1
|
Atsavapranee B, Sunden F, Herschlag D, Fordyce P. Quantifying protein unfolding kinetics with a high-throughput microfluidic platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633299. [PMID: 39868203 PMCID: PMC11761748 DOI: 10.1101/2025.01.15.633299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Even after folding, proteins transiently sample unfolded or partially unfolded intermediates, and these species are often at risk of irreversible alteration (e.g. via proteolysis, aggregation, or post-translational modification). Kinetic stability, in addition to thermodynamic stability, can directly impact protein lifetime, abundance, and the formation of alternative, sometimes disruptive states. However, we have very few measurements of protein unfolding rates or how mutations alter these rates, largely due to technical challenges associated with their measurement. To address this need, we developed SPARKfold (Simultaneous Proteolysis Assay Revealing Kinetics of Folding), a microfluidic platform to express, purify, and measure unfolding rate constants for >1000 protein variants in parallel via on-chip native proteolysis. To demonstrate the power and potential of SPARKfold, we determined unfolding rate constants for 1,104 protein samples in parallel. We built a library of 31 dihydrofolate reductase (DHFR) orthologs with up to 78 chamber replicates per variant to provide the statistical power required to evaluate the system's ability to resolve subtle effects. SPARKfold rate constants for 5 constructs agreed with those obtained using traditional techniques across a 150-fold range, validating the accuracy of the technique. Comparisons of mutant kinetic effects via SPARKfold with previously published measurements impacts on folding thermodynamics provided information about the folding transition state and pathways via φ analysis. Overall, SPARKfold enables rapid characterization of protein variants to dissect the nature of the unfolding transition state. In future work, SPARKfold can reveal mutations that drive misfolding and aggregation and enable rational design of kinetically hyperstable variants for industrial use in harsh environments.
Collapse
Affiliation(s)
- B. Atsavapranee
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - F. Sunden
- Department of Biochemistry, Stanford University, Stanford, CA 94305
| | - D. Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA 94305
| | - P.M. Fordyce
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Department of Genetics, Stanford University, Stanford, CA 94305
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305
| |
Collapse
|
2
|
Gajo C, Shchepanovska D, Jones JF, Karras G, Malakar P, Greetham GM, Hawkins OA, Jordan CJC, Curchod BFE, Oliver TAA. Nile Red Fluorescence: Where's the Twist? J Phys Chem B 2024; 128:11768-11775. [PMID: 39541505 PMCID: PMC11613612 DOI: 10.1021/acs.jpcb.4c06048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Nile Red is a fluorescent dye used extensively in bioimaging due to its strong solvatochromism. The photophysics underpinning Nile Red's fluorescence has been disputed for decades, with some studies claiming that the dye fluoresces from two excited states and/or that the main emissive state is twisted and intramolecular charge-transfer (ICT) in character as opposed to planar ICT (PICT). To resolve these long-standing questions, a combined experimental and theoretical study was used to unravel the mechanism of Nile Red's fluorescence. Time-resolved fluorescence measurements indicated that Nile Red emission occurs from a single excited state. Theoretical calculations revealed no evidence for a low-lying TICT state, with the S1 minimum corresponding to a PICT state. Ultrafast pump-probe spectroscopic data contained no signatures associated with an additional excited state involved in the fluorescence decay of Nile Red. Collectively, these data in polar and nonpolar solvents refute dual fluorescence in Nile Red and definitively demonstrate that emission occurs from a PICT state.
Collapse
Affiliation(s)
- Camilla Gajo
- School of
Chemistry, Cantock’s Close, University
of Bristol, Bristol BS8 1TS, U.K.
| | - Darya Shchepanovska
- School of
Chemistry, Cantock’s Close, University
of Bristol, Bristol BS8 1TS, U.K.
| | - Jacob F. Jones
- School of
Chemistry, Cantock’s Close, University
of Bristol, Bristol BS8 1TS, U.K.
| | - Gabriel Karras
- Central
Laser
Facility, Science and Technology Facilities Council, Research Complex
at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11
0QX, U.K.
| | - Partha Malakar
- Central
Laser
Facility, Science and Technology Facilities Council, Research Complex
at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11
0QX, U.K.
| | - Gregory M. Greetham
- Central
Laser
Facility, Science and Technology Facilities Council, Research Complex
at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11
0QX, U.K.
| | - Olivia A. Hawkins
- School of
Chemistry, Cantock’s Close, University
of Bristol, Bristol BS8 1TS, U.K.
| | - Caleb J. C. Jordan
- School of
Chemistry, Cantock’s Close, University
of Bristol, Bristol BS8 1TS, U.K.
| | - Basile F. E. Curchod
- School of
Chemistry, Cantock’s Close, University
of Bristol, Bristol BS8 1TS, U.K.
| | - Thomas A. A. Oliver
- School of
Chemistry, Cantock’s Close, University
of Bristol, Bristol BS8 1TS, U.K.
| |
Collapse
|
3
|
Foote A, Ishii K, Cullinane B, Tahara T, Goldsmith RH. Quantifying Microsecond Solution-Phase Conformational Dynamics of a DNA Hairpin at the Single-Molecule Level. ACS PHYSICAL CHEMISTRY AU 2024; 4:408-419. [PMID: 39069982 PMCID: PMC11274281 DOI: 10.1021/acsphyschemau.3c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 07/30/2024]
Abstract
Quantifying the rapid conformational dynamics of biological systems is fundamental to understanding the mechanism. However, biomolecules are complex, often containing static and dynamic heterogeneity, thus motivating the use of single-molecule methods, particularly those that can operate in solution. In this study, we measure microsecond conformational dynamics of solution-phase DNA hairpins at the single-molecule level using an anti-Brownian electrokinetic (ABEL) trap. Different conformational states were distinguished by their fluorescence lifetimes, and kinetic parameters describing transitions between these states were determined using two-dimensional fluorescence lifetime correlation (2DFLCS) analysis. Rather than combining fluorescence signals from the entire data set ensemble, long observation times of individual molecules allowed ABEL-2DFLCS to be performed on each molecule independently, yielding the underlying distribution of the system's kinetic parameters. ABEL-2DFLCS on the DNA hairpins resolved an underlying heterogeneity of fluorescence lifetimes and provided signatures of two-state exponential dynamics with rapid (
Collapse
Affiliation(s)
- Alexander
K. Foote
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Kunihiko Ishii
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Brendan Cullinane
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Tahei Tahara
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Randall H. Goldsmith
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
4
|
The biophysics of disordered proteins from the point of view of single-molecule fluorescence spectroscopy. Essays Biochem 2022; 66:875-890. [PMID: 36416865 PMCID: PMC9760427 DOI: 10.1042/ebc20220065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022]
Abstract
Intrinsically disordered proteins (IDPs) and regions (IDRs) have emerged as key players across many biological functions and diseases. Differently from structured proteins, disordered proteins lack stable structure and are particularly sensitive to changes in the surrounding environment. Investigation of disordered ensembles requires new approaches and concepts for quantifying conformations, dynamics, and interactions. Here, we provide a short description of the fundamental biophysical properties of disordered proteins as understood through the lens of single-molecule fluorescence observations. Single-molecule Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) provides an extensive and versatile toolbox for quantifying the characteristics of conformational distributions and the dynamics of disordered proteins across many different solution conditions, both in vitro and in living cells.
