1
|
Birnie-Gauvin K, Lennox RJ, Guglielmo CG, Teffer AK, Crossin GT, Norris DR, Aarestrup K, Cooke SJ. The Value of Experimental Approaches in Migration Biology. Physiol Biochem Zool 2020; 93:210-226. [DOI: 10.1086/708455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
2
|
Abstract
The article presents the findings of a study investigating the effects of storing Jonagold apples for six weeks in a condition in which the vertical component of the geomagnetic field has been eliminated (near null GMF) and in control conditions representing those applied in traditional storage (i.e., in the local geomagnetic field (local GMF)). Analyses of the fruit were performed before the start of and three times during the experiment (i.e., following four, five and six weeks in storage). The contents of simple sugars were measured using the HPLC (high performance liquid chromatography) method; refractometry was applied to identify total extract; thermogravimetry was used to measure the water content, volatile substances and total ash; calorific value and intensity of respiration were examined by measuring CO2 emissions. Significant differences were found between the apples stored in the experimental and under control conditions, showing an advantage of storage in a condition with the vertical component of the geomagnetic field removed. Statistically significant differences were mainly identified in the speed of starch conversion into simple sugars, as well as the intensity of respiration and the appearance of the two groups of apples. Storage of fruit in a compensated geomagnetic field proved to be an effective method permitting an extended duration of storage without significant deterioration of the physicochemical and organoleptic properties of apples.
Collapse
|
3
|
Gkanias E, Risse B, Mangan M, Webb B. From skylight input to behavioural output: A computational model of the insect polarised light compass. PLoS Comput Biol 2019; 15:e1007123. [PMID: 31318859 PMCID: PMC6638774 DOI: 10.1371/journal.pcbi.1007123] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/22/2019] [Indexed: 01/30/2023] Open
Abstract
Many insects navigate by integrating the distances and directions travelled on an outward path, allowing direct return to the starting point. Fundamental to the reliability of this process is the use of a neural compass based on external celestial cues. Here we examine how such compass information could be reliably computed by the insect brain, given realistic constraints on the sky polarisation pattern and the insect eye sensor array. By processing the degree of polarisation in different directions for different parts of the sky, our model can directly estimate the solar azimuth and also infer the confidence of the estimate. We introduce a method to correct for tilting of the sensor array, as might be caused by travel over uneven terrain. We also show that the confidence can be used to approximate the change in sun position over time, allowing the compass to remain fixed with respect to 'true north' during long excursions. We demonstrate that the compass is robust to disturbances and can be effectively used as input to an existing neural model of insect path integration. We discuss the plausibility of our model to be mapped to known neural circuits, and to be implemented for robot navigation.
Collapse
Affiliation(s)
- Evripidis Gkanias
- School of Informatics, The University of Edinburgh, Edinburgh, United Kingdom
| | - Benjamin Risse
- Faculty of Mathematics and Computer Science, University of Münster, Münster, Germany
| | - Michael Mangan
- Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
| | - Barbara Webb
- School of Informatics, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Effect of regional wind circulation and meteorological factors on long-range migration of mustard aphids over indo-gangetic plain. Sci Rep 2019; 9:5626. [PMID: 30948773 PMCID: PMC6449332 DOI: 10.1038/s41598-019-42151-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/21/2019] [Indexed: 11/08/2022] Open
Abstract
Mustard aphids are a serious problem for Brassica oilseed in India causing up to 90% of the crop damage. It was hypothesized that Aphids migrate into the Indo Gangetic plain (IGP) from hilly regions of every year. Exact source and migration pattern of this pest is unknown till date. During their long range migration they infested various places over IGP, which fall on their way of migration. The wind, blown from the hilly regions helps aphids to migrate. Meteorological parameters play a crucial role in this migration of aphids. In this study, we have done the 24 hours air-mass backward trajectory at 100 m above ground level (agl) to detect the source regions of mustard aphids. We have found that mainly Western Himalayan hilly regions act as the source of mustard aphids for IGPs. The dependence upon the micro-meteorological parameters and population dynamics are analyzed and discussed elaborately in this work. In this study, we have proposed the 'Hop and Fly' behavior of mustard aphid and further discussed how this migrating behavior could help us to reduce the yield loss of Brassica.
