1
|
Lichauco C, Foss EJ, Gatbonton-Schwager T, Athow NF, Lofts B, Acob R, Taylor E, Marquez JJ, Lao U, Miles S, Bedalov A. Sir2 and Fun30 regulate ribosomal DNA replication timing via MCM helicase positioning and nucleosome occupancy. eLife 2025; 13:RP97438. [PMID: 39831552 PMCID: PMC11745493 DOI: 10.7554/elife.97438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In Saccharomyces cerevisiae, the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of SIR2, a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy. By developing a method that can distinguish activation of closely spaced MCM complexes, here we show that the displaced MCMs at rDNA origins have increased firing propensity compared to the nondisplaced MCMs. Furthermore, we found that both activation of the repositioned MCMs and low occupancy of the adjacent nucleosomes critically depend on the chromatin remodeling activity of FUN30. Our study elucidates the mechanism by which Sir2 delays replication timing, and it demonstrates, for the first time, that activation of a specific replication origin in vivo relies on the nucleosome context shaped by a single chromatin remodeler.
Collapse
Affiliation(s)
- Carmina Lichauco
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Eric J Foss
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Tonibelle Gatbonton-Schwager
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Nelson F Athow
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Brandon Lofts
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Robin Acob
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Erin Taylor
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - James J Marquez
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Uyen Lao
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Shawna Miles
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Antonio Bedalov
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
- Department of Biochemistry and Department of Medicine, University of WashingtonSeattleUnited States
| |
Collapse
|
2
|
Lichauco C, Foss EJ, Gatbonton-Schwager T, Athow NF, Lofts B, Acob R, Taylor E, Marquez JJ, Lao U, Miles S, Bedalov A. Sir2 and Fun30 regulate ribosomal DNA replication timing via MCM helicase positioning and nucleosome occupancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586113. [PMID: 38585982 PMCID: PMC10996493 DOI: 10.1101/2024.03.21.586113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well-known, yet the specific mechanisms underlying this link remain uncertain. In Saccharomyces cerevisiae, the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA arrays (rDNA). We have previously reported that in the absence of SIR2, a derepressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy. By developing a method that can distinguish activation of closely spaced MCM complexes, here we show that the displaced MCMs at rDNA origins have increased firing propensity compared to the nondisplaced MCMs. Furthermore, we found that both, activation of the repositioned MCMs and low occupancy of the adjacent nucleosomes critically depend on the chromatin remodeling activity of FUN30. Our study elucidates the mechanism by which Sir2 delays replication timing, and it demonstrates, for the first time, that activation of a specific replication origin in vivo relies on the nucleosome context shaped by a single chromatin remodeler.
Collapse
Affiliation(s)
- Carmina Lichauco
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Eric J. Foss
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Tonibelle Gatbonton-Schwager
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Nelson F. Athow
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Brandon Lofts
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Robin Acob
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Erin Taylor
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - James J. Marquez
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Uyen Lao
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Shawna Miles
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Antonio Bedalov
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Biochemistry and Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
3
|
Hoggard TA, Chang F, Perry KR, Subramanian S, Kenworthy J, Chueng J, Shor E, Hyland EM, Boeke JD, Weinreich M, Fox CA. Yeast heterochromatin regulators Sir2 and Sir3 act directly at euchromatic DNA replication origins. PLoS Genet 2018; 14:e1007418. [PMID: 29795547 PMCID: PMC5991416 DOI: 10.1371/journal.pgen.1007418] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/06/2018] [Accepted: 05/15/2018] [Indexed: 01/23/2023] Open
Abstract
Most active DNA replication origins are found within euchromatin, while origins within heterochromatin are often inactive or inhibited. In yeast, origin activity within heterochromatin is negatively controlled by the histone H4K16 deacetylase, Sir2, and at some heterochromatic loci also by the nucleosome binding protein, Sir3. The prevailing view has been that direct functions of Sir2 and Sir3 are confined to heterochromatin. However, growth defects in yeast mutants compromised for loading the MCM helicase, such as cdc6-4, are suppressed by deletion of either SIR2 or SIR3. While these and other observations indicate that SIR2,3 can have a negative impact on at least some euchromatic origins, the genomic scale of this effect was unknown. It was also unknown whether this suppression resulted from direct functions of Sir2,3 within euchromatin, or