio Miki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kazuki Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
24
|
Piontkowski Z, Mark DJ, Bedics MA, Sabatini RP, Mark MF, Detty MR, McCamant DW. Excited State Torsional Processes in Chalcogenopyrylium Monomethine Dyes. J Phys Chem A 2019; 123:8807-8822. [PMID: 31591891 DOI: 10.1021/acs.jpca.9b07268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chalcogenopyrylium monomethine (CGPM) dyes represent a class of environmentally activated singlet oxygen generators with applications in photodynamic therapy (PDT) and photoassisted chemotherapy (PACT). Upon binding to genomic material, the dyes are presumed to rigidify, allowing for intersystem crossing to outcompete excited state deactivation by internal conversion. This results in large triplet yields and hence large singlet oxygen yields. To understand the nature of the internal conversion process that controls the activity of the dyes, femtosecond transient absorption experiments were performed on a series of S-, Se-, and Te-substituted CGPM dyes. For S- and Se-substituted species in methanol, rapid internal conversion from the singlet excited state, S1, occurs in ∼5 ps, deactivating the optically active excited state. The internal conversion produces a distorted ground-state species that returns to its equilibrium structure in ∼20 ps. For Te-substituted species, the internal conversion competes with rapid intersystem crossing to the lowest triplet state, T1, which occurs with a ∼ 100 ps time constant in methanol. In more viscous methanol/glycerol mixtures, the internal conversion to the ground state slows by 2 orders of magnitude, occurring in 500-600 ps. For Se- and Te-substituted species in viscous environments, the slower internal conversion rate allows a larger triplet yield. Using femtosecond stimulated Raman spectroscopy (FSRS) and time-dependent density functional theory (TD-DFT), the internal conversion is determined to occur by twisting of the pyrylium rings about the monomethine bridge. Evolution from the distorted ground state occurs by twisting back to the S0 equilibrium structure. The environmentally dependent photoactivity of CGPM dyes is discussed in the context of PDT and PACT applications.
Collapse
Affiliation(s)
- Zachary Piontkowski
- Department of Chemistry , University of Rochester , Rochester , New York 14627 United States
| | - Daniel J Mark
- Department of Chemistry , University of Rochester , Rochester , New York 14627 United States
| | - Matthew A Bedics
- Department of Chemistry, University at Buffalo , The State University of New York , Buffalo , New York 14260 United States
| | - Randy Pat Sabatini
- Department of Chemistry , University of Rochester , Rochester , New York 14627 United States
| | - Michael F Mark
- Department of Chemistry , University of Rochester , Rochester , New York 14627 United States
| | - Michael R Detty
- Department of Chemistry, University at Buffalo , The State University of New York , Buffalo , New York 14260 United States
| | - David W McCamant
- Department of Chemistry , University of Rochester , Rochester , New York 14627 United States
| |
Collapse
|
25
|
Taylor MA, Zhu L, Rozanov ND, Stout KT, Chen C, Fang C. Delayed vibrational modulation of the solvated GFP chromophore into a conical intersection. Phys Chem Chem Phys 2019; 21:9728-9739. [PMID: 31032505 DOI: 10.1039/c9cp01077g] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Green fluorescent protein (GFP) has revolutionized bioimaging and life sciences. Its successes have inspired modification of the chromophore structure and environment to tune emission properties, but outside the protein cage, the chromophore is essentially non-fluorescent. In this study, we employ the tunable femtosecond stimulated Raman spectroscopy (FSRS) and transient absorption (TA) to map the energy dissipation pathways of GFP model chromophore (HBDI) in basic aqueous solution. Strategic tuning of the Raman pump to 550 nm exploits the stimulated emission band to enhance excited state vibrational motions as HBDI navigates the non-equilibrium potential energy landscape to pass through a conical intersection. The time-resolved FSRS uncovers prominent anharmonic couplings between a global out-of-plane bending mode of ∼227 cm-1 and two modes at ∼866 and 1572 cm-1 before HBDI reaches the twisted intramolecular charge transfer (TICT) state on the ∼3 ps time scale. Remarkably, the wavelet transform analysis reveals a ∼500 fs delayed onset of the coupling peaks, in correlation with the emergence of an intermediate charge-separated state en route to the TICT state. This mechanism is corroborated by the altered coupling matrix for the HBDI Raman modes in the 50% (v/v) water-glycerol mixture, and a notable lengthening of the picosecond time constant. The real-time molecular "movie" of the general rotor-like HBDI isomerization reaction following photoexcitation represents a significant advance in comprehending the photochemical reaction pathways of the solvated GFP chromophore, therefore providing a crucial foundation to enable rational design of diverse nanomachines from efficient molecular rotors to bright fluorescent probes.