Collapse
|
5
|
Gopich IV, Chung HS. Theory and Analysis of Single-Molecule FRET Experiments. Methods Mol Biol 2022; 2376:247-282. [PMID: 34845614 DOI: 10.1007/978-1-0716-1716-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inter-dye distances and conformational dynamics can be studied using single-molecule FRET measurements. We consider two approaches to analyze sequences of photons with recorded photon colors and arrival times. The first approach is based on FRET efficiency histograms obtained from binned photon sequences. The experimental histograms are compared with the theoretical histograms obtained using the joint distribution of acceptor and donor photons or the Gaussian approximation. In the second approach, a photon sequence is analyzed without binning. The parameters of a model describing conformational dynamics are found by maximizing the appropriate likelihood function. The first approach is simpler, while the second one is more accurate, especially when the population of species is small and transition rates are fast. The likelihood-based analysis as well as the recoloring method has the advantage that diffusion of molecules through the laser focus can be rigorously handled.
Collapse
Affiliation(s)
- Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Liu SC, Ying YL, Li WH, Wan YJ, Long YT. Snapshotting the transient conformations and tracing the multiple pathways of single peptide folding using a solid-state nanopore. Chem Sci 2021; 12:3282-3289. [PMID: 34164097 PMCID: PMC8179386 DOI: 10.1039/d0sc06106a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A fundamental question relating to protein folding/unfolding is the time evolution of the folding of a protein into its precisely defined native structure. The proper identification of transition conformations is essential for accurately describing the dynamic protein folding/unfolding pathways. Owing to the rapid transitions and sub-nm conformation differences involved, the acquisition of the transient conformations and dynamics of proteins is difficult due to limited instrumental resolution. Using the electrochemical confinement effect of a solid-state nanopore, we were able to snapshot the transient conformations and trace the multiple transition pathways of a single peptide inside a nanopore. By combining the results with a Markov chain model, this new single-molecule technique is applied to clarify the transition pathways of the β-hairpin peptide, which shows nonequilibrium fluctuations among several blockage current stages. This method enables the high-throughput investigation of transition pathways experimentally to access previously obscure peptide dynamics, which is significant for understanding the folding/unfolding mechanisms and misfolding of peptides or proteins. A solid-state nanopore based method is described for resolving protein-folding-related problems via snapshotting the folding intermediates and characterizing the kinetics of a single peptide.![]()
Collapse
Affiliation(s)
- Shao-Chuang Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China .,Department of Chemistry, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China .,Department of Chemistry, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Wei-Hua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yong-Jing Wan
- School of Information Science and Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China .,Department of Chemistry, East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
7
|
Abstract
Intrinsically disordered proteins (IDPs) are now widely recognized as playing critical roles in a broad range of cellular functions as well as being implicated in diverse diseases. Their lack of stable secondary structure and tertiary interactions, coupled with their sensitivity to measurement conditions, stymies many traditional structural biology approaches. Single-molecule Förster resonance energy transfer (smFRET) is now widely used to characterize the physicochemical properties of these proteins in isolation and is being increasingly applied to more complex assemblies and experimental environments. This review provides an overview of confocal diffusion-based smFRET as an experimental tool, including descriptions of instrumentation, data analysis, and protein labeling. Recent papers are discussed that illustrate the unique capability of smFRET to provide insight into aggregation-prone IDPs, protein–protein interactions involving IDPs, and IDPs in complex experimental milieus.
Collapse
Affiliation(s)
- Lauren Ann Metskas
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Elizabeth Rhoades
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
8
|
Krainer G, Keller S, Schlierf M. Structural dynamics of membrane-protein folding from single-molecule FRET. Curr Opin Struct Biol 2019; 58:124-137. [DOI: 10.1016/j.sbi.2019.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022]
|
9
|
Mondal S, Chandra A, Venkatramani R, Datta A. Optically sensing phospholipid induced coil-helix transitions in the phosphoinositide-binding motif of gelsolin. Faraday Discuss 2019; 207:437-458. [PMID: 29363700 DOI: 10.1039/c7fd00197e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We present a systematic experimental and computational study of phospholipid induced peptide coil-helix transitions which are relevant in the context of proteins mediating cytoskeletal rearrangement via membrane binding. We developed a sensitive Förster resonance energy transfer (FRET) based assay to address whether coil-helix transitions in phospholipid binding motifs of actin-binding proteins can be induced by physiologically-relevant concentrations (1-20 μM) of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) phospholipids. Based on inter-residue distance constraints obtained from Molecular Dynamics (MD) simulations of a 20 residue peptide (Gel 150-169) from the actin-severing protein gelsolin, we synthetized and labeled the peptide with a tryptophan donor and IAEDANS acceptor pair. Upon addition of PI(4,5)P2 micelles and mixed vesicles containing PI(4,5)P2 and phosphatidylcholine to the peptide, we observed a decrease in the tryptophan emission intensity with increasing concentrations of PI(4,5)P2. The IAEDANS emission spectra showed a more complex profile exhibiting a blue shift of the emission peak and non-monotonic changes in the intensity profile with increasing concentrations of PI(4,5)P2. We showed that the IAEDANS acceptor emission response is a result of both intrinsic polarity sensitivity of the acceptor in the vicinity of the membrane surface and fluorescence energy transfer from the donor. Importantly, the fluorescence lifetime of the donor (tryptophan) showed a monotonous decrease with increasing mol% of PI(4,5)P2 from 1.13 ± 0.10 ns in the absence of phospholipids to 0.25 ± 0.03 ns in the presence of 100% PI(4,5)P2 micelles. We also showed a concomitant increase in FRET efficiency with increasing PI(4,5)P2 levels indicating a PI(4,5)P2 concentration dependent coil-helix transition. Our studies demonstrate that membrane PI(4,5)P2 concentrations as low as 2.5-5 μM can trigger helix-coil conformational changes in gelsolin relevant for triggering regulatory processes in the cell.