was an indirect effect of their previously established roles within heterochromatin. Using MCM ChIP-Seq, we show that a SIR2 deletion rescued MCM complex loading at ~80% of euchromatic origins in cdc6-4 cells. Therefore, Sir2 exhibited a pervasive effect at the majority of euchromatic origins. Using MNase-H4K16ac ChIP-Seq, we show that origin-adjacent nucleosomes were depleted for H4K16 acetylation in a SIR2-dependent manner in wild type (i.e. CDC6) cells. In addition, we present evidence that both Sir2 and Sir3 bound to nucleosomes adjacent to euchromatic origins. The relative levels of each of these molecular hallmarks of yeast heterochromatin–SIR2-dependent H4K16 hypoacetylation, Sir2, and Sir3 –correlated with how strongly a SIR2 deletion suppressed the MCM loading defect in cdc6-4 cells. Finally, a screen for histone H3 and H4 mutants that could suppress the cdc6-4 growth defect identified amino acids that map to a surface of the nucleosome important for Sir3 binding. We conclude that heterochromatin proteins directly modify the local chromatin environment of euchromatic DNA replication origins. When a cell divides, it must copy or “replicate” its DNA. DNA replication starts at chromosomal regions called origins when a collection of replication proteins gains local access to unwind the two DNA strands. Chromosomal DNA is packaged into a protein-DNA complex called chromatin and there are two major structurally and functionally distinct types. Euchromatin allows DNA replication proteins to access origin DNA, while heterochromatin inhibits their access. The prevalent view has been that the heterochromatin proteins required to inhibit origins are confined to heterochromatin. In this study, the conserved heterochromatin proteins, Sir2 and Sir3, were shown to both physically and functionally associate with the majority of origins in euchromatin. This observation raises important questions about the chromosomal targets of heterochromatin proteins, and how and why the majority of origins exist within a potentially repressive chromatin structure.
Collapse
Affiliation(s)
- Timothy A. Hoggard
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Madison, WI, United States of America
| | - FuJung Chang
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute, Grand Rapids, MI, United States of America
| | - Kelsey Rae Perry
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Madison, WI, United States of America
- Integrated Program in Biochemistry, School of Medicine and Public Health and College of Agricultural Sciences, University of Wisconsin, Madison, WI, United States of America
| | - Sandya Subramanian
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute, Grand Rapids, MI, United States of America
| | - Jessica Kenworthy
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute, Grand Rapids, MI, United States of America
| | - Julie Chueng
- Integrated Program in Biochemistry, School of Medicine and Public Health and College of Agricultural Sciences, University of Wisconsin, Madison, WI, United States of America
| | - Erika Shor
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Edel M. Hyland
- School of Biological Sciences, Medical Biology Center, Queen’s University, Belfast, United Kingdom
| | - Jef D. Boeke
- Department of Biochemistry and Molecular Pharmacology, Institute for Systems Genetics and NYU Langone Health, New York, NY, United States of America
| | - Michael Weinreich
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute, Grand Rapids, MI, United States of America
- * E-mail: (MW); (CAF)
| | - Catherine A. Fox
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Madison, WI, United States of America
- Integrated Program in Biochemistry, School of Medicine and Public Health and College of Agricultural Sciences, University of Wisconsin, Madison, WI, United States of America
- * E-mail: (MW); (CAF)
| |
Collapse
|
4
|
The Nuts and Bolts of Transcriptionally Silent Chromatin in Saccharomyces cerevisiae. Genetics 2017; 203:1563-99. [PMID: 27516616 DOI: 10.1534/genetics.112.145243] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/30/2016] [Indexed: 12/31/2022] Open
Abstract
Transcriptional silencing in Saccharomyces cerevisiae occurs at several genomic sites including the silent mating-type loci, telomeres, and the ribosomal DNA (rDNA) tandem array. Epigenetic silencing at each of these domains is characterized by the absence of nearly all histone modifications, including most prominently the lack of histone H4 lysine 16 acetylation. In all cases, silencing requires Sir2, a highly-conserved NAD(+)-dependent histone deacetylase. At locations other than the rDNA, silencing also requires additional Sir proteins, Sir1, Sir3, and Sir4 that together form a repressive heterochromatin-like structure termed silent chromatin. The mechanisms of silent chromatin establishment, maintenance, and inheritance have been investigated extensively over the last 25 years, and these studies have revealed numerous paradigms for transcriptional repression, chromatin organization, and epigenetic gene regulation. Studies of Sir2-dependent silencing at the rDNA have also contributed to understanding the mechanisms for maintaining the stability of repetitive DNA and regulating replicative cell aging. The goal of this comprehensive review is to distill a wide array of biochemical, molecular genetic, cell biological, and genomics studies down to the "nuts and bolts" of silent chromatin and the processes that yield transcriptional silencing.