Collapse
Affiliation(s)
- Miles A Taylor
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Takaba K, Tai Y, Eki H, Dao HA, Hanazono Y, Hasegawa K, Miki K, Takeda K. Subatomic resolution X-ray structures of green fluorescent protein. IUCRJ 2019; 6:387-400. [PMID: 31098020 PMCID: PMC6503917 DOI: 10.1107/s205225251900246x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/17/2019] [Indexed: 05/06/2023]
Abstract
Green fluorescent protein (GFP) is a light-emitting protein that does not require a prosthetic group for its fluorescent activity. As such, GFP has become indispensable as a molecular tool in molecular biology. Nonetheless, there has been no subatomic elucidation of the GFP structure owing to the structural polymorphism around the chromophore. Here, subatomic resolution X-ray structures of GFP without the structural polymorphism are reported. The positions of H atoms, hydrogen-bonding network patterns and accurate geometric parameters were determined for the two protonated forms. Compared with previously determined crystal structures and theoretically optimized structures, the anionic chromophores of the structures represent the authentic resonance state of GFP. In addition, charge-density analysis based on atoms-in-molecules theory and noncovalent interaction analysis highlight weak but substantial interactions between the chromophore and the protein environment. Considered with the derived chemical indicators, the lone pair-π interactions between the chromophore and Thr62 should play a sufficient role in maintaining the electronic state of the chromophore. These results not only reveal the fine structural features that are critical to understanding the properties of GFP, but also highlight the limitations of current quantum-chemical calculations.
Collapse
Affiliation(s)
- Kiyofumi Takaba
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yang Tai
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Haruhiko Eki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hoang-Anh Dao
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yuya Hanazono
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kazuya Hasegawa
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kunio Miki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kazuki Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
27
|
Dai L, Zhang B, Cui S, Yu J. Inspecting fluctuation and coordination around chromophore inside green fluorescent protein from water to nonpolar solvent. Proteins 2019; 87:531-540. [PMID: 30788862 DOI: 10.1002/prot.25676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/06/2019] [Accepted: 02/17/2019] [Indexed: 11/06/2022]
Abstract
Green fluorescent protein (GFP) is a widely used biomarker that demands systematical rational approaches to its structure function redesign. In this work, we mainly utilized atomistic molecular dynamics simulations to inspect and visualize internal fluctuation and coordination around chromophore inside GFP, from water to nonpolar octane solvent. We found that GFP not only maintains its β-barrel structure well into the octane, but also sustains internal residue and water coordination to position the chromophore stably while suppress dihedral fluctuations of the chromophore, so that functional robustness of GFP is achieved. Our accompanied fluorescence microscope measurements accordingly confirmed the GFP functioning into the octane. Furthermore, we identified that crucial water sites inside GFP along with permeable pores on the β-barrel of the protein are largely preserved from the water to the octane solvent, which allows sufficiently fast exchanges of internal water with the bulk or with the water layer kept on the surface of the protein. By additionally pulling GFP from bulk water to octane, we suggest that the GFP function can be well maintained into the nonpolar solvent as long as, first, the protein does not denature in the nonpolar solvent nor across the polar-nonpolar solvent interface; second, a minimal set of water molecules are in accompany with the protein; third, the nonpolar solvent molecules may need to be large enough to be nonpermeable via the water pores on the β-barrel.
Collapse
Affiliation(s)
- Liqiang Dai
- Complex System Research Division, Beijing Computational Science Research Center, Beijing, China
| | - Bo Zhang
- Key Lab of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, China
| | - Shuxun Cui
- Key Lab of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, China
| | - Jin Yu
- Complex System Research Division, Beijing Computational Science Research Center, Beijing, China
| |
Collapse
|
28
|
Abstract
In the past decades, advances in microscopy have made it possible to study the dynamics of individual biomolecules in vitro and resolve intramolecular kinetics that would otherwise be hidden in ensemble averages. More recently, single-molecule methods have been used to image, localize, and track individually labeled macromolecules in the cytoplasm of living cells, allowing investigations of intermolecular kinetics under physiologically relevant conditions. In this review, we illuminate the particular advantages of single-molecule techniques when studying kinetics in living cells and discuss solutions to specific challenges associated with these methods.
