1
|
Carter CW, Wills PR. Experimental solutions to problems defining the origin of codon-directed protein synthesis. Biosystems 2019; 183:103979. [PMID: 31176803 PMCID: PMC6693952 DOI: 10.1016/j.biosystems.2019.103979] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
How genetic coding differentiated biology from chemistry is a long-standing challenge in Biology, for which there have been few experimental approaches, despite a wide-ranging speculative literature. We summarize five coordinated areas-experimental characterization of functional approximations to the minimal peptides (protozymes and urzymes) necessary to activate amino acids and acylate tRNA; showing that specificities of these experimental models match those expected from the synthetase Class division; population of disjoint regions of amino acid sequence space via bidirectional coding ancestry of the two synthetase Classes; showing that the phase transfer equilibria of amino acid side chains that form a two-dimensional basis set for protein folding are embedded in patterns of bases in the tRNA acceptor stem and anticodon; and identification of molecular signatures of ancestral synthetases and tRNAs necessary to define the earliest cognate synthetase:tRNA pairs-that now compose an extensive experimentally testable paradigm for progress toward understanding the coordinated emergence of the codon table and viable mRNA coding sequences. We briefly discuss recent progress toward identifying the remaining outstanding questions-the nature of the earliest amino acid alphabets and the origin of binding discrimination via distinct amino acid sequence-independent protein secondary structures-and how these, too, might be addressed experimentally.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, United States
| | - Peter R Wills
- Department of Physics and Te Ao Marama Centre for Fundamental Inquiry, University of Auckland, PB 92019, Auckland 1142, New Zealand
| |
Collapse
|
2
|
Czapinska H, Siwek W, Szczepanowski RH, Bujnicki JM, Bochtler M, Skowronek KJ. Crystal Structure and Directed Evolution of Specificity of NlaIV Restriction Endonuclease. J Mol Biol 2019; 431:2082-2094. [DOI: 10.1016/j.jmb.2019.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/14/2019] [Accepted: 04/07/2019] [Indexed: 12/14/2022]
|
3
|
Cohen RD, Pielak GJ. A cell is more than the sum of its (dilute) parts: A brief history of quinary structure. Protein Sci 2017; 26:403-413. [PMID: 27977883 PMCID: PMC5326556 DOI: 10.1002/pro.3092] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/02/2016] [Accepted: 12/02/2016] [Indexed: 01/01/2023]
Abstract
Most knowledge of protein structure and function is derived from experiments performed with purified protein resuspended in dilute, buffered solutions. However, proteins function in the crowded, complex cellular environment. Although the first four levels of protein structure provide important information, a complete understanding requires consideration of quinary structure. Quinary structure comprises the transient interactions between macromolecules that provides organization and compartmentalization inside cells. We review the history of quinary structure in the context of several metabolic pathways, and the technological advances that have yielded recent insight into protein behavior in living cells. The evidence demonstrates that protein behavior in isolated solutions deviates from behavior in the physiological environment.
Collapse
Affiliation(s)
- Rachel D. Cohen
- Department of ChemistryUniversity of North CarolinaChapel HillNorth Carolina27599
| | - Gary J. Pielak
- Department of ChemistryUniversity of North CarolinaChapel HillNorth Carolina27599
- Department of Biochemistry and BiophysicsUniversity of North CarolinaChapel HillNorth Carolina27599
- Lineberger Comprehensive Cancer Center, University of North CarolinaChapel HillNorth Carolina27599
| |
Collapse
|
4
|
Arunachalam TS, Wichert C, Appel B, Müller S. Mixed oligonucleotides for random mutagenesis: best way of making them. Org Biomol Chem 2012; 10:4641-50. [PMID: 22552713 DOI: 10.1039/c2ob25328c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The generation of proteins, especially enzymes, with pre-deliberated, novel properties is a big challenge in the field of protein engineering. This aim, over the years was critically facilitated by newly emerging methods of combinatorial and evolutionary techniques, such as combinatorial gene synthesis followed by functional screening of many structural variants generated in parallel (library). Libraries can be generated by a large number of available methods. Therein the use of mixtures of pre-formed trinucleotide blocks representing codons for the 20 canonical amino acids for oligonucleotide synthesis stands out as allowing fully controlled partial (or total) randomization individually at any number of arbitrarily chosen codon positions of a given gene. This has created substantial demand of fully protected trinucleotide synthons of good reactivity in standard oligonucleotide synthesis. We here review methods for the preparation of oligonucleotide mixtures with a strong focus on codon-specific trinucleotide blocks.