Collapse
Affiliation(s)
- Samsuzzoha Mondal
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India.
| | | | | | | |
Collapse
|
10
|
Foote AK, Manger LH, Holden MR, Margittai M, Goldsmith RH. Time-resolved multirotational dynamics of single solution-phase tau proteins reveals details of conformational variation. Phys Chem Chem Phys 2019; 21:1863-1871. [PMID: 30632561 PMCID: PMC6449148 DOI: 10.1039/c8cp06971a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Intrinsically disordered proteins (IDPs) are crucial to many cellular processes and have been linked to neurodegenerative diseases. Single molecules of tau, an IDP associated with Alzheimer's disease, are trapped in solution using a microfluidic device, and a time-resolved fluorescence anisotropy decay is recorded for each molecule. Multiple rotational components are resolved and a novel k-means algorithm is used to sort the molecules into two families of conformations. Differences in rotational dynamics suggest a change in the rigidity and steric hindrance surrounding a sequence (306VQIVYK311) which is central to paired helical filament formation. This single-molecule approach can be applied to other IDPs to resolve heterogeneous populations and underlying differences in conformational dynamics.
Collapse
Affiliation(s)
- Alexander K Foote
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
11
|
Bhatia S, Krishnamoorthy G, Udgaonkar JB. Site-specific time-resolved FRET reveals local variations in the unfolding mechanism in an apparently two-state protein unfolding transition. Phys Chem Chem Phys 2018; 20:3216-3232. [DOI: 10.1039/c7cp06214a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Using multi-site time-resolved FRET, it is shown that equilibrium unfolding of monellin is not only heterogeneous, but that the degree of non-cooperativity differs between the sole α-helix and different parts of the β-sheet.
Collapse
Affiliation(s)
- Sandhya Bhatia
- National Centre for Biological Sciences
- Tata Institute of Fundamental Research
- Bengaluru 560065
- India
| | | | - Jayant B. Udgaonkar
- National Centre for Biological Sciences
- Tata Institute of Fundamental Research
- Bengaluru 560065
- India
| |
Collapse
|
12
|
Single-molecule fluorescence-based analysis of protein conformation, interaction, and oligomerization in cellular systems. Biophys Rev 2017; 10:317-326. [PMID: 29243093 PMCID: PMC5899725 DOI: 10.1007/s12551-017-0366-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/19/2017] [Indexed: 12/23/2022] Open
Abstract
Single-molecule imaging (SMI) of proteins in operation has a history of intensive investigations over 20 years and is now widely used in various fields of biology and biotechnology. We review the recent advances in SMI of fluorescently-tagged proteins in structural biology, focusing on technical applicability of SMI to the measurements in living cells. Basic technologies and recent applications of SMI in structural biology are introduced. Distinct from other methods in structural biology, SMI directly observes single molecules and single-molecule events one-by-one, thus, explicitly analyzing the distribution of protein structures and the history of protein dynamics. It also allows one to detect single events of protein interaction. One unique feature of SMI is that it is applicable in complicated and heterogeneous environments, including living cells. The numbers, location, movements, interaction, oligomerization, and conformation of single-protein molecules have been determined using SMI in cellular systems.
Collapse
|
13
|
Manger LH, Foote AK, Wood SL, Holden MR, Heylman KD, Margittai M, Goldsmith RH. Revealing Conformational Variants of Solution-Phase Intrinsically Disordered Tau Protein at the Single-Molecule Level. Angew Chem Int Ed Engl 2017; 56:15584-15588. [PMID: 29063723 PMCID: PMC5831721 DOI: 10.1002/anie.201708242] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/05/2017] [Indexed: 11/09/2022]
Abstract
Intrinsically disordered proteins, such as tau protein, adopt a variety of conformations in solution, complicating solution-phase structural studies. We employed an anti-Brownian electrokinetic (ABEL) trap to prolong measurements of single tau proteins in solution. Once trapped, we recorded the fluorescence anisotropy to investigate the diversity of conformations sampled by the single molecules. A distribution of anisotropy values obtained from trapped tau protein is conspicuously bimodal while those obtained by trapping a globular protein or individual fluorophores are not. Time-resolved fluorescence anisotropy measurements were used to provide an explanation of the bimodal distribution as originating from a shift in the compaction of the two different families of conformations.
Collapse
Affiliation(s)
- Lydia H Manger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706, USA
| | - Alexander K Foote
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706, USA
| | - Sharla L Wood
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706, USA
| | - Michael R Holden
- Department of Chemistry & Biochemistry, University of Denver, 2190 East Iliff Ave., Denver, CO, 80208, USA
| | - Kevin D Heylman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706, USA
| | - Martin Margittai
- Department of Chemistry & Biochemistry, University of Denver, 2190 East Iliff Ave., Denver, CO, 80208, USA
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706, USA
| |
Collapse
|
14
|
Revealing Conformational Variants of Solution-Phase Intrinsically Disordered Tau Protein at the Single-Molecule Level. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Qian GS, Zhang TT, Zhao W, Xu JJ, Chen HY. Single-molecule imaging of telomerase activity via linear plasmon rulers. Chem Commun (Camb) 2017; 53:4710-4713. [DOI: 10.1039/c7cc00626h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A strategy for real-time monitoring of the extension of the telomerase primer based on plasmon rulers was demonstrated for the first time.
Collapse
Affiliation(s)
- Guang-Sheng Qian
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Ting-Ting Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| |
Collapse
|
16
|
Esposito R, Mensitieri G, de Nicola S. Improved maximum entropy method for the analysis of fluorescence spectroscopy data: evaluating zero-time shift and assessing its effect on the determination of fluorescence lifetimes. Analyst 2016; 140:8138-47. [PMID: 26541293 DOI: 10.1039/c5an01811k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new algorithm based on the Maximum Entropy Method (MEM) is proposed for recovering both the lifetime distribution and the zero-time shift from time-resolved fluorescence decay intensities. The developed algorithm allows the analysis of complex time decays through an iterative scheme based on entropy maximization and the Brent method to determine the minimum of the reduced chi-squared value as a function of the zero-time shift. The accuracy of this algorithm has been assessed through comparisons with simulated fluorescence decays both of multi-exponential and broad lifetime distributions for different values of the zero-time shift. The method is capable of recovering the zero-time shift with an accuracy greater than 0.2% over a time range of 2000 ps. The center and the width of the lifetime distributions are retrieved with relative discrepancies that are lower than 0.1% and 1% for the multi-exponential and continuous lifetime distributions, respectively. The MEM algorithm is experimentally validated by applying the method to fluorescence measurements of the time decays of the flavin adenine dinucleotide (FAD).