Collapse
|
5
|
Abstract
Gene product molecule numbers fluctuate over time and between cells, confounding deterministic expectations. The molecular origins of this noise of gene expression remain unknown. Recent EM analysis of single PHO5 gene molecules of yeast indicated that promoter molecules stochastically assume alternative nucleosome configurations at steady state, including the fully nucleosomal and nucleosome-free configuration. Given that distinct configurations are unequally conducive to transcription, the nucleosomal variation of promoter molecules may constitute a source of gene expression noise. This notion, however, implies an untested conjecture, namely that the nucleosomal variation arises de novo or intrinsically (i.e., that it cannot be explained as the result of the promoter's deterministic response to variation in its molecular surroundings). Here, we show--by microscopically analyzing the nucleosome configurations of two juxtaposed physically linked PHO5 promoter copies--that the configurational variation, indeed, is intrinsically stochastic and thus, a cause of gene expression noise rather than its effect.
Collapse
|
6
|
Young TJ, Kirchmaier AL. Cell cycle regulation of silent chromatin formation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1819:303-312. [PMID: 24459732 DOI: 10.1016/j.bbagrm.2011.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Identical genes in two different cells can stably exist in alternate transcriptional states despite the dynamic changes that will occur to chromatin at that locus throughout the cell cycle. In mammals, this is achieved through epigenetic processes that regulate key developmental transitions and ensure stable patterns of gene expression during growth and differentiation. The budding yeast Saccharomyces cerevisiae utilizes silencing to control the expression state of genes encoding key regulatory factors for determining cell-type, ribosomal RNA levels and proper telomere function. Here, we review the composition of silent chromatin in S. cerevisiae, how silent chromatin is influenced by chromatin assembly and histone modifications and highlight several observations that have contributed to our understanding of the interplay between silent chromatin formation and stability and the cell cycle. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
|
7
|
Hamperl S, Brown CR, Garea AV, Perez-Fernandez J, Bruckmann A, Huber K, Wittner M, Babl V, Stoeckl U, Deutzmann R, Boeger H, Tschochner H, Milkereit P, Griesenbeck J. Compositional and structural analysis of selected chromosomal domains from Saccharomyces cerevisiae. Nucleic Acids Res 2013; 42:e2. [PMID: 24106087 PMCID: PMC3874202 DOI: 10.1093/nar/gkt891] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Chromatin is the template for replication and transcription in the eukaryotic nucleus, which needs to be defined in composition and structure before these processes can be fully understood. We report an isolation protocol for the targeted purification of specific genomic regions in their native chromatin context from Saccharomyces cerevisiae. Subdomains of the multicopy ribosomal DNA locus containing transcription units of RNA polymerases I, II or III or an autonomous replication sequence were independently purified in sufficient amounts and purity to analyze protein composition and histone modifications by mass spectrometry. We present and discuss the proteomic data sets obtained for chromatin in different functional states. The native chromatin was further amenable to electron microscopy analysis yielding information about nucleosome occupancy and positioning at the single-molecule level. We also provide evidence that chromatin from virtually every single copy genomic locus of interest can be purified and analyzed by this technique.
Collapse
Affiliation(s)
- Stephan Hamperl
- Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Lehrstuhl für Biochemie III, 93053 Regensburg, Germany and Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kueng S, Oppikofer M, Gasser SM. SIR proteins and the assembly of silent chromatin in budding yeast. Annu Rev Genet 2013; 47:275-306. [PMID: 24016189 DOI: 10.1146/annurev-genet-021313-173730] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Saccharomyces cerevisiae provides a well-studied model system for heritable silent chromatin in which a histone-binding protein complex [the SIR (silent information regulator) complex] represses gene transcription in a sequence-independent manner by spreading along nucleosomes, much like heterochromatin in higher eukaryotes. Recent advances in the biochemistry and structural biology of the SIR-chromatin system bring us much closer to a molecular understanding of yeast silent chromatin. Simultaneously, genome-wide approaches have shed light on the biological importance of this form of epigenetic repression. Here, we integrate genetic, structural, and cell biological data into an updated overview of yeast silent chromatin assembly.