Collapse
Affiliation(s)
- Tamil Selvi Arunachalam
- Institut für Biochemie, Ernst Moritz Arndt Universität, Felix Hausdorff Strasse 4, Greifswald, D-17487, Germany
| | | | | | | |
Collapse
|
5
|
Kotz JD, Bond CJ, Cochran AG. Phage-display as a tool for quantifying protein stability determinants. ACTA ACUST UNITED AC 2004; 271:1623-9. [PMID: 15096201 DOI: 10.1111/j.1432-1033.2004.04076.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To address questions of protein stability, researchers have increasingly turned to combinatorial approaches that permit the rapid analysis of libraries of protein variants. Phage-display has proved to be a powerful tool for analyzing protein stability due to the large library size and the robustness of the phage particle to a variety of denaturing conditions. With the B1 domain of protein G (GB1) and a camelid heavy chain antibody as model systems, we are using phage-display libraries to experimentally address questions that have generally been addressed in silico, either through computational studies or statistical analysis of known protein structures. One effort has focused on identifying novel solutions to repacking the hydrophobic core of GB1, while maintaining stability comparable to the wild type protein. In a second study, a small set of substitutions in complimentarity-determining region 3 was found to stabilize the framework of the camelid antibody. Another major focus has been to obtain quantitative data on beta-sheet stability determinants. We have successfully adapted a phage-display method for quantitating affinities of protein variants (shotgun alanine scanning) to analysis of GB1 stability. Using this method, we have analyzed the energetic contributions of cross-strand side chain-side chain interactions. Finally, we discuss parameters to consider in using phage-display to discriminate subtle stability differences among fully folded variants. Overall, this method provides a fast approach for quantitatively addressing biophysical questions.
Collapse
Affiliation(s)
- Joanne D Kotz
- Department of Protein Engineering, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | | |
Collapse
|
6
|
Neylon C. Chemical and biochemical strategies for the randomization of protein encoding DNA sequences: library construction methods for directed evolution. Nucleic Acids Res 2004; 32:1448-59. [PMID: 14990750 PMCID: PMC390300 DOI: 10.1093/nar/gkh315] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Revised: 02/06/2004] [Accepted: 02/06/2004] [Indexed: 11/14/2022] Open
Abstract
Directed molecular evolution and combinatorial methodologies are playing an increasingly important role in the field of protein engineering. The general approach of generating a library of partially randomized genes, expressing the gene library to generate the proteins the library encodes and then screening the proteins for improved or modified characteristics has successfully been applied in the areas of protein-ligand binding, improving protein stability and modifying enzyme selectivity. A wide range of techniques are now available for generating gene libraries with different characteristics. This review will discuss these different methodologies, their accessibility and applicability to non-expert laboratories and the characteristics of the libraries they produce. The aim is to provide an up to date resource to allow groups interested in using directed evolution to identify the most appropriate methods for their purposes and to guide those moving on from initial experiments to more ambitious targets in the selection of library construction techniques. References are provided to original methodology papers and other recent examples from the primary literature that provide details of experimental methods.
Collapse
Affiliation(s)
- Cameron Neylon
- School of Chemistry, University of Southampton, Highfield SO17 1BJ, UK.