Collapse
Affiliation(s)
- Rosario Esposito
- Dept. of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy.
| | - Giuseppe Mensitieri
- Dept. of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy.
| | - Sergio de Nicola
- CNR-SPIN Napoli, Complesso Universitario di Monte Sant'Angelo, via Cinthia, 80126 Napoli, Italy
| |
Collapse
|
17
|
Schuler B, Soranno A, Hofmann H, Nettels D. Single-Molecule FRET Spectroscopy and the Polymer Physics of Unfolded and Intrinsically Disordered Proteins. Annu Rev Biophys 2016; 45:207-31. [PMID: 27145874 DOI: 10.1146/annurev-biophys-062215-010915] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The properties of unfolded proteins have long been of interest because of their importance to the protein folding process. Recently, the surprising prevalence of unstructured regions or entirely disordered proteins under physiological conditions has led to the realization that such intrinsically disordered proteins can be functional even in the absence of a folded structure. However, owing to their broad conformational distributions, many of the properties of unstructured proteins are difficult to describe with the established concepts of structural biology. We have thus seen a reemergence of polymer physics as a versatile framework for understanding their structure and dynamics. An important driving force for these developments has been single-molecule spectroscopy, as it allows structural heterogeneity, intramolecular distance distributions, and dynamics to be quantified over a wide range of timescales and solution conditions. Polymer concepts provide an important basis for relating the physical properties of unstructured proteins to folding and function.
Collapse
Affiliation(s)
- Benjamin Schuler
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland;
| | - Andrea Soranno
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland;
| | - Hagen Hofmann
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland;
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland;
| |
Collapse
|
18
|
Stockmar F, Kobitski AY, Nienhaus GU. Fast Folding Dynamics of an Intermediate State in RNase H Measured by Single-Molecule FRET. J Phys Chem B 2016; 120:641-9. [PMID: 26747376 DOI: 10.1021/acs.jpcb.5b09336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have studied the folding kinetics of the core intermediate (I) state of RNase H by using a combination of single-molecule FRET (smFRET) and hidden Markov model analysis. To measure fast dynamics in thermal equilibrium as a function of the concentration of the denaturant GdmCl, a special FRET labeled variant, RNase H 60-113, which is sensitive to folding of the protein core, was immobilized on PEGylated surfaces. Conformational transitions between the unfolded (U) state and the I state could be described by a two-state model within our experimental time resolution, with millisecond mean residence times. The I state population was always a minority species in the entire accessible range of denaturant concentrations. By introducing the measured free energy differences between the U and I states as constraints in global fits of the GdmCl dependence of FRET histograms of a differently labeled RNase H variant (RNase H 3-135), we were able to reveal the free energy differences and, thus, population ratios of all three macroscopic state ensembles, U, I and F (folded state) as a function of denaturant concentration.
Collapse
Affiliation(s)
- Florian Stockmar
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | - Andrei Yu Kobitski
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany.,Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Department of Physics, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
19
|
Orevi T, Rahamim G, Amir D, Kathuria S, Bilsel O, Matthews CR, Haas E. Sequential Closure of Loop Structures Forms the Folding Nucleus during the Refolding Transition of the Escherichia coli Adenylate Kinase Molecule. Biochemistry 2015; 55:79-91. [DOI: 10.1021/acs.biochem.5b00849] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Tomer Orevi
- The
Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel 52900
| | - Gil Rahamim
- The
Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel 52900
| | - Dan Amir
- The
Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel 52900
| | - Sagar Kathuria
- Department
of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Osman Bilsel
- Department
of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - C. Robert Matthews
- Department
of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Elisha Haas
- The
Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel 52900
| |
Collapse
|
20
|
Hierarchical cascades of instability govern the mechanics of coiled coils: helix unfolding precedes coil unzipping. Biophys J 2015; 107:477-484. [PMID: 25028889 DOI: 10.1016/j.bpj.2014.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/13/2014] [Accepted: 06/03/2014] [Indexed: 12/31/2022] Open
Abstract
Coiled coils are a fundamental emergent motif in proteins found in structural biomaterials, consisting of α-helical secondary structures wrapped in a supercoil. A fundamental question regarding the thermal and mechanical stability of coiled coils in extreme environments is the sequence of events leading to the disassembly of individual oligomers from the universal coiled-coil motifs. To shed light on this phenomenon, here we report atomistic simulations of a trimeric coiled coil in an explicit water solvent and investigate the mechanisms underlying helix unfolding and coil unzipping in the assembly. We employ advanced sampling techniques involving steered molecular dynamics and metadynamics simulations to obtain the free-energy landscapes of single-strand unfolding and unzipping in a three-stranded assembly. Our comparative analysis of the free-energy landscapes of instability pathways shows that coil unzipping is a sequential process involving multiple intermediates. At each intermediate state, one heptad repeat of the coiled coil first unfolds and then unzips due to the loss of contacts with the hydrophobic core. This observation suggests that helix unfolding facilitates the initiation of coiled-coil disassembly, which is confirmed by our 2D metadynamics simulations showing that unzipping of one strand requires less energy in the unfolded state compared with the folded state. Our results explain recent experimental findings and lay the groundwork for studying the hierarchical molecular mechanisms that underpin the thermomechanical stability/instability of coiled coils and similar protein assemblies.
Collapse
|
21
|
Oikawa H, Kamagata K, Arai M, Takahashi S. Complexity of the folding transition of the B domain of protein A revealed by the high-speed tracking of single-molecule fluorescence time series. J Phys Chem B 2015; 119:6081-91. [PMID: 25938341 DOI: 10.1021/acs.jpcb.5b00414] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The equilibrium unfolding transition of the B domain of protein A (BdpA) was investigated by using single-molecule fluorescence spectroscopy based on line-confocal detection of fast-flowing samples. The method achieved the time resolution of 120 μs and the observation time of a few milliseconds in the single-molecule time-series measurements of fluorescence resonance energy transfer (FRET). Two samples of BdpA doubly labeled with donor and acceptor fluorophores, the first possessing fluorophores at residues 22 and 55 (sample 1) and the second at residues 5 and 55 (sample 2), were prepared. The equilibrium unfolding transition induced by guanidium chloride (GdmCl) was monitored by bulk measurements and demonstrated that the both samples obey the apparent two-state unfolding. In the absence of GdmCl, the single-molecule FRET measurements for the both samples showed a single peak assignable to the native state (N). The FRET efficiency for N shifts to lower values as the increase of GdmCl concentration, suggesting the swelling of the native state structure. At the higher concentration of GdmCl, the both samples convert to the unfolded state (U). Near the unfolding midpoint for sample 1, the kinetic exchange between N and U causes the averaging of the two states and the higher values of the relative fluctuation. The time series for different molecules in U showed slightly different FRET efficiencies, suggesting the apparent heterogeneity. Thus, the high-speed tracking of fluorescence signals from single molecules revealed a complexity and heterogeneity hidden in the apparent two-state behavior of protein folding.