Collapse
Affiliation(s)
- Stephanie Kueng
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | | | | |
Collapse
|
9
|
Gartenberg MR. Generation of DNA circles in yeast by inducible site-specific recombination. Methods Mol Biol 2011; 833:103-13. [PMID: 22183590 DOI: 10.1007/978-1-61779-477-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Site-specific recombinases have been harnessed for a variety of genetic manipulations involving the gain, loss, or rearrangement of genomic DNA in a variety of organisms. The enzymes have been further exploited in the model eukaryote Saccharomyces cerevisiae for mechanistic studies involving chromosomal context. In these cases, a chromosomal element of interest is converted into a DNA circle within living cells, thereby uncoupling the element from neighboring regulatory sequences, obligatory chromosomal events, and other context-dependent effects that could alter or mask intrinsic functions of the element. In this chapter, I discuss general considerations in using site-specific recombination to create DNA circles in yeast and the specific application of the R recombinase.
Collapse
Affiliation(s)
- Marc R Gartenberg
- Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
10
|
Brown CR, Mao C, Falkovskaia E, Law JK, Boeger H. In vivo role for the chromatin-remodeling enzyme SWI/SNF in the removal of promoter nucleosomes by disassembly rather than sliding. J Biol Chem 2011; 286:40556-65. [PMID: 21979950 DOI: 10.1074/jbc.m111.289918] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Analysis of in vivo chromatin remodeling at the PHO5 promoter of yeast led to the conclusion that remodeling removes nucleosomes from the promoter by disassembly rather than sliding away from the promoter. The catalytic activities required for nucleosome disassembly remain unknown. Transcriptional activation of the yeast PHO8 gene was found to depend on the chromatin-remodeling complex SWI/SNF, whereas activation of PHO5 was not. Here, we show that PHO8 gene circles formed in vivo lose nucleosomes upon PHO8 induction, indicative of nucleosome removal by disassembly. Our quantitative analysis of expression noise and chromatin-remodeling data indicates that the dynamics of continual nucleosome removal and reformation at the activated promoters of PHO5 and PHO8 are closely similar. In contrast to PHO5, however, activator-stimulated transcription of PHO8 appears to be limited mostly to the acceleration of promoter nucleosome disassembly with little or no acceleration of promoter transitions following nucleosome disassembly, accounting for the markedly lower expression level of PHO8.
Collapse
Affiliation(s)
- Christopher R Brown
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | | | | | | | | |
Collapse
|
11
|
Chakraborty SA, Simpson RT, Grigoryev SA. A single heterochromatin boundary element imposes position-independent antisilencing activity in Saccharomyces cerevisiae minichromosomes. PLoS One 2011; 6:e24835. [PMID: 21949764 PMCID: PMC3174977 DOI: 10.1371/journal.pone.0024835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 08/22/2011] [Indexed: 11/19/2022] Open
Abstract
Chromatin boundary elements serve as cis-acting regulatory DNA signals required to protect genes from the effects of the neighboring heterochromatin. In the yeast genome, boundary elements act by establishing barriers for heterochromatin spreading and are sufficient to protect a reporter gene from transcriptional silencing when inserted between the silencer and the reporter gene. Here we dissected functional topography of silencers and boundary elements within circular minichromosomes in Saccharomyces cerevisiae. We found that both HML-E and HML-I silencers can efficiently repress the URA3 reporter on a multi-copy yeast minichromosome and we further showed that two distinct heterochromatin boundary elements STAR and TEF2-UASrpg are able to limit the heterochromatin spreading in circular minichromosomes. In surprising contrast to what had been observed in the yeast genome, we found that in minichromosomes the heterochromatin boundary elements inhibit silencing of the reporter gene even when just one boundary element is positioned at the distal end of the URA3 reporter or upstream of the silencer elements. Thus the STAR and TEF2-UASrpg boundary elements inhibit chromatin silencing through an antisilencing activity independently of their position or orientation in S. cerevisiae minichromosomes rather than by creating a position-specific barrier as seen in the genome. We propose that the circular DNA topology facilitates interactions between the boundary and silencing elements in the minichromosomes.