Collapse
Affiliation(s)
- Johan Elf
- Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden;
| | - Irmeli Barkefors
- Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden;
| |
Collapse
|
29
|
Adnan A, Qidwai S, Bagchi A. On the atomistic-based continuum viscoelastic constitutive relations for axonal microtubules. J Mech Behav Biomed Mater 2018; 86:375-389. [DOI: 10.1016/j.jmbbm.2018.06.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 01/04/2018] [Accepted: 06/21/2018] [Indexed: 11/25/2022]
|
30
|
Lischka H, Nachtigallová D, Aquino AJA, Szalay PG, Plasser F, Machado FBC, Barbatti M. Multireference Approaches for Excited States of Molecules. Chem Rev 2018; 118:7293-7361. [DOI: 10.1021/acs.chemrev.8b00244] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hans Lischka
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry v.v.i., The Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
| | - Adélia J. A. Aquino
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute for Soil Research, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Péter G. Szalay
- ELTE Eötvös Loránd University, Laboratory of Theoretical Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Felix Plasser
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Department of Chemistry, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Francisco B. C. Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, São Paulo, Brazil
| | | |
Collapse
|
31
|
Laptenok SP, Gil AA, Hall CR, Lukacs A, Iuliano JN, Jones GA, Greetham GM, Donaldson P, Miyawaki A, Tonge PJ, Meech SR. Infrared spectroscopy reveals multi-step multi-timescale photoactivation in the photoconvertible protein archetype dronpa. Nat Chem 2018; 10:845-852. [PMID: 29892029 DOI: 10.1038/s41557-018-0073-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/27/2018] [Indexed: 01/13/2023]
Abstract
Photochromic fluorescent proteins play key roles in super-resolution microscopy and optogenetics. The light-driven structural changes that modulate the fluorescence involve both trans-to-cis isomerization and proton transfer. The mechanism, timescale and relative contribution of chromophore and protein dynamics are currently not well understood. Here, the mechanism of off-to-on-state switching in dronpa is studied using femtosecond-to-millisecond time-resolved infrared spectroscopy and isotope labelling. Chromophore and protein dynamics are shown to occur on multiple timescales, from picoseconds to hundreds of microseconds. Following excitation of the trans chromophore, a ground-state primary product is formed within picoseconds. Surprisingly, the characteristic vibrational spectrum of the neutral cis isomer appears only after several tens of nanoseconds. Further fluctuations in protein structure around the neutral cis chromophore are required to form a new intermediate, which promotes the final proton-transfer reaction. These data illustrate the interplay between chromophore dynamics and the protein environment underlying fluorescent protein photochromism.
Collapse
Affiliation(s)
- Sergey P Laptenok
- School of Chemistry, University of East Anglia, Norwich, UK.,Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Agnieszka A Gil
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Christopher R Hall
- School of Chemistry, University of East Anglia, Norwich, UK.,ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
| | - Andras Lukacs
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
| | - James N Iuliano
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Garth A Jones
- School of Chemistry, University of East Anglia, Norwich, UK
| | - Gregory M Greetham
- Central Laser Facility, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK
| | - Paul Donaldson
- Central Laser Facility, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Peter J Tonge
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA.
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich, UK.
| |
Collapse
|
32
|
Armengol P, Spörkel L, Gelabert R, Moreno M, Thiel W, Lluch JM. Ultrafast action chemistry in slow motion: atomistic description of the excitation and fluorescence processes in an archetypal fluorescent protein. Phys Chem Chem Phys 2018; 20:11067-11080. [PMID: 29620123 DOI: 10.1039/c8cp00371h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We report quantum mechanical/molecular mechanical non-adiabatic molecular dynamics simulations on the electronically excited state of green fluorescent protein mutant S65T/H148D. We examine the driving force of the ultrafast (τ < 50 fs) excited-state proton transfer unleashed by absorption in the A band at 415 nm and propose an atomistic description of the two dynamical regimes experimentally observed [Stoner Ma et al., J. Am. Chem. Soc., 2008, 130, 1227]. These regimes are explained in terms of two sets of successive dynamical events: first the proton transfers quickly from the chromophore to the acceptor Asp148. Thereafter, on a slower time scale, there are geometrical changes in the cavity of the chromophore that involve the distance between the chromophore and Asp148, the planarity of the excited-state chromophore, and the distance between the chromophore and Tyr145. We find two different non-radiative relaxation channels that are operative for structures in the reactant region and that can explain the mismatch between the decay of the emission of A* and the rise of the emission of I*, as well as the temperature dependence of the non-radiative decay rate.
Collapse
Affiliation(s)
- Pau Armengol
- Departament de Qímica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
33
|
Glazachev YI, Orlova DY, Řezníčková P, Bártová E. Effective scheme of photolysis of GFP in live cell as revealed with confocal fluorescence microscopy. Phys Biol 2018; 15:036008. [PMID: 29493532 DOI: 10.1088/1478-3975/aab31e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We proposed an effective kinetics scheme of photolysis of green fluorescent protein (GFP) observed in live cells with a commercial confocal fluorescence microscope. We investigated the photolysis of GFP-tagged heterochromatin protein, HP1β-GFP, in live nucleus with the pulse position modulation approach, which has several advantages over the classical pump-and-probe method. At the basis of the proposed scheme lies a process of photoswitching from the native fluorescence state to the intermediate fluorescence state, which has a lower fluorescence yield and recovers back to native state in the dark. This kinetics scheme includes four effective parameters (photoswitching, reverse switching, photodegradation rate constants, and relative brightness of the intermediate state) and covers the time scale from dozens of milliseconds to minutes of the experimental fluorescence kinetics. Additionally, the applicability of the scheme was demonstrated in the cases of continuous irradiation and the classical pump-and-probe approach using numerical calculations and analytical solutions. An interesting finding of experimental data analysis was that the overall photodegradation of GFP proceeds dominantly from the intermediate state, and demonstrated approximately the second-order reaction versus irradiation power. As a practical example, the proposed scheme elucidates the artifacts of fluorescence recovery after the photobleaching method, and allows us to propose some suggestions on how to diminish them.