Collapse
Affiliation(s)
- Hiroyuki Oikawa
- †Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | - Kiyoto Kamagata
- †Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | - Munehito Arai
- ‡Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan.,§PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Satoshi Takahashi
- †Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
22
|
Gao F, Kight AD, Henderson R, Jayanthi S, Patel P, Murchison M, Sharma P, Goforth RL, Kumar TKS, Henry RL, Heyes CD. Regulation of Structural Dynamics within a Signal Recognition Particle Promotes Binding of Protein Targeting Substrates. J Biol Chem 2015; 290:15462-15474. [PMID: 25918165 DOI: 10.1074/jbc.m114.624346] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Indexed: 11/06/2022] Open
Abstract
Protein targeting is critical in all living organisms and involves a signal recognition particle (SRP), an SRP receptor, and a translocase. In co-translational targeting, interactions among these proteins are mediated by the ribosome. In chloroplasts, the light-harvesting chlorophyll-binding protein (LHCP) in the thylakoid membrane is targeted post-translationally without a ribosome. A multidomain chloroplast-specific subunit of the SRP, cpSRP43, is proposed to take on the role of coordinating the sequence of targeting events. Here, we demonstrate that cpSRP43 exhibits significant interdomain dynamics that are reduced upon binding its SRP binding partner, cpSRP54. We showed that the affinity of cpSRP43 for the binding motif of LHCP (L18) increases when cpSRP43 is complexed to the binding motif of cpSRP54 (cpSRP54pep). These results support the conclusion that substrate binding to the chloroplast SRP is modulated by protein structural dynamics in which a major role of cpSRP54 is to improve substrate binding efficiency to the cpSRP.
Collapse
Affiliation(s)
- Feng Gao
- Departments of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
| | - Alicia D Kight
- Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701
| | - Rory Henderson
- Departments of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
| | - Srinivas Jayanthi
- Departments of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
| | - Parth Patel
- Departments of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
| | - Marissa Murchison
- Departments of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
| | - Priyanka Sharma
- Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701
| | - Robyn L Goforth
- Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701
| | | | - Ralph L Henry
- Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701.
| | - Colin D Heyes
- Departments of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701.
| |
Collapse
|
23
|
Kim JY, Kim C, Lee NK. Real-time submillisecond single-molecule FRET dynamics of freely diffusing molecules with liposome tethering. Nat Commun 2015; 6:6992. [PMID: 25908552 PMCID: PMC4421855 DOI: 10.1038/ncomms7992] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 03/23/2015] [Indexed: 01/15/2023] Open
Abstract
Single-molecule fluorescence resonance energy transfer (smFRET) is one of the powerful techniques for deciphering the dynamics of unsynchronized biomolecules. However, smFRET is limited in its temporal resolution for observing dynamics. Here, we report a novel method for observing real-time dynamics with submillisecond resolution by tethering molecules to freely diffusing 100-nm-sized liposomes. The observation time for a diffusing molecule is extended to 100 ms with a submillisecond resolution, which allows for direct analysis of the transition states from the FRET time trace using hidden Markov modelling. We measure transition rates of up to 1,500 s–1 between two conformers of a Holliday junction. The rapid diffusional migration of Deinococcus radiodurans single-stranded DNA-binding protein (SSB) on single-stranded DNA is resolved by FRET, faster than that of Escherichia coli SSB by an order of magnitude. Our approach is a powerful method for studying the dynamics and movements of biomolecules at submillisecond resolution. Single-molecule fluorescence resonance energy transfer is widely used to probe biomolecular dynamics, but is limited by its temporal resolution. Here, Kim et al. push the limit to submillisecond for the duration of tens of milliseconds by tethering target molecules to liposomes in buffer solutions.
Collapse
Affiliation(s)
- Jae-Yeol Kim
- Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Cheolhee Kim
- Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Nam Ki Lee
- 1] Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea [2] School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 790-784, Korea
| |
Collapse
|
24
|
|
25
|
Bavishi K, Hatzakis NS. Shedding light on protein folding, structural and functional dynamics by single molecule studies. Molecules 2014; 19:19407-34. [PMID: 25429564 PMCID: PMC6272019 DOI: 10.3390/molecules191219407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/07/2014] [Accepted: 11/12/2014] [Indexed: 11/16/2022] Open
Abstract
The advent of advanced single molecule measurements unveiled a great wealth of dynamic information revolutionizing our understanding of protein dynamics and behavior in ways unattainable by conventional bulk assays. Equipped with the ability to record distribution of behaviors rather than the mean property of a population, single molecule measurements offer observation and quantification of the abundance, lifetime and function of multiple protein states. They also permit the direct observation of the transient and rarely populated intermediates in the energy landscape that are typically averaged out in non-synchronized ensemble measurements. Single molecule studies have thus provided novel insights about how the dynamic sampling of the free energy landscape dictates all aspects of protein behavior; from its folding to function. Here we will survey some of the state of the art contributions in deciphering mechanisms that underlie protein folding, structural and functional dynamics by single molecule fluorescence microscopy techniques. We will discuss a few selected examples highlighting the power of the emerging techniques and finally discuss the future improvements and directions.
Collapse
Affiliation(s)
- Krutika Bavishi
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, Center for Synthetic Biology "bioSYNergy", Villum Research Center "Plant Plasticity", University of Copenhagen, Thorvaldsenvej 40, DK-1871 Frederiksberg C, Denmark.
| | - Nikos S Hatzakis
- Bio-Nanotechnology Laboratory, Department of Chemistry, Nano-Science Center, Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
26
|
Lu M, Lu HP. Probing protein multidimensional conformational fluctuations by single-molecule multiparameter photon stamping spectroscopy. J Phys Chem B 2014; 118:11943-55. [PMID: 25222115 PMCID: PMC4199541 DOI: 10.1021/jp5081498] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Conformational motions of proteins
are highly dynamic and intrinsically
complex. To capture the temporal and spatial complexity of conformational
motions and further to understand their roles in protein functions,
an attempt is made to probe multidimensional conformational dynamics
of proteins besides the typical one-dimensional FRET coordinate or
the projected conformational motions on the one-dimensional FRET coordinate.
T4 lysozyme hinge-bending motions between two domains along α-helix
have been probed by single-molecule FRET. Nevertheless, the domain
motions of T4 lysozyme are rather complex involving multiple coupled
nuclear coordinates and most likely contain motions besides hinge-bending.
It is highly likely that the multiple dimensional protein conformational
motions beyond the typical enzymatic hinged-bending motions have profound
impact on overall enzymatic functions. In this report, we have developed
a single-molecule multiparameter photon stamping spectroscopy integrating
fluorescence anisotropy, FRET, and fluorescence lifetime. This spectroscopic
approach enables simultaneous observations of both FRET-related site-to-site
conformational dynamics and molecular rotational (or orientational)
motions of individual Cy3-Cy5 labeled T4 lysozyme molecules. We have
further observed wide-distributed rotational flexibility along orientation
coordinates by recording fluorescence anisotropy and simultaneously
identified multiple intermediate conformational states along FRET
coordinate by monitoring time-dependent donor lifetime, presenting
a whole picture of multidimensional conformational dynamics in the
process of T4 lysozyme open-close hinge-bending enzymatic turnover
motions under enzymatic reaction conditions. By analyzing the autocorrelation
functions of both lifetime and anisotropy trajectories, we have also
observed the dynamic and static inhomogeneity of T4 lysozyme multidimensional
conformational fluctuation dynamics, providing a fundamental understanding
of the enzymatic reaction turnover dynamics associated with overall
enzyme as well as the specific active-site conformational fluctuations
that are not identifiable and resolvable in the conventional ensemble-averaged
experiment.