| |
Collapse
|
7
|
Tropsha A, Carter CW, Cammer S, Vaisman II. Simplicial neighborhood analysis of protein packing (SNAPP): a computational geometry approach to studying proteins. Methods Enzymol 2003; 374:509-44. [PMID: 14696387 DOI: 10.1016/s0076-6879(03)74022-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Alexander Tropsha
- Department of Medicinal Chemistry and Natural Products, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
8
|
Cammer SA, Carter CW, Tropsha A. Identification of Sequence-Specific Tertiary Packing Motifs in Protein Structures using Delaunay Tessellation. LECTURE NOTES IN COMPUTATIONAL SCIENCE AND ENGINEERING 2002. [DOI: 10.1007/978-3-642-56080-4_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
Carter CW, LeFebvre BC, Cammer SA, Tropsha A, Edgell MH. Four-body potentials reveal protein-specific correlations to stability changes caused by hydrophobic core mutations. J Mol Biol 2001; 311:625-38. [PMID: 11518520 DOI: 10.1006/jmbi.2001.4906] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutational experiments show how changes in the hydrophobic cores of proteins affect their stabilities. Here, we estimate these effects computationally, using four-body likelihood potentials obtained by simplicial neighborhood analysis of protein packing (SNAPP). In this procedure, the volume of a known protein structure is tiled with tetrahedra having the center of mass of one amino acid side-chain at each vertex. Log-likelihoods are computed for the 8855 possible tetrahedra with equivalent compositions from structural databases and amino acid frequencies. The sum of these four-body potentials for tetrahedra present in a given protein yields the SNAPP score. Mutations change this sum by changing the compositions of tetrahedra containing the mutated residue and their related potentials. Linear correlation coefficients between experimental mutational stability changes, Delta(DeltaG(unfold)), and those based on SNAPP scoring range from 0.70 to 0.94 for hydrophobic core mutations in five different proteins. Accurate predictions for the effects of hydrophobic core mutations can therefore be obtained by virtual mutagenesis, based on changes to the total SNAPP likelihood potential. Significantly, slopes of the relation between Delta(DeltaG(unfold)) and DeltaSNAPP for different proteins are statistically distinct, and we show that these protein-specific effects can be estimated using the average SNAPP score per residue, which is readily derived from the analysis itself. This result enhances the predictive value of statistical potentials and supports previous suggestions that "comparable" mutations in different proteins may lead to different Delta(DeltaG(unfold)) values because of differences in their flexibility and/or conformational entropy.
Collapse
Affiliation(s)
- C W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 27599-7260, USA.
| | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- N Kallenbach
- Department of Chemistry, New York University, New York, NY 10003, USA.
| |
Collapse
|
11
|
Affiliation(s)
- G D Rose
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
12
|
Drysdale R, Bayraktaroglu L. Current awareness. Yeast 2000. [PMID: 10900461 PMCID: PMC2448328 DOI: 10.1002/1097-0061(20000630)17:2<159::aid-yea8>3.0.co;2-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In order to keep subscribers up-to-date with the latest developments in their field, this current awareness service is provided by John Wiley & Sons and contains newly-published material on comparative and functional genomics. Each bibliography is divided into 16 sections. 1 Reviews & symposia; 2 General; 3 Large-scale sequencing and mapping; 4 Genome evolution; 5 Comparative genomics; 6 Gene families and regulons; 7 Pharmacogenomics; 8 Large-scale mutagenesis programmes; 9 Functional complementation; 10 Transcriptomics; 11 Proteomics; 12 Protein structural genomics; 13 Metabolomics; 14 Genomic approaches to development; 15 Technological advances; 16 Bioinformatics. Within each section, articles are listed in alphabetical order with respect to author. If, in the preceding period, no publications are located relevant to any one of these headings, that section will be omitted
Collapse
Affiliation(s)
- R Drysdale
- FlyBase-Cambridge, Department of Genetics, University of Cambridge, UK
| | | |
Collapse
|
13
|
Drysdale R, Bayraktaroglu L. Current awareness. Yeast 2000; 17:159-66. [PMID: 10900461 PMCID: PMC2448328 DOI: 10.1155/2000/907141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In order to keep subscribers up-to-date with the latest developments in their field, this current awareness service is provided by John Wiley & Sons and contains newly-published material on comparative and functional genomics. Each bibliography is divided into 16 sections. 1 Reviews & symposia; 2 General; 3 Large-scale sequencing and mapping; 4 Genome evolution; 5 Comparative genomics; 6 Gene families and regulons; 7 Pharmacogenomics; 8 Large-scale mutagenesis programmes; 9 Functional complementation; 10 Transcriptomics; 11 Proteomics; 12 Protein structural genomics; 13 Metabolomics; 14 Genomic approaches to development; 15 Technological advances; 16 Bioinformatics. Within each section, articles are listed in alphabetical order with respect to author. If, in the preceding period, no publications are located relevant to any one of these headings, that section will be omitted
Collapse
Affiliation(s)
- R Drysdale
- FlyBase-Cambridge, Department of Genetics, University of Cambridge, UK
| | | |
Collapse
|
14
|
|