Collapse
Affiliation(s)
- Yu I Glazachev
- Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian academy of Science, Novosibirsk 630090, Russia. Author to whom any correspondence should be addressed
| | | | | | | |
Collapse
|
34
|
Conyard J, Heisler IA, Chan Y, Bulman Page PC, Meech SR, Blancafort L. A new twist in the photophysics of the GFP chromophore: a volume-conserving molecular torsion couple. Chem Sci 2018; 9:1803-1812. [PMID: 29675225 PMCID: PMC5892128 DOI: 10.1039/c7sc04091a] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/30/2017] [Indexed: 01/19/2023] Open
Abstract
Dynamics of a nonplanar GFP chromophore are studied experimentally and theoretically. Coupled torsional motion is responsible for the ultrafast decay.
The simple structure of the chromophore of the green fluorescent protein (GFP), a phenol and an imidazolone ring linked by a methyne bridge, supports an exceptionally diverse range of excited state phenomena. Here we describe experimentally and theoretically the photochemistry of a novel sterically crowded nonplanar derivative of the GFP chromophore. It undergoes an excited state isomerization reaction accompanied by an exceptionally fast (sub 100 fs) excited state decay. The decay dynamics are essentially independent of solvent polarity and viscosity. Excited state structural dynamics are probed by high level quantum chemical calculations revealing that the fast decay is due to a conical intersection characterized by a twist of the rings and pyramidalization of the methyne bridge carbon. The intersection can be accessed without a barrier from the pre-twisted Franck–Condon structure, and the lack of viscosity dependence is due to the fact that the rings twist in the same direction, giving rise to a volume-conserving decay coordinate. Moreover, the rotation of the phenyl, methyl and imidazolone groups is coupled in the sterically crowded structure, with the methyl group translating the rotation of one ring to the next. As a consequence, the excited state dynamics can be viewed as a torsional couple, where the absorbed photon energy leads to conversion of the out-of-plane orientation from one ring to the other in a volume conserving fashion. A similar modification of the range of methyne dyes may provide a new family of devices for molecular machines, specifically torsional couples.
Collapse
Affiliation(s)
- Jamie Conyard
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , UK .
| | - Ismael A Heisler
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , UK .
| | - Yohan Chan
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , UK .
| | - Philip C Bulman Page
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , UK .
| | - Stephen R Meech
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , UK .
| | - Lluís Blancafort
- Institut de Química Computacional i Catàlisi , Departament de Química , Facultat de Ciències , Universitat de Girona , C/ M. A. Capmany 69 , 17003 Girona , Spain .
| |
Collapse
|
35
|
Ghosh A, Isbaner S, Veiga-Gutiérrez M, Gregor I, Enderlein J, Karedla N. Quantifying Microsecond Transition Times Using Fluorescence Lifetime Correlation Spectroscopy. J Phys Chem Lett 2017; 8:6022-6028. [PMID: 29183125 DOI: 10.1021/acs.jpclett.7b02707] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Many complex luminescent emitters such as fluorescent proteins exhibit multiple emitting states that result in rapid fluctuations of their excited-state lifetime. Here, we apply fluorescence lifetime correlation spectroscopy (FLCS) to resolve the photophysical state dynamics of the prototypical fluorescence protein enhanced green fluorescent protein (EGFP). We quantify the microsecond transition rates between its two fluorescent states, which have otherwise highly overlapping emission spectra. We relate these transitions to a room-temperature angstrom-scale rotational isomerism of an amino acid next to its fluorescent center. With this study, we demonstrate the power of FLCS for studying the rapid transition dynamics of a broad range of light-emitting systems with complex multistate photophysics, which cannot be easily done by other methods.
Collapse
Affiliation(s)
- Arindam Ghosh
- III. Institute of Physics, Georg August University , 37077 Göttingen, Germany
| | - Sebastian Isbaner
- III. Institute of Physics, Georg August University , 37077 Göttingen, Germany
| | | | - Ingo Gregor
- III. Institute of Physics, Georg August University , 37077 Göttingen, Germany
| | - Jörg Enderlein
- III. Institute of Physics, Georg August University , 37077 Göttingen, Germany
| | - Narain Karedla
- III. Institute of Physics, Georg August University , 37077 Göttingen, Germany
| |
Collapse
|
36
|
Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography. Nat Chem 2017; 10:31-37. [PMID: 29256511 DOI: 10.1038/nchem.2853] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 07/27/2017] [Indexed: 12/23/2022]
Abstract
Chromophores absorb light in photosensitive proteins and thereby initiate fundamental biological processes such as photosynthesis, vision and biofluorescence. An important goal in their understanding is the provision of detailed structural descriptions of the ultrafast photochemical events that they undergo, in particular of the excited states that connect chemistry to biological function. Here we report on the structures of two excited states in the reversibly photoswitchable fluorescent protein rsEGFP2. We populated the states through femtosecond illumination of rsEGFP2 in its non-fluorescent off state and observed their build-up (within less than one picosecond) and decay (on the several picosecond timescale). Using an X-ray free-electron laser, we performed picosecond time-resolved crystallography and show that the hydroxybenzylidene imidazolinone chromophore in one of the excited states assumes a near-canonical twisted configuration halfway between the trans and cis isomers. This is in line with excited-state quantum mechanics/molecular mechanics and classical molecular dynamics simulations. Our new understanding of the structure around the twisted chromophore enabled the design of a mutant that displays a twofold increase in its off-to-on photoswitching quantum yield.