Collapse
Affiliation(s)
- Sangita A. Chakraborty
- Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
- * E-mail: (SAC); (SAG)
| | - Robert T. Simpson
- Department of Biochemistry and Molecular Biology, Eberly College of Science, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sergei A. Grigoryev
- Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
- * E-mail: (SAC); (SAG)
| |
Collapse
|
12
|
Mekhail K, Moazed D. The nuclear envelope in genome organization, expression and stability. Nat Rev Mol Cell Biol 2010; 11:317-28. [PMID: 20414256 DOI: 10.1038/nrm2894] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Non-random positioning of chromosomal domains relative to each other and to nuclear landmarks is a common feature of eukaryotic genomes. In particular, the distribution of DNA loci relative to the nuclear periphery has been linked to both transcriptional activation and repression. Nuclear pores and other integral membrane protein complexes are key players in the dynamic organization of the genome in the nucleus, and recent advances in our understanding of the molecular networks that organize genomes at the nuclear periphery point to a further role for non-random locus positioning in DNA repair, recombination and stability.
Collapse
Affiliation(s)
- Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada.
| | | |
Collapse
|
13
|
Abstract
Gene regulation involves long-range communication between silencers, enhancers, and promoters. In Saccharomyces cerevisiae, silencers flank transcriptionally repressed genes to mediate regional silencing. Silencers recruit the Sir proteins, which then spread along chromatin to encompass the entire silenced domain. In this report we have employed a boundary trap assay, an enhancer activity assay, chromatin immunoprecipitations, and chromosome conformation capture analyses to demonstrate that the two HMR silencer elements are in close proximity and functionally communicate with one another in vivo. We further show that silencing is necessary for these long-range interactions, and we present models for Sir-mediated silencing based upon these results.
Collapse
|
14
|
Guillebault D, Cotterill S. The Drosophila Df31 Protein Interacts with Histone H3 Tails and Promotes Chromatin Bridging In vitro. J Mol Biol 2007; 373:903-12. [PMID: 17889901 DOI: 10.1016/j.jmb.2007.07.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 07/11/2007] [Accepted: 07/24/2007] [Indexed: 10/23/2022]
Abstract
Df31 is a small hydrophilic protein from Drosophila melanogaster that can act as a histone chaperone in vitro. The protein is also detected as an integral component of chromatin, present at approximately the same level as histone H1. We have developed a simple assay to measure protein binding to oligonucleosomes and used it to characterise the DF31-oligonucleosome interaction. DF31 bound to chromatin in vitro at a level comparable to that observed in vivo. The DF31-chromatin interaction required the presence of core histone tails but binding was independent of the presence of H1 in the chromatin. Multiple regions of DF31 contributed to the interaction. Df31-chromatin binding still occurred on chromatin containing only H3/4, and cross-linking experiments showed that Df31 made intimate contact with H3, suggesting that this might be the primary contact site. Finally, using immobilised chromatin templates, we showed that DF31 promoted interstrand bridging between two independent oligonucleosome chains. These results provide strong evidence for a structural role of DF31 in chromatin folding and give an indication of the mechanism involved.
Collapse
Affiliation(s)
- Delphine Guillebault
- Department of Basic Medical Sciences, St. Georges University London, London SW17 0RE, UK
| | | |
Collapse
|
15
|
Boeger H, Bushnell DA, Davis R, Griesenbeck J, Lorch Y, Strattan JS, Westover KD, Kornberg RD. Structural basis of eukaryotic gene transcription. FEBS Lett 2005; 579:899-903. [PMID: 15680971 DOI: 10.1016/j.febslet.2004.11.027] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Accepted: 11/02/2004] [Indexed: 10/26/2022]
Abstract
An RNA polymerase II promoter has been isolated in transcriptionally activated and repressed states. Topological and nuclease digestion analyses have revealed a dynamic equilibrium between nucleosome removal and reassembly upon transcriptional activation, and have further shown that nucleosomes are removed by eviction of histone octamers rather than by sliding. The promoter, once exposed, assembles with RNA polymerase II, general transcription factors, and Mediator in a approximately 3 MDa transcription initiation complex. X-ray crystallography has revealed the structure of RNA polymerase II, in the act of transcription, at atomic resolution. Extension of this analysis has shown how nucleotides undergo selection, polymerization, and eventual release from the transcribing complex. X-ray and electron crystallography have led to a picture of the entire transcription initiation complex, elucidating the mechanisms of promoter recognition, DNA unwinding, abortive initiation, and promoter escape.