Collapse
Affiliation(s)
- Maolin Lu
- Center for Photochemical Sciences, Department of Chemistry, Bowling Green State University , Bowling Green, Ohio 43403, United States
| | | |
Collapse
|
27
|
Gust A, Zander A, Gietl A, Holzmeister P, Schulz S, Lalkens B, Tinnefeld P, Grohmann D. A starting point for fluorescence-based single-molecule measurements in biomolecular research. Molecules 2014; 19:15824-65. [PMID: 25271426 PMCID: PMC6271140 DOI: 10.3390/molecules191015824] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 01/24/2023] Open
Abstract
Single-molecule fluorescence techniques are ideally suited to provide information about the structure-function-dynamics relationship of a biomolecule as static and dynamic heterogeneity can be easily detected. However, what type of single-molecule fluorescence technique is suited for which kind of biological question and what are the obstacles on the way to a successful single-molecule microscopy experiment? In this review, we provide practical insights into fluorescence-based single-molecule experiments aiming for scientists who wish to take their experiments to the single-molecule level. We especially focus on fluorescence resonance energy transfer (FRET) experiments as these are a widely employed tool for the investigation of biomolecular mechanisms. We will guide the reader through the most critical steps that determine the success and quality of diffusion-based confocal and immobilization-based total internal reflection fluorescence microscopy. We discuss the specific chemical and photophysical requirements that make fluorescent dyes suitable for single-molecule fluorescence experiments. Most importantly, we review recently emerged photoprotection systems as well as passivation and immobilization strategies that enable the observation of fluorescently labeled molecules under biocompatible conditions. Moreover, we discuss how the optical single-molecule toolkit has been extended in recent years to capture the physiological complexity of a cell making it even more relevant for biological research.
Collapse
Affiliation(s)
- Alexander Gust
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Adrian Zander
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Andreas Gietl
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Phil Holzmeister
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Sarah Schulz
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Birka Lalkens
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Philip Tinnefeld
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Dina Grohmann
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany.
| |
Collapse
|
28
|
Banerjee PR, Deniz AA. Shedding light on protein folding landscapes by single-molecule fluorescence. Chem Soc Rev 2014; 43:1172-88. [PMID: 24336839 DOI: 10.1039/c3cs60311c] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Single-molecule (SM) fluorescence methods have been increasingly instrumental in our current understanding of a number of key aspects of protein folding and aggregation landscapes over the past decade. With the advantage of a model free approach and the power of probing multiple subpopulations and stochastic dynamics directly in a heterogeneous structural ensemble, SM methods have emerged as a principle technique for studying complex systems such as intrinsically disordered proteins (IDPs), globular proteins in the unfolded basin and during folding, and early steps of protein aggregation in amyloidogenesis. This review highlights the application of these methods in investigating the free energy landscapes, folding properties and dynamics of individual protein molecules and their complexes, with an emphasis on inherently flexible systems such as IDPs.
Collapse
Affiliation(s)
- Priya R Banerjee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA.
| | | |
Collapse
|
29
|
Enzyme molecules in solitary confinement. Molecules 2014; 19:14417-45. [PMID: 25221867 PMCID: PMC6271441 DOI: 10.3390/molecules190914417] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 11/17/2022] Open
Abstract
Large arrays of homogeneous microwells each defining a femtoliter volume are a versatile platform for monitoring the substrate turnover of many individual enzyme molecules in parallel. The high degree of parallelization enables the analysis of a statistically representative enzyme population. Enclosing individual enzyme molecules in microwells does not require any surface immobilization step and enables the kinetic investigation of enzymes free in solution. This review describes various microwell array formats and explores their applications for the detection and investigation of single enzyme molecules. The development of new fabrication techniques and sensitive detection methods drives the field of single molecule enzymology. Here, we introduce recent progress in single enzyme molecule analysis in microwell arrays and discuss the challenges and opportunities.
Collapse
|
30
|
JØRGENSEN SUNEK, HATZAKIS NIKOSS. INSIGHTS IN ENZYME FUNCTIONAL DYNAMICS AND ACTIVITY REGULATION BY SINGLE MOLECULE STUDIES. ACTA ACUST UNITED AC 2014. [DOI: 10.1142/s1793048013300028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The advent of advanced single molecule measurements heralded the arrival of a wealth of dynamic information revolutionizing our understanding of protein dynamics and behavior in ways not deducible by conventional bulk assays. They offered the direct observation and quantification of the abundance and life time of multiple states and transient intermediates in the energy landscape that are typically averaged out in non-synchronized ensemble measurements, thus providing unprecedented insights into complex biological processes. Here we survey the current state of the art in single-molecule fluorescence microscopy methodology for studying the mechanism of enzymatic activity and the insights on protein functional dynamics. We will initially discuss the strategies employed to date, their limitations and possible ways to overcome them, and finally how single enzyme kinetics can advance our understanding on mechanisms underlying function and regulation of proteins. [Formula: see text]Special Issue Comment: This review focuses on functional dynamics of individual enzymes and is related to the review on ion channels by Lu,44 the reviews on mathematical treatment of Flomenbom45 and Sach et al.,46 and review on FRET by Ruedas-Rama et al.41
Collapse
Affiliation(s)
- SUNE K. JØRGENSEN
- Bio-Nanotechnology Laboratory, Department of Chemistry, Nano-Science Center, Lundbeck Foundation Center, Biomembranes in Nanomedicine University of Copenhagen, 2100 Copenhagen, Denmark
| | - NIKOS S. HATZAKIS
- Bio-Nanotechnology Laboratory, Department of Chemistry, Nano-Science Center, Lundbeck Foundation Center, Biomembranes in Nanomedicine University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
31
|
Basak S, Chattopadhyay K. Studies of protein folding and dynamics using single molecule fluorescence spectroscopy. Phys Chem Chem Phys 2014; 16:11139-49. [DOI: 10.1039/c3cp55219e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
|
33
|
Sultana T, Takagi H, Morimatsu M, Teramoto H, Li CB, Sako Y, Komatsuzaki T. Non-Markovian properties and multiscale hidden Markovian network buried in single molecule time series. J Chem Phys 2013; 139:245101. [DOI: 10.1063/1.4848719] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
34
|
Mashaghi A, Kramer G, Lamb DC, Mayer MP, Tans SJ. Chaperone Action at the Single-Molecule Level. Chem Rev 2013; 114:660-76. [DOI: 10.1021/cr400326k] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Alireza Mashaghi
- AMOLF Institute, Science Park
104, 1098 XG Amsterdam, The Netherlands
| | - Günter Kramer
- Zentrum
für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Don C. Lamb
- Physical
Chemistry, Department of Chemistry, Munich Center for Integrated Protein
Science (CiPSM) and Center for Nanoscience, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Gerhard-Ertl-Building, 81377 Munich, Germany
| | - Matthias P. Mayer