Collapse
|
37
|
Li C, Tebo AG, Gautier A. Fluorogenic Labeling Strategies for Biological Imaging. Int J Mol Sci 2017; 18:ijms18071473. [PMID: 28698494 PMCID: PMC5535964 DOI: 10.3390/ijms18071473] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 12/27/2022] Open
Abstract
The spatiotemporal fluorescence imaging of biological processes requires effective tools to label intracellular biomolecules in living systems. This review presents a brief overview of recent labeling strategies that permits one to make protein and RNA strongly fluorescent using synthetic fluorogenic probes. Genetically encoded tags selectively binding the exogenously applied molecules ensure high labeling selectivity, while high imaging contrast is achieved using fluorogenic chromophores that are fluorescent only when bound to their cognate tag, and are otherwise dark. Beyond avoiding the need for removal of unbound synthetic dyes, these approaches allow the development of sophisticated imaging assays, and open exciting prospects for advanced imaging, particularly for multiplexed imaging and super-resolution microscopy.
Collapse
Affiliation(s)
- Chenge Li
- École Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Département de Chimie, PASTEUR, 24 rue Lhomond, 75005 Paris, France.
- Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris, France.
| | - Alison G Tebo
- École Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Département de Chimie, PASTEUR, 24 rue Lhomond, 75005 Paris, France.
- Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris, France.
| | - Arnaud Gautier
- École Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Département de Chimie, PASTEUR, 24 rue Lhomond, 75005 Paris, France.
- Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris, France.
| |
Collapse
|
38
|
Pirojsirikul T, Götz AW, Weare J, Walker RC, Kowalski K, Valiev M. Combined quantum-mechanical molecular mechanics calculations with NWChem and AMBER: Excited state properties of green fluorescent protein chromophore analogue in aqueous solution. J Comput Chem 2017; 38:1631-1639. [PMID: 28470855 DOI: 10.1002/jcc.24804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/19/2017] [Indexed: 11/07/2022]
Abstract
Combined quantum mechanical molecular mechanics (QM/MM) calculations have become a popular methodology for efficient and accurate description of large molecular systems. In this work we introduce our development of a QM/MM framework based on two well-known codes-NWChem and AMBER. As an initial application area we are focused on excited state properties of small molecules in an aqueous phase using an analogue of the green fluorescent protein (GFP) chromophore as a particular test case. Our approach incorporates high level coupled cluster theory for the analysis of excited states providing a reliable theoretical analysis of effects of an aqueous solvation environment on the photochemical properties of the GFP chromophore. Using a systematic approach, which involves comparison of gas phase and aqueous phase results for different protonation states and conformations, we resolve existing uncertainties regarding the theoretical interpretation of experimental data. We observe that the impact of aqueous environment on charged states generally results in blue shifts of the absorption spectra, but the magnitude of the effect is sensitive to both protonation state and conformation and can be rationalized based on charge movement into the area of higher/lower external electrostatic potentials. At neutral pH levels the experimentally observed absorption signal is most likely coming from the phenol protonated form. Our results also show that the high level electron correlated method is essential for a proper description of excited states of GFP. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Teerapong Pirojsirikul
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093
| | - John Weare
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093
| | - Ross C Walker
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093.,GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania, 19426
| | - Karol Kowalski
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P. O. Box 999, Richland, Washington, 99352
| | - Marat Valiev
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P. O. Box 999, Richland, Washington, 99352
| |
Collapse
|
39
|
Park JW, Shiozaki T. Analytical Derivative Coupling for Multistate CASPT2 Theory. J Chem Theory Comput 2017; 13:2561-2570. [DOI: 10.1021/acs.jctc.7b00018] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Toru Shiozaki
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
40
|
Kirk W, Allen T, Atanasova E, Wessels W, Yao J, Prendergast F. Photophysics of EGFP (E222H) Mutant, with Comparisons to Model Chromophores: Excited State pK’s, Progressions, Quenching and Exciton Interaction. J Fluoresc 2017; 27:895-919. [DOI: 10.1007/s10895-017-2025-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/02/2017] [Indexed: 11/30/2022]
|
41
|