Collapse
Affiliation(s)
- Hinrich Boeger
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Rusche LN, Kirchmaier AL, Rine J. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 2003; 72:481-516. [PMID: 12676793 DOI: 10.1146/annurev.biochem.72.121801.161547] [Citation(s) in RCA: 597] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genomes are organized into active regions known as euchromatin and inactive regions known as heterochromatin, or silenced chromatin. This review describes contemporary knowledge and models for how silenced chromatin in Saccharomyces cerevisiae forms, functions, and is inherited. In S. cerevisiae, Sir proteins are the key structural components of silenced chromatin. Sir proteins interact first with silencers, which dictate which regions are silenced, and then with histone tails in nucleosomes as the Sir proteins spread from silencers along chromosomes. Importantly, the spreading of silenced chromatin requires the histone deacetylase activity of Sir2p. This requirement leads to a general model for the spreading and inheritance of silenced chromatin or other special chromatin states. Such chromatin domains are marked by modifications of the nucleosomes or DNA, and this mark is able to recruit an enzyme that makes further marks. Thus, among different organisms, multiple forms of repressive chromatin can be formed using similar strategies but completely different proteins. We also describe emerging evidence that mutations that cause global changes in the modification of histones can alter the balance between euchromatin and silenced chromatin within a cell.
Collapse
Affiliation(s)
- Laura N Rusche
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720-3202, USA.
| | | | | |
Collapse
|
17
|
Boeger H, Griesenbeck J, Strattan JS, Kornberg RD. Nucleosomes unfold completely at a transcriptionally active promoter. Mol Cell 2003; 11:1587-98. [PMID: 12820971 DOI: 10.1016/s1097-2765(03)00231-4] [Citation(s) in RCA: 319] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
It has long been known that promoter DNA is converted to a nuclease-sensitive state upon transcriptional activation. Recent findings have raised the possibility that this conversion reflects only a partial unfolding or other perturbation of nucleosomal structure, rather than the loss of nucleosomes. We report topological, sedimentation, nuclease digestion, and ChIP analyses, which demonstrate the complete unfolding of nucleosomes at the transcriptionally active PHO5 promoter of the yeast Saccharomyces cerevisiae. Although nucleosome loss occurs at all promoter sites, it is not complete at any of them, suggesting the existence of an equilibrium between the removal of nucleosomes and their reformation.
Collapse
Affiliation(s)
- Hinrich Boeger
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
18
|
JIN WEI, LI ZONG, FANG QING, ALTOSAAR ILLIMAR, LIU LI, SONG YUN. Fluorescence in situ hybridization analysis of alien genes in Agrobacterium-mediated Cry1A(b)-transformed rice. ANNALS OF BOTANY 2002; 90:31-6. [PMID: 12125770 PMCID: PMC4233863 DOI: 10.1093/aob/mcf160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The transgene in Agrobacterium-mediated Cry1A(b)-transgenic rice plants has been detected and its chromosomal location determined by fluorescence in situ hybridization (FISH). Eight of the nine transgenic lines tested showed hybridization signals. Signals were located on regions of the chromosome in which fraction length (FL) values varied from 26.2 (near the centromere) to 95.2 (distal regions). No signal was found on regions where the fraction length was less than 26.2, while six of the nine signals detected were located on regions with FL values of 75.3 or over. This demonstrates that Agrobacterium-mediated genes can integrate into multiple sites distributed in different parts of the chromosome, but that distal regions are the preferred sites and regions near the centromeres are colder for T-DNA integration. The donor DNA of the transformation was divided into two parts, labelled separately as probes for two-colour FISH. Results show that the transformed DNA sequences remained linked in the recipient genome. The relationship between integration position and transgene silencing, known as the 'position effect', is discussed.