- Zentrum
für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Sander J. Tans
- AMOLF Institute, Science Park
104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
35
|
DeVore MS, Gull SF, Johnson CK. Reconstruction of Calmodulin Single-Molecule FRET States, Dye-Interactions, and CaMKII Peptide Binding by MultiNest and Classic Maximum Entropy. Chem Phys 2013; 422:10.1016/j.chemphys.2012.11.018. [PMID: 24223465 PMCID: PMC3819237 DOI: 10.1016/j.chemphys.2012.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We analyze single molecule FRET burst measurements using Bayesian nested sampling. The MultiNest algorithm produces accurate FRET efficiency distributions from single-molecule data. FRET efficiency distributions recovered by MultiNest and classic maximum entropy are compared for simulated data and for calmodulin labeled at residues 44 and 117. MultiNest compares favorably with maximum entropy analysis for simulated data, judged by the Bayesian evidence. FRET efficiency distributions recovered for calmodulin labeled with two different FRET dye pairs depended on the dye pair and changed upon Ca2+ binding. We also looked at the FRET efficiency distributions of calmodulin bound to the calcium/calmodulin dependent protein kinase II (CaMKII) binding domain. For both dye pairs, the FRET efficiency distribution collapsed to a single peak in the case of calmodulin bound to the CaMKII peptide. These measurements strongly suggest that consideration of dye-protein interactions is crucial in forming an accurate picture of protein conformations from FRET data.
Collapse
Affiliation(s)
- Matthew S. DeVore
- Department of Chemistry, University of Kansas, Lawrence, Kansas, 66045, United States
| | - Stephen F. Gull
- Astrophysics Group, Department of Physics, Cambridge University, Cambridge CB3 0HE, United Kingdom
| | - Carey K. Johnson
- Department of Chemistry, University of Kansas, Lawrence, Kansas, 66045, United States
| |
Collapse
|
36
|
Hamm P, Zewail AH, Fleming GR. A tribute to Robin Hochstrasser. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2013.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
He Y, Lu M, Lu HP. Single-molecule photon stamping FRET spectroscopy study of enzymatic conformational dynamics. Phys Chem Chem Phys 2013; 15:770-5. [PMID: 23085845 PMCID: PMC3657739 DOI: 10.1039/c2cp42944f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fluorescence resonant energy transfer (FRET) from a donor to an acceptor via transition dipole-dipole interactions decreases the donor's fluorescent lifetime. The donor's fluorescent lifetime decreases as the FRET efficiency increases, following the equation: E(FRET) = 1 - τ(DA)/τ(D), where τ(D) and τ(DA) are the donor fluorescence lifetime without FRET and with FRET. Accordingly, the FRET time trajectories associated with single-molecule conformational dynamics can be recorded by measuring the donor's lifetime fluctuations. In this article, we report our work on the use of a Cy3/Cy5-labeled enzyme, HPPK to demonstrate probing single-molecule conformational dynamics in an enzymatic reaction by measuring single-molecule FRET donor lifetime time trajectories. Compared with single-molecule fluorescence intensity-based FRET measurements, single-molecule lifetime-based FRET measurements are independent of fluorescence intensity. The latter has an advantage in terms of eliminating the analysis background noise from the acceptor fluorescence detection leak through noise, excitation light intensity noise, or light scattering noise due to local environmental factors, for example, in a AFM-tip correlated single-molecule FRET measurements. Furthermore, lifetime-based FRET also supports simultaneous single-molecule fluorescence anisotropy.
Collapse
Affiliation(s)
- Yufan He
- Bowling Green State University, Center for Photochemical Sciences, Department of Chemistry, Bowling Green, Ohio 43403, USA.
| | - Maolin Lu
- Bowling Green State University, Center for Photochemical Sciences, Department of Chemistry, Bowling Green, Ohio 43403, USA.
| | - H. Peter Lu
- Bowling Green State University, Center for Photochemical Sciences, Department of Chemistry, Bowling Green, Ohio 43403, USA.
| |
Collapse
|
38
|
Kamagata K, Kawaguchi T, Iwahashi Y, Baba A, Fujimoto K, Komatsuzaki T, Sambongi Y, Goto Y, Takahashi S. Long-Term Observation of Fluorescence of Free Single Molecules To Explore Protein-Folding Energy Landscapes. J Am Chem Soc 2012; 134:11525-32. [DOI: 10.1021/ja3020555] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Kiyoto Kamagata
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai
980-8577, Japan
| | - Toshifumi Kawaguchi
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai
980-8577, Japan
| | - Yoshitomo Iwahashi
- Optonica Corporation, 1-26-11, Matsuigaoka, Kyotanabe,
Kyoto 610-0353, Japan
| | - Akinori Baba
- RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi,
Chuo-ku, Kobe 650-0047, Japan
| | - Kazuya Fujimoto
- Institute for Protein Research, Osaka University, 3-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tamiki Komatsuzaki
- Molecule & Life Nonlinear Sciences Laboratory, Research Institute for Electronic Science, Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo 001-0020, Japan
- Core Research for Evolutional Science and
Technology, Japan Science and Technology Agency, 4-1-8, Honmachi, Kawaguchi, Saitama 332-0012, Japan
| | - Yoshihiro Sambongi
- Core Research for Evolutional Science and
Technology, Japan Science and Technology Agency, 4-1-8, Honmachi, Kawaguchi, Saitama 332-0012, Japan
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4, Kagamiyama, Higashi-Hiroshima,
Hiroshima 739-8528, Japan
| | - Yuji Goto
- Institute for Protein Research, Osaka University, 3-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Takahashi
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai
980-8577, Japan
- Core Research for Evolutional Science and
Technology, Japan Science and Technology Agency, 4-1-8, Honmachi, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
39
|
Wu B, Wang Z, Huang Y, Liu WR. Catalyst-free and site-specific one-pot dual-labeling of a protein directed by two genetically incorporated noncanonical amino acids. Chembiochem 2012; 13:1405-8. [PMID: 22628069 DOI: 10.1002/cbic.201200281] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Bo Wu
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
40
|
Gietl A, Holzmeister P, Grohmann D, Tinnefeld P. DNA origami as biocompatible surface to match single-molecule and ensemble experiments. Nucleic Acids Res 2012; 40:e110. [PMID: 22523083 PMCID: PMC3413134 DOI: 10.1093/nar/gks326] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Single-molecule experiments on immobilized molecules allow unique insights into the dynamics of molecular machines and enzymes as well as their interactions. The immobilization, however, can invoke perturbation to the activity of biomolecules causing incongruities between single molecule and ensemble measurements. Here we introduce the recently developed DNA origami as a platform to transfer ensemble assays to the immobilized single molecule level without changing the nano-environment of the biomolecules. The idea is a stepwise transfer of common functional assays first to the surface of a DNA origami, which can be checked at the ensemble level, and then to the microscope glass slide for single-molecule inquiry using the DNA origami as a transfer platform. We studied the structural flexibility of a DNA Holliday junction and the TATA-binding protein (TBP)-induced bending of DNA both on freely diffusing molecules and attached to the origami structure by fluorescence resonance energy transfer. This resulted in highly congruent data sets demonstrating that the DNA origami does not influence the functionality of the biomolecule. Single-molecule data collected from surface-immobilized biomolecule-loaded DNA origami are in very good agreement with data from solution measurements supporting the fact that the DNA origami can be used as biocompatible surface in many fluorescence-based measurements.