Nienhaus K, Nienhaus GU. Chromophore photophysics and dynamics in fluorescent proteins of the GFP family. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:443001. [PMID: 27604321 DOI: 10.1088/0953-8984/28/44/443001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Proteins of the green fluorescent protein (GFP) family are indispensable for fluorescence imaging experiments in the life sciences, particularly of living specimens. Their essential role as genetically encoded fluorescence markers has motivated many researchers over the last 20 years to further advance and optimize these proteins by using protein engineering. Amino acids can be exchanged by site-specific mutagenesis, starting with naturally occurring proteins as templates. Optical properties of the fluorescent chromophore are strongly tuned by the surrounding protein environment, and a targeted modification of chromophore-protein interactions requires a profound knowledge of the underlying photophysics and photochemistry, which has by now been well established from a large number of structural and spectroscopic experiments and molecular-mechanical and quantum-mechanical computations on many variants of fluorescent proteins. Nevertheless, such rational engineering often does not meet with success and thus is complemented by random mutagenesis and selection based on the optical properties. In this topical review, we present an overview of the key structural and spectroscopic properties of fluorescent proteins. We address protein-chromophore interactions that govern ground state optical properties as well as processes occurring in the electronically excited state. Special emphasis is placed on photoactivation of fluorescent proteins. These light-induced reactions result in large structural changes that drastically alter the fluorescence properties of the protein, which enables some of the most exciting applications, including single particle tracking, pulse chase imaging and super-resolution imaging. We also present a few examples of fluorescent protein application in live-cell imaging experiments.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang Gaede-Straße 1, 76131 Karlsruhe, Germany
| | | |
Collapse
|
42
|
|
43
|
Acharya A, Bogdanov AM, Grigorenko BL, Bravaya KB, Nemukhin AV, Lukyanov KA, Krylov AI. Photoinduced Chemistry in Fluorescent Proteins: Curse or Blessing? Chem Rev 2016; 117:758-795. [PMID: 27754659 DOI: 10.1021/acs.chemrev.6b00238] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photoinduced reactions play an important role in the photocycle of fluorescent proteins from the green fluorescent protein (GFP) family. Among such processes are photoisomerization, photooxidation/photoreduction, breaking and making of covalent bonds, and excited-state proton transfer (ESPT). Many of these transformations are initiated by electron transfer (ET). The quantum yields of these processes vary significantly, from nearly 1 for ESPT to 10-4-10-6 for ET. Importantly, even when quantum yields are relatively small, at the conditions of repeated illumination the overall effect is significant. Depending on the task at hand, fluorescent protein photochemistry is regarded either as an asset facilitating new applications or as a nuisance leading to the loss of optical output. The phenomena arising due to phototransformations include (i) large Stokes shifts, (ii) photoconversions, photoactivation, and photoswitching, (iii) phototoxicity, (iv) blinking, (v) permanent bleaching, and (vi) formation of long-lived intermediates. The focus of this review is on the most recent experimental and theoretical work on photoinduced transformations in fluorescent proteins. We also provide an overview of the photophysics of fluorescent proteins, highlighting the interplay between photochemistry and other channels (fluorescence, radiationless relaxation, and intersystem crossing). The similarities and differences with photochemical processes in other biological systems and in dyes are also discussed.
Collapse
Affiliation(s)
- Atanu Acharya
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-0482, United States
| | - Alexey M Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Moscow, Russia.,Nizhny Novgorod State Medical Academy , Nizhny Novgorod, Russia
| | - Bella L Grigorenko
- Department of Chemistry, Lomonosov Moscow State University , Moscow, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences , Moscow, Russia
| | - Ksenia B Bravaya
- Department of Chemistry, Boston University , Boston, Massachusetts United States
| | - Alexander V Nemukhin
- Department of Chemistry, Lomonosov Moscow State University , Moscow, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences , Moscow, Russia
| | - Konstantin A Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Moscow, Russia.,Nizhny Novgorod State Medical Academy , Nizhny Novgorod, Russia
| | - Anna I Krylov
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-0482, United States
| |
Collapse
|
44
|
Park JW, Rhee YM. Electric Field Keeps Chromophore Planar and Produces High Yield Fluorescence in Green Fluorescent Protein. J Am Chem Soc 2016; 138:13619-13629. [PMID: 27662359 DOI: 10.1021/jacs.6b06833] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The green fluorescent protein and its designed variants fluoresce efficiently. Because the isolated chromophore is not fluorescent in a practical sense, it is apparent that the protein environment plays a crucial role in its efficiency. Because of various obstacles in studying excited state dynamics of complex systems, however, the detailed mechanism of this efficiency enhancement is not yet clearly elucidated. Here, by adopting excited state nonadiabatic molecular dynamics simulations together with an interpolated quantum chemical potential model of the chromophore, we find that the strong electric field from the protein matrix contributes dominantly to the motional restriction of the chromophore. The delay in twisting motion subsequently obstructs the nonradiative decay that competes with fluorescence, leading naturally to an enhancement in light-emitting efficiency. Surprisingly, steric constraints make only a minor contribution to these aspects. Through residue specific analyses, we identify a group of key residues that control the excited state behavior. Testing a series of mutant GFPs with different brightnesses also supports the view regarding the importance of protein electrostatics. Our findings may provide a useful guide toward designing new fluorescent chemical systems in the future.