Collapse
Affiliation(s)
- WEI‐WEI JIN
- Key Lab of MOE for Plant Developmental Biology, Wuhan University, Wuhan 430072, P. R. China
| | - ZONG‐YUN LI
- Key Lab of MOE for Plant Developmental Biology, Wuhan University, Wuhan 430072, P. R. China
| | - QING FANG
- Institute of Biotechnology, Hainan University, Haikou 570228, P. R. China
| | - ILLIMAR ALTOSAAR
- Department of Chemistry, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - LI‐HUA LIU
- Key Lab of MOE for Plant Developmental Biology, Wuhan University, Wuhan 430072, P. R. China
| | - YUN‐CHUN SONG
- Key Lab of MOE for Plant Developmental Biology, Wuhan University, Wuhan 430072, P. R. China
- * For correspondence. E‐mail
| |
Collapse
|
19
|
Jin W, Li Z, Ning S, Ling D, Li L, Song Y. FISH analysis of the integration patterns in transgenic rice co-transformed by microprojectile bombardment. CHINESE SCIENCE BULLETIN-CHINESE 2001. [DOI: 10.1007/bf02901907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Abstract
The linear array of nucleosomes that comprises the primary structure of chromatin is folded and condensed to varying degrees in nuclei and chromosomes forming 'higher order structures'. We discuss the recent findings from novel experimental approaches that have yielded significant new information on the different hierarchical levels of chromatin folding and their functional significance.
Collapse
Affiliation(s)
- C L Woodcock
- Biology Department, University of Massachusetts, Amherst 01003, USA.
| | | |
Collapse
|
21
|
Abstract
Silencing of the cryptic mating-type locus HMR requires recognition of a small DNA sequence element, the HMR-E silencer, by the Sir1p, one of four Sir proteins required for the assembly of silenced chromatin domains in Saccharomyces cerevisiae. The Sir1p recognizes the silencer through interactions with the origin recognition complex (ORC), a protein complex that binds the silencer DNA directly. Sir1p was physically associated with HMR in chromatin, and this association required a Sir1p-ORC interaction, suggesting that it reflected the Sir1p silencer-recognition function required for silencing. Sir1p was not associated with nonsilencer replication origins that bind the ORC, indicating that a Sir1p-ORC interaction is confined to silencers. Significantly, the other SIR genes were required for Sir1p's association with HMR. Thus, multiple protein contacts required for and unique to silent chromatin may confine a Sir1p-ORC interaction to silencers. The Sir1p was present at extremely low concentrations in yeast cells yet was associated with HMR at all stages of the cell cycle examined. These data provide insights into the mechanisms that establish and restrict the assembly of silenced chromatin to only a few discrete chromosomal domains.
Collapse
Affiliation(s)
- K A Gardner
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
22
|
Enomoto S, Johnston SD, Berman J. Identification of a novel allele of SIR3 defective in the maintenance, but not the establishment, of silencing in Saccharomyces cerevisiae. Genetics 2000; 155:523-38. [PMID: 10835378 PMCID: PMC1461117 DOI: 10.1093/genetics/155.2.523] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using a screen for genes that affect telomere function, we isolated sir3-P898R, an allele of SIR3 that reduces telomeric silencing yet does not affect mating. While sir3-P898R mutations cause no detectable mating defect in quantitative assays, they result in synergistic mating defects in combination with mutations such as sir1 that affect the establishment of silencing. In contrast, sir3-P898R in combination with a cac1 mutation, which affects the maintenance of silencing, does not result in synergistic mating defects. MATa sir3-P898R mutants form shmoo clusters in response to alpha-factor, and sir3-P898R strains are capable of establishing silencing at a previously derepressed HML locus with kinetics like that of wild-type SIR3 strains. These results imply that Sir3-P898Rp is defective in the maintenance, but not the establishment of silencing. In addition, overexpression of a C-terminal fragment of Sir3-P898R results in a dominant nonmating phenotype: HM silencing is completely lost at both HML and HMR. Furthermore, HM silencing is most vulnerable to disruption by the Sir3-P898R C terminus immediately after S-phase, the time when new silent chromatin is assembled onto newly replicated DNA.
Collapse
Affiliation(s)
- S Enomoto
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul 55108, USA
| | | | | |
Collapse
|
23
|
Gartenberg MR. The Sir proteins of Saccharomyces cerevisiae: mediators of transcriptional silencing and much more. Curr Opin Microbiol 2000; 3:132-7. [PMID: 10744999 DOI: 10.1016/s1369-5274(00)00064-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The Sir2, Sir3, and Sir4 proteins of the yeast Saccharomyces cerevisiae elicit transcriptional silencing by forming repressive chromatin structures that are confined to specific chromosomal domains. Recent discoveries establish new and unexpected roles for the proteins in seemingly unrelated arenas of chromosome biology, including double-strand break repair, structure and function of the nucleolus, aging, cell cycle regulation, and checkpoint control.