Collapse
|
5
|
Lambinet V, Hayden ME, Reigl K, Gomis S, Gries G. Linking magnetite in the abdomen of honey bees to a magnetoreceptive function. Proc Biol Sci 2018; 284:rspb.2016.2873. [PMID: 28330921 PMCID: PMC5378088 DOI: 10.1098/rspb.2016.2873] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/27/2017] [Indexed: 01/21/2023] Open
Abstract
Previous studies of magnetoreception in honey bees, Apis mellifera, focused on the identification of magnetic material, its formation, the location of the receptor and potential underlying sensory mechanisms, but never directly linked magnetic material to a magnetoreceptive function. In our study, we demonstrate that ferromagnetic material consistent with magnetite plays an integral role in the bees' magnetoreceptor. Subjecting lyophilized and pelletized bee tagmata to analyses by a superconducting quantum interference device generated a distinct hysteresis loop for the abdomen but not for the thorax or the head of bees, indicating the presence of ferromagnetic material in the bee abdomen. Magnetic remanence of abdomen pellets produced from bees that were, or were not, exposed to the 2.2-kOe field of a magnet while alive differed, indicating that magnet exposure altered the magnetization of this magnetite in live bees. In behavioural two-choice field experiments, bees briefly exposed to the same magnet, but not sham-treated control bees, failed to sense a custom-generated magnetic anomaly, indicating that magnet exposure had rendered the bees' magnetoreceptor dysfunctional. Our data support the conclusion that honey bees possess a magnetite-based magnetoreceptor located in the abdomen.
Collapse
Affiliation(s)
- Veronika Lambinet
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Michael E Hayden
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Katharina Reigl
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Surath Gomis
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
6
|
Xu C, Wei S, Lu Y, Zhang Y, Chen C, Song T. Removal of the local geomagnetic field affects reproductive growth inArabidopsis. Bioelectromagnetics 2013; 34:437-42. [DOI: 10.1002/bem.21788] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 02/07/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Chunxiao Xu
- Beijing Key Laboratory of Bioelectromagnetism; Institute of Electrical Engineering; Chinese Academy of Sciences; Beijing; P.R.; China
| | - Shufeng Wei
- Beijing Key Laboratory of Bioelectromagnetism; Institute of Electrical Engineering; Chinese Academy of Sciences; Beijing; P.R.; China
| | - Yan Lu
- Beijing Key Laboratory of Bioelectromagnetism; Institute of Electrical Engineering; Chinese Academy of Sciences; Beijing; P.R.; China
| | - Yuxia Zhang
- Beijing Key Laboratory of Bioelectromagnetism; Institute of Electrical Engineering; Chinese Academy of Sciences; Beijing; P.R.; China
| | - Chuanfang Chen
- Beijing Key Laboratory of Bioelectromagnetism; Institute of Electrical Engineering; Chinese Academy of Sciences; Beijing; P.R.; China
| | - Tao Song
- Beijing Key Laboratory of Bioelectromagnetism; Institute of Electrical Engineering; Chinese Academy of Sciences; Beijing; P.R.; China
| |
Collapse
|
7
|
Savić T, Janać B, Todorović D, Prolić Z. The embryonic and post-embryonic development in two Drosophila species exposed to the static magnetic field of 60 mT. Electromagn Biol Med 2011; 30:108-14. [DOI: 10.3109/15368378.2011.566780] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Hashizume H, Dept. of Computer Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan, Mutoh A, Kato S, Kunitachi T, Itoh H, Daido Institute of Technology, 10-3 Takiharu-cho, Minami-ku, Nagoya, Aichi 457-8530, Japan. Emergence of Cross-Generational Migration Behavior in Multiagent Simulation. JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS 2009. [DOI: 10.20965/jaciii.2009.p0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We describe an artificial ecosystem consisting of five areas and evolving artificial creatures (called agents). The ecosystem is for an analysis of cross-generational migrations of the monarch butterfly. The monarch butterfly is famous for its migration. We report simulations on the emergence of migration behavior pertaining to the monarch butterfly. The area has two kinds of environmental changes: long-term and short-term changes. We focus on temperature as an environmental parameter. Under long-term change, temperature is gradually rising, and under short-term change temperature changes periodically as same as seasonal change. We put agents on the areas. The agent has two genetic components: an environmental adaptation scale and an action decision table. These components represent the physical features of the agent and select an action on the basis of sensory information, respectively. The agent also has a temperature sensor that functions with its environmental adaptation scale. It enables the agent to adapt dynamic temperature changes and to evolve to obtain optimal behaviors. With the ecosystem, we conduct one experiment. The result was that we observed that the range of migration expanded as the temperature rose. Also, we report the result of migration patterns obtained by the agents. These results show that the biology of the monarch butterfly is well modeled by the ecosystem and our evolutionary method.
Collapse
|
9
|
Tenebrio beetles use magnetic inclination compass. Naturwissenschaften 2008; 95:761-5. [PMID: 18404256 DOI: 10.1007/s00114-008-0377-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 03/13/2008] [Accepted: 03/16/2008] [Indexed: 10/22/2022]
Abstract
Animals that guide directions of their locomotion or their migration routes by the lines of the geomagnetic field use either polarity or inclination compasses to determine the field polarity (the north or south direction). Distinguishing the two compass types is a guideline for estimation of the molecular principle of reception and has been achieved for a number of animal groups, with the exception of insects. A standard diagnostic method to distinguish a compass type is based on reversing the vertical component of the geomagnetic field, which leads to the opposite reactions of animals with two different compass types. In the present study, adults of the mealworm beetle Tenebrio molitor were tested by means of a two-step laboratory test of magnetoreception. Beetles that were initially trained to memorize the magnetic position of the light source preferred, during the subsequent test, this same direction, pursuant geomagnetic cues only. In the following step, the vertical component was reversed between the training and the test. The beetles significantly turned their preferred direction by 180 degrees. Our results brought until then unknown original findings that insects, represented here by the T. molitor species, use-in contrast to another previously researched Arthropod, spiny lobster-the inclination compass.