Collapse
Affiliation(s)
- Jae Woo Park
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS) , Pohang 37673, Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH) , Pohang 37673, Korea
| | - Young Min Rhee
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS) , Pohang 37673, Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH) , Pohang 37673, Korea
| |
Collapse
|
45
|
Petrone A, Cimino P, Donati G, Hratchian HP, Frisch MJ, Rega N. On the Driving Force of the Excited-State Proton Shuttle in the Green Fluorescent Protein: A Time-Dependent Density Functional Theory (TD-DFT) Study of the Intrinsic Reaction Path. J Chem Theory Comput 2016; 12:4925-4933. [DOI: 10.1021/acs.jctc.6b00402] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alessio Petrone
- Dipartimento
di Scienze Chimiche, Università di Napoli “Federico II”, Complesso Universitario di M. S. Angelo, via Cintia, I-80126 Napoli, Italy
| | - Paola Cimino
- Dipartimento
di Scienze Farmaceutiche, Università di Salerno, via Ponte
don Melillo, I-84084 Fisciano, SA Italy
| | - Greta Donati
- Dipartimento
di Scienze Chimiche, Università di Napoli “Federico II”, Complesso Universitario di M. S. Angelo, via Cintia, I-80126 Napoli, Italy
| | - Hrant P. Hratchian
- School
of Natural Sciences, University of California, Merced, Merced, California 95343, United States
| | | | - Nadia Rega
- Dipartimento
di Scienze Chimiche, Università di Napoli “Federico II”, Complesso Universitario di M. S. Angelo, via Cintia, I-80126 Napoli, Italy
- Italian Institute
of Technology, IIT@CRIB Center for Advanced Biomaterials for Healthcare, Largo Barsanti e Matteucci, I-80125 Napoli, Italy
| |
Collapse
|
46
|
Mills JD, Ben-Nun M, Rollin K, Bromley MWJ, Li J, Hinde RJ, Winstead CL, Sheehy JA, Boatz JA, Langhoff PW. Atomic Spectral Methods for Ab Initio Molecular Electronic Energy Surfaces: Transitioning From Small-Molecule to Biomolecular-Suitable Approaches. J Phys Chem B 2016; 120:8321-37. [PMID: 27232159 DOI: 10.1021/acs.jpcb.6b02021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Continuing attention has addressed incorportation of the electronically dynamical attributes of biomolecules in the largely static first-generation molecular-mechanical force fields commonly employed in molecular-dynamics simulations. We describe here a universal quantum-mechanical approach to calculations of the electronic energy surfaces of both small molecules and large aggregates on a common basis which can include such electronic attributes, and which also seems well-suited to adaptation in ab initio molecular-dynamics applications. In contrast to the more familiar orbital-product-based methodologies employed in traditional small-molecule computational quantum chemistry, the present approach is based on an "ex-post-facto" method in which Hamiltonian matrices are evaluated prior to wave function antisymmetrization, implemented here in the support of a Hilbert space of orthonormal products of many-electron atomic spectral eigenstates familiar from the van der Waals theory of long-range interactions. The general theory in its various forms incorporates the early semiempirical atoms- and diatomics-in-molecules approaches of Moffitt, Ellison, Tully, Kuntz, and others in a comprehensive mathematical setting, and generalizes the developments of Eisenschitz, London, Claverie, and others addressing electron permutation symmetry adaptation issues, completing these early attempts to treat van der Waals and chemical forces on a common basis. Exact expressions are obtained for molecular Hamiltonian matrices and for associated energy eigenvalues as sums of separate atomic and interaction-energy terms, similar in this respect to the forms of classical force fields. The latter representation is seen to also provide a long-missing general definition of the energies of individual atoms and of their interactions within molecules and matter free from subjective additional constraints. A computer code suite is described for calculations of the many-electron atomic eigenspectra and the pairwise-atomic Hamiltonian matrices required for practical applications. These matrices can be retained as functions of scalar atomic-pair separations and employed in assembling aggregate Hamiltonian matrices, with Wigner rotation matrices providing analytical representations of their angular degrees of freedom. In this way, ab initio potential energy surfaces are obtained in the complete absence of repeated evaluations and transformations of the one- and two-electron integrals at different molecular geometries required in most ab inito molecular calculations, with large Hamiltonian matrix assembly simplified and explicit diagonalizations avoided employing partitioning and Brillouin-Wigner or Rayleigh-Schrödinger perturbation theory. Illustrative applications of the important components of the formalism, selected aspects of the scaling of the approach, and aspects of "on-the-fly" interfaces with Monte Carlo and molecular-dynamics methods are described in anticipation of subsequent applications to biomolecules and other large aggregates.