Collapse
Affiliation(s)
- M R Gartenberg
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
24
|
Cheng TH, Gartenberg MR. Yeast heterochromatin is a dynamic structure that requires silencers continuously. Genes Dev 2000. [DOI: 10.1101/gad.14.4.452] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transcriptional silencing of the HM loci in yeast requirescis-acting elements, termed silencers, that function during S-phase passage to establish the silent state. To study the role of the regulatory elements in maintenance of repression, site-specific recombination was used to uncouple preassembled silent chromatin fragments from silencers. DNA rings excised from HMR were initially silent but ultimately reactivated, even in G1- or G2/M-arrested cells. In contrast, DNA rings bearing HML-derived sequence were stably repressed due to the presence of a protosilencing element. These data show that silencers (or protosilencers) are required continuously for maintenance of silent chromatin. Reactivation of unstably repressed rings was blocked by overexpression of silencing proteins Sir3p and Sir4p, and chromatin immunoprecipitation studies showed that overexpressed Sir3p was incorporated into silent chromatin. Importantly, the protein was incorporated even when expressed outside of S phase, during G1 arrest. That silencing factors can associate with and stabilize preassembled silent chromatin in non-S-phase cells demonstrates that heterochromatin in yeast is dynamic.
Collapse
|
25
|
Cheng TH, Gartenberg MR. Yeast heterochromatin is a dynamic structure that requires silencers continuously. Genes Dev 2000; 14:452-63. [PMID: 10691737 PMCID: PMC316382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Transcriptional silencing of the HM loci in yeast requires cis-acting elements, termed silencers, that function during S-phase passage to establish the silent state. To study the role of the regulatory elements in maintenance of repression, site-specific recombination was used to uncouple preassembled silent chromatin fragments from silencers. DNA rings excised from HMR were initially silent but ultimately reactivated, even in G(1)- or G(2)/M-arrested cells. In contrast, DNA rings bearing HML-derived sequence were stably repressed due to the presence of a protosilencing element. These data show that silencers (or protosilencers) are required continuously for maintenance of silent chromatin. Reactivation of unstably repressed rings was blocked by overexpression of silencing proteins Sir3p and Sir4p, and chromatin immunoprecipitation studies showed that overexpressed Sir3p was incorporated into silent chromatin. Importantly, the protein was incorporated even when expressed outside of S phase, during G(1) arrest. That silencing factors can associate with and stabilize preassembled silent chromatin in non-S-phase cells demonstrates that heterochromatin in yeast is dynamic.
Collapse
Affiliation(s)
- T H Cheng
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854 USA
| | | |
Collapse
|
26
|
Park Y, Lustig AJ. Telomere structure regulates the heritability of repressed subtelomeric chromatin in Saccharomyces cerevisiae. Genetics 2000; 154:587-98. [PMID: 10655213 PMCID: PMC1460967 DOI: 10.1093/genetics/154.2.587] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Telomeres, the protein-DNA structures present at the termini of linear chromosomes, are capable of conferring a reversible repression of Pol II- and Pol III-transcribed genes positioned in adjacent subtelomeric regions. This phenomenon, termed telomeric silencing, is likely to be the consequence of a more global telomere position effect at the level of chromatin structure. To understand the role of telomere structure in this position effect, we have developed an assay to distinguish between the heritability of transcriptionally repressed and derepressed states in yeast. We have previously demonstrated that an elongated telomeric tract leads to hyperrepression of telomere-adjacent genes. We show here that the predominant effect of elongated telomeres is to increase the inheritance of the repressed state in cis. Interestingly, the presence of elongated telomeres overcomes the partial requirement of yCAF-1 in silencing. We propose that the formation of a specific telomeric structure is necessary for the heritability of repressed subtelomeric chromatin.
Collapse
Affiliation(s)
- Y Park
- Department of Biochemistry, Tulane University Medical Center, New Orleans, Louisiana 70112, USA
| | | |
Collapse
|