Collapse
|
10
|
Vácha M. Laboratory behavioural assay of insect magnetoreception: magnetosensitivity of Periplaneta americana. ACTA ACUST UNITED AC 2006; 209:3882-6. [PMID: 16985204 DOI: 10.1242/jeb.02456] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A relatively simple all-laboratory behavioural assay of insect magnetoreception has been developed. We found non-conditioned reactions of American cockroach to the periodical shifts of the geomagnetic field. The movement activity of animals individually placed into Petri dishes was scored as a number of body turns. Test groups were exposed to a 90-min interval with the horizontal component of the geomagnetic field periodically rotated by 60 degrees back and forth with 5 min periodicity. The number of body turns was compared with the preceding and following intervals and with the corresponding interval of the control group kept in the natural field. We obtained a significant increase in activity when changes in field were applied. Interestingly, the period of increased activity did not coincide precisely with the 90 min stimulation interval. The onset of animal restlessness was delayed by tens of minutes and persisted correspondingly after the stimulation stopped. A respective evaluation criterion was suggested and verified. Owing to its simplicity and minimal manipulation of the insects, together with low demands on the memory and motivation state of animals, the approach potentially may be used as a laboratory diagnostic tool indicating magnetoreception in insect neurophysiology research.
Collapse
Affiliation(s)
- Martin Vácha
- Department of Animal Physiology and Immunology, Faculty of Science, Masaryk University, Kotlárská 2, Brno, 611 37, Czech Republic.
| |
Collapse
|
11
|
Binhi VN, Chernavskii DS, Rubin AB. Temperature factor and magnetic noise under conditions of stochastic resonance of magnetosomes. Biophysics (Nagoya-shi) 2006. [DOI: 10.1134/s0006350906020114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Binhi VN. Stochastic dynamics of magnetosomes and a mechanism of biological orientation in the geomagnetic field. Bioelectromagnetics 2005; 27:58-63. [PMID: 16283662 DOI: 10.1002/bem.20178] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The rotations of nanoscopic magnetic particles, magnetosomes, embedded into the cytoskeleton are considered. Under the influence of thermal disturbances, a great number of magnetosomes are shown to move chaotically between two stable equilibrium positions, in which their magnetic moments are neither parallel nor antiparallel to the static Earth's magnetic field (MF). The random rotations attain the value of order of a radian. The rate of the transitions and the probability of magnetosomes to be in the different states depend on the MF direction with respect to an averaged magnetosome's orientation. This effect explains the ability of migratory animals to orient themselves faultlessly in long term passages in the absence of the direct visibility of optical reference points. The sensitivity to deviation from an "ideal" orientation is estimated to be 2-4 degrees. Possible involvement of the stochastic dynamics of magnetosomes in biological magnetic navigation is discussed.
Collapse
Affiliation(s)
- V N Binhi
- A.M. Prokhorov General Physics Institute RAS, Moscow, Russia.
| |
Collapse
|
13
|
Mouritsen H, Frost BJ. Virtual migration in tethered flying monarch butterflies reveals their orientation mechanisms. Proc Natl Acad Sci U S A 2002; 99:10162-6. [PMID: 12107283 PMCID: PMC126641 DOI: 10.1073/pnas.152137299] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A newly developed flight simulator allows monarch butterflies to fly actively for up to several hours in any horizontal direction while their fall migratory flight direction can be continuously recorded. From these data, long segments of virtual flight paths of tethered, flying, migratory monarch butterflies were reconstructed, and by advancing or retarding the butterflies' circadian clocks, we have shown that they possess a time-compensated sun compass. Control monarchs on local time fly approximately southwest, those 6-h time-advanced fly southeast, and 6-h time-delayed butterflies fly in northwesterly directions. Moreover, butterflies flown in the same apparatus under simulated overcast in natural magnetic fields were randomly oriented and did not change direction when magnetic fields were rotated. Therefore, these experiments do not provide any evidence that monarch butterflies use a magnetic compass during migration.
Collapse
Affiliation(s)
- Henrik Mouritsen
- Department of Psychology, Queen's University, Kingston, ON, Canada, K7L 3N6.
| | | |
Collapse
|
14
|
Early embryo orientation with respect to the cardinal points in natural clutches of two ranidae species inhabiting geographically distant regions. Russ J Dev Biol 2000. [DOI: 10.1007/bf02758909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Abdulla S. Down Mexico way. Nature 1999. [DOI: 10.1038/news991125-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|