Collapse
Affiliation(s)
- Jeffrey D Mills
- Air Force Research Laboratory , 10 East Saturn Boulevard, Edwards AFB, California 93524-7680, United States
| | - Michal Ben-Nun
- Predictive Science, Inc. , 9990 Mesa Rim Road #170, San Diego, California 92121, United States
| | - Kyle Rollin
- Northrup Grumman Corporation , 1 Rancho Carmel Drive, San Diego, California 92128, United States
| | - Michael W J Bromley
- School of Mathematics and Physics, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Jiabo Li
- Accelrys Inc. , 10188 Telesis Court #100, San Diego, California 92121-4779, United States
| | - Robert J Hinde
- Department of Chemistry, University of Tennessee , Knoxville, Tennessee 37996-1600, United States
| | - Carl L Winstead
- A.A. Noyes Laboratory of Chemical Physics, California Institute of Technology , Pasadena, California 91125, United States
| | - Jeffrey A Sheehy
- NASA Headquarters , 300 E Street SW, Suite 5R30, Washington, DC 201546, United States
| | - Jerry A Boatz
- Air Force Research Laboratory , 10 East Saturn Boulevard, Edwards AFB, California 93524-7680, United States
| | - Peter W Langhoff
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, MS 0365, La Jolla, California 92093-0365, United States
| |
Collapse
|
47
|
Paolino M, Gueye M, Pieri E, Manathunga M, Fusi S, Cappelli A, Latterini L, Pannacci D, Filatov M, Léonard J, Olivucci M. Design, Synthesis, and Dynamics of a Green Fluorescent Protein Fluorophore Mimic with an Ultrafast Switching Function. J Am Chem Soc 2016; 138:9807-25. [DOI: 10.1021/jacs.5b10812] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Marco Paolino
- Dipartimento di Biotecnologie, Chimica
e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Moussa Gueye
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE, Université de Strasbourg, CNRS UMR 7504, Strasbourg, France
| | - Elisa Pieri
- Dipartimento di Biotecnologie, Chimica
e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Madushanka Manathunga
- Chemistry Department, Bowling Green State University, Bowling
Green, Ohio, United States
| | - Stefania Fusi
- Dipartimento di Biotecnologie, Chimica
e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Andrea Cappelli
- Dipartimento di Biotecnologie, Chimica
e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Loredana Latterini
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy
| | - Danilo Pannacci
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy
| | - Michael Filatov
- Department of Chemistry,
School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | - Jérémie Léonard
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE, Université de Strasbourg, CNRS UMR 7504, Strasbourg, France
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica
e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
- Chemistry Department, Bowling Green State University, Bowling
Green, Ohio, United States
- University of Strasbourg Institute for Advanced Studies, 5, allée du Général
Rouvillois F-67083 Strasbourg, France
| |
Collapse
|
48
|
Broquier M, Soorkia S, Dedonder-Lardeux C, Jouvet C, Theulé P, Grégoire G. Twisted Intramolecular Charge Transfer in Protonated Amino Pyridine. J Phys Chem A 2016; 120:3797-809. [DOI: 10.1021/acs.jpca.6b03510] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michel Broquier
- Institut
des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ.
Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
- Centre
Laser de l’Université Paris-Sud (CLUPS/LUMAT), Univ.
Paris-Sud, CNRS, IOGS, Université Paris-Saclay, F-91405 Orsay, France
| | - Satchin Soorkia
- Institut
des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ.
Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - Claude Dedonder-Lardeux
- CNRS, Aix-Marseille
Université, PIIM UMR 7365, Avenue
Escadrille Normandie-Niémen, 13397 Marseille Cedex 20, France
| | - Christophe Jouvet
- CNRS, Aix-Marseille
Université, PIIM UMR 7365, Avenue
Escadrille Normandie-Niémen, 13397 Marseille Cedex 20, France
| | - Patrice Theulé
- CNRS, Aix-Marseille
Université, PIIM UMR 7365, Avenue
Escadrille Normandie-Niémen, 13397 Marseille Cedex 20, France
| | - Gilles Grégoire
- Institut
des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ.
Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
- Centre
Laser de l’Université Paris-Sud (CLUPS/LUMAT), Univ.
Paris-Sud, CNRS, IOGS, Université Paris-Saclay, F-91405 Orsay, France
| |
Collapse
|
49
|
Bose S, Chakrabarty S, Ghosh D. Effect of Solvation on Electron Detachment and Excitation Energies of a Green Fluorescent Protein Chromophore Variant. J Phys Chem B 2016; 120:4410-20. [DOI: 10.1021/acs.jpcb.6b03723] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Samik Bose
- Physical
and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Suman Chakrabarty
- Physical
and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Debashree Ghosh
- Physical
and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
50
|
Lin H, Yuan JM. Stochastic dynamic study of optical transition properties of single GFP-like molecules. J Biol Phys 2016; 42:271-97. [PMID: 26841730 DOI: 10.1007/s10867-015-9407-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022] Open
Abstract
Due to high fluctuations and quantum uncertainty, the processes of single-molecules should be treated by stochastic methods. To study fluorescence time series and their statistical properties, we have applied two stochastic methods, one of which is an analytic method to study the off-time distributions of certain fluorescence transitions and the other is Gillespie's method of stochastic simulations. These methods have been applied to study the optical transition properties of two single-molecule systems, GFPmut2 and a Dronpa-like molecule, to yield results in approximate agreement with experimental observations on these systems. Rigorous oscillatory time series of GFPmut2 before it unfolds in the presence of denaturants have not been obtained based on the stochastic method used, but, on the other hand, the stochastic treatment puts constraints on the conditions under which such oscillatory behavior is possible. Furthermore, a sensitivity analysis is carried out on GFPmut2 to assess the effects of transition rates on the observables, such as fluorescence intensities.
Collapse
Affiliation(s)
- Hanbing Lin
- Department of Physics, Drexel University, Philadelphia, PA, 19104, USA
| | - Jian-Min Yuan
- Department of Physics, Drexel University, Philadelphia, PA, 19104, USA.
| |
Collapse
|