Collapse
Affiliation(s)
- Andreas Gietl
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, 38106 Braunschweig, Germany
| | | | | | | |
Collapse
|
41
|
Rieger R, Nienhaus GU. A combined single-molecule FRET and tryptophan fluorescence study of RNase H folding under acidic conditions. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2011.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Schuler B, Müller-Späth S, Soranno A, Nettels D. Application of confocal single-molecule FRET to intrinsically disordered proteins. Methods Mol Biol 2012; 896:21-45. [PMID: 22821515 DOI: 10.1007/978-1-4614-3704-8_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Intrinsically disordered proteins (IDPs) are characterized by a large degree of conformational heterogeneity. In such cases, classical experimental methods often yield only mean values, averaged over the entire ensemble of molecules. The microscopic distributions of conformations, trajectories, or sequences of events often remain unknown, and with them the underlying molecular mechanisms. Signal averaging can be avoided by observing individual molecules. A particularly versatile method is highly sensitive fluorescence detection. In combination with Förster resonance energy transfer (FRET), distances and conformational dynamics can be investigated in single molecules. This chapter introduces the practical aspects of applying confocal single-molecule FRET experiments to the study of IDPs.
Collapse
Affiliation(s)
- Benjamin Schuler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
43
|
Baba A, Komatsuzaki T. Multidimensional Energy Landscapes in Single-Molecule Biophysics. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/9781118131374.ch11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
44
|
|
45
|
Okamoto K, Terazima M. Quantitative Analysis of Single-Molecule FRET Signals and its Application to Telomere DNA. SINGLE-MOLECULE BIOPHYSICS 2011. [DOI: 10.1002/9781118131374.ch3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
46
|
Torbeev VY, Myong SA, Ha T, Kent SBH. Single-Molecule Studies of HIV-1 Protease Catalysis Enabled by Chemical Protein Synthesis. Isr J Chem 2011. [DOI: 10.1002/ijch.201100102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Single-molecule fluorescence spectroscopy maps the folding landscape of a large protein. Nat Commun 2011; 2:493. [PMID: 21988909 DOI: 10.1038/ncomms1504] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 09/08/2011] [Indexed: 12/17/2022] Open
Abstract
Proteins attain their function only after folding into a highly organized three-dimensional structure. Much remains to be learned about the mechanisms of folding of large multidomain proteins, which may populate metastable intermediate states on their energy landscapes. Here we introduce a novel method, based on high-throughput single-molecule fluorescence experiments, which is specifically geared towards tracing the dynamics of folding in the presence of a plethora of intermediates. We employ this method to characterize the folding reaction of a three-domain protein, adenylate kinase. Using thousands of single-molecule trajectories and hidden Markov modelling, we identify six metastable states on adenylate kinase's folding landscape. Remarkably, the connectivity of the intermediates depends on denaturant concentration; at low concentration, multiple intersecting folding pathways co-exist. We anticipate that the methodology introduced here will find broad applicability in the study of folding of large proteins, and will provide a more realistic scenario of their conformational dynamics.
Collapse
|
48
|
Redox cycling and kinetic analysis of single molecules of solution-phase nitrite reductase. Proc Natl Acad Sci U S A 2011; 108:17269-74. [PMID: 21969548 DOI: 10.1073/pnas.1113572108] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-molecule measurements are a valuable tool for revealing details of enzyme mechanisms by enabling observation of unsynchronized behavior. However, this approach often requires immobilizing the enzyme on a substrate, a process which may alter enzyme behavior. We apply a microfluidic trapping device to allow, for the first time, prolonged solution-phase measurement of single enzymes in solution. Individual redox events are observed for single molecules of a blue nitrite reductase and are used to extract the microscopic kinetic parameters of the proposed catalytic cycle. Changes in parameters as a function of substrate concentration are consistent with a random sequential substrate binding mechanism.
Collapse
|
49
|
Backović M, Price ES, Johnson CK, Ralston JP. A distribution-based method to resolve single-molecule Förster resonance energy transfer observations. J Chem Phys 2011; 134:145101. [PMID: 21495770 DOI: 10.1063/1.3568946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We introduce a new approach to analyze single-molecule Förster resonance energy transfer (FRET) data. The method recognizes that FRET efficiencies assumed by traditional ensemble methods are unobservable for single molecules. We propose instead a method to predict distributions of FRET parameters obtained directly from the data. Distributions of FRET rates, given the data, are precisely defined using Bayesian methods and increase the information derived from the data. Benchmark comparisons find that the response time of the new method outperforms traditional methods of averaging. Our approach makes no assumption about the number or distribution of underlying FRET states. The new method also yields information about joint parameter distributions going beyond the standard framework of FRET analysis. For example, the running distribution of FRET means contains more information than any conceivable single measure of FRET efficiency. The method is tested against simulated data and then applied to a pilot-study sample of calmodulin molecules immobilized in lipid vesicles, revealing evidence for multiple dynamical states.
Collapse
Affiliation(s)
- Mihailo Backović
- Department of Physics & Astronomy. University of Kansas, Lawrence, Kansas 66045, USA.
| | | | | | | |
Collapse
|
50
|
Boghossian AA, Zhang J, Le Floch-Yin FT, Ulissi ZW, Bojo P, Han JH, Kim JH, Arkalgud JR, Reuel NF, Braatz RD, Strano MS. The chemical dynamics of nanosensors capable of single-molecule detection. J Chem Phys 2011; 135:084124. [DOI: 10.1063/1.3606496] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|