1
|
Rachadech W, Kato Y, Abou El-Magd RM, Shishido Y, Kim SH, Sogabe H, Maita N, Yorita K, Fukui K. P219L substitution in human D-amino acid oxidase impacts the ligand binding and catalytic efficiency. J Biochem 2021; 168:557-567. [PMID: 32730563 DOI: 10.1093/jb/mvaa083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/23/2020] [Indexed: 11/13/2022] Open
Abstract
Human D-amino acid oxidase (DAO) is a flavoenzyme that is implicated in neurodegenerative diseases. We investigated the impact of replacement of proline with leucine at Position 219 (P219L) in the active site lid of human DAO on the structural and enzymatic properties, because porcine DAO contains leucine at the corresponding position. The turnover numbers (kcat) of P219L were unchanged, but its Km values decreased compared with wild-type, leading to an increase in the catalytic efficiency (kcat/Km). Moreover, benzoate inhibits P219L with lower Ki value (0.7-0.9 µM) compared with wild-type (1.2-2.0 µM). Crystal structure of P219L in complex with flavin adenine dinucleotide (FAD) and benzoate at 2.25 Å resolution displayed conformational changes of the active site and lid. The distances between the H-bond-forming atoms of arginine 283 and benzoate and the relative position between the aromatic rings of tyrosine 224 and benzoate were changed in the P219L complex. Taken together, the P219L substitution leads to an increase in the catalytic efficiency and binding affinity for substrates/inhibitors due to these structural changes. Furthermore, an acetic acid was located near the adenine ring of FAD in the P219L complex. This study provides new insights into the structure-function relationship of human DAO.
Collapse
Affiliation(s)
- Wanitcha Rachadech
- Division of Enzyme Pathophysiology, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan.,Division of Chemistry, Faculty of Science, Udon Thani Rajabhat University, 64 Thahan Road, Muang, Udon Thani 41000, Thailand
| | - Yusuke Kato
- Division of Enzyme Pathophysiology, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Rabab M Abou El-Magd
- Division of Enzyme Pathophysiology, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Yuji Shishido
- Division of Enzyme Pathophysiology, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Soo Hyeon Kim
- Division of Enzyme Pathophysiology, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Hirofumi Sogabe
- Division of Enzyme Pathophysiology, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Nobuo Maita
- Division of Disease Proteomics, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Kazuko Yorita
- Division of Enzyme Pathophysiology, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Kiyoshi Fukui
- Division of Enzyme Pathophysiology, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| |
Collapse
|
2
|
Kiss DJ, Ferenczy GG. A detailed mechanism of the oxidative half-reaction of d-amino acid oxidase: another route for flavin oxidation. Org Biomol Chem 2020; 17:7973-7984. [PMID: 31407761 DOI: 10.1039/c9ob00975b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
d-Amino acid oxidase (DAAO) is a flavoenzyme whose inhibition is expected to have therapeutic potential in schizophrenia. DAAO catalyses hydride transfer from the substrate to the flavin in the reductive half-reaction, and the flavin is reoxidized by O2 in the oxidative half-reaction. Quantum mechanical/molecular mechanical calculations were performed and their results together with available experimental information were used to elucidate the detailed mechanism of the oxidative half-reaction. The reaction starts with a single electron transfer from FAD to O2, followed by triplet-singlet transition. FAD oxidation is completed by a proton coupled electron transfer to the oxygen species and the reaction terminates with H2O2 formation by proton transfer from the oxidized substrate to the oxygen species via a chain of water molecules. The substrate plays a double role by facilitating the first electron transfer and by providing a proton in the last step. The mechanism differs from the oxidative half-reaction of other oxidases.
Collapse
Affiliation(s)
- Dóra Judit Kiss
- Doctoral School of Chemistry, Eötvös Loránd University, Pázmány s 1/A, H-1117, Budapest, Hungary. and Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt 2, H-1117, Budapest, Hungary.
| | - György G Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt 2, H-1117, Budapest, Hungary.
| |
Collapse
|
3
|
Zollitsch TM, Jarocha LE, Bialas C, Henbest KB, Kodali G, Dutton PL, Moser CC, Timmel CR, Hore PJ, Mackenzie SR. Magnetically Sensitive Radical Photochemistry of Non-natural Flavoproteins. J Am Chem Soc 2018; 140:8705-8713. [PMID: 29940116 DOI: 10.1021/jacs.8b03104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is a remarkable fact that ∼50 μT magnetic fields can alter the rates and yields of certain free-radical reactions and that such effects might be the basis of the light-dependent ability of migratory birds to sense the direction of the Earth's magnetic field. The most likely sensory molecule at the heart of this chemical compass is cryptochrome, a flavin-containing protein that undergoes intramolecular, blue-light-induced electron transfer to produce magnetically sensitive radical pairs. To learn more about the factors that control the magnetic sensitivity of cryptochromes, we have used a set of de novo designed protein maquettes that self-assemble as four-α-helical proteins incorporating a single tryptophan residue as an electron donor placed approximately 0.6, 1.1, or 1.7 nm away from a covalently attached riboflavin as chromophore and electron acceptor. Using a specifically developed form of cavity ring-down spectroscopy, we have characterized the photochemistry of these designed flavoprotein maquettes to determine the identities and kinetics of the transient radicals responsible for the magnetic field effects. Given the gross structural and dynamic differences from the natural proteins, it is remarkable that the maquettes show magnetic field effects that are so similar to those observed for cryptochromes.
Collapse
Affiliation(s)
- Tilo M Zollitsch
- Department of Chemistry , University of Oxford, Physical and Theoretical Chemistry Laboratory , Oxford OX1 3QZ , United Kingdom
| | - Lauren E Jarocha
- Department of Chemistry , University of Oxford, Physical and Theoretical Chemistry Laboratory , Oxford OX1 3QZ , United Kingdom
| | - Chris Bialas
- Johnson Research Foundation, Department of Biochemistry and Biophysics , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Kevin B Henbest
- Department of Chemistry , University of Oxford, Centre for Advanced Electron Spin Resonance, Inorganic Chemistry Laboratory , Oxford OX1 3QR , United Kingdom
| | - Goutham Kodali
- Johnson Research Foundation, Department of Biochemistry and Biophysics , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - P Leslie Dutton
- Johnson Research Foundation, Department of Biochemistry and Biophysics , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Christopher C Moser
- Johnson Research Foundation, Department of Biochemistry and Biophysics , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Christiane R Timmel
- Department of Chemistry , University of Oxford, Centre for Advanced Electron Spin Resonance, Inorganic Chemistry Laboratory , Oxford OX1 3QR , United Kingdom
| | - P J Hore
- Department of Chemistry , University of Oxford, Physical and Theoretical Chemistry Laboratory , Oxford OX1 3QZ , United Kingdom
| | - Stuart R Mackenzie
- Department of Chemistry , University of Oxford, Physical and Theoretical Chemistry Laboratory , Oxford OX1 3QZ , United Kingdom
| |
Collapse
|
4
|
Murtas G, Sacchi S, Valentino M, Pollegioni L. Biochemical Properties of Human D-Amino Acid Oxidase. Front Mol Biosci 2017; 4:88. [PMID: 29326945 PMCID: PMC5737116 DOI: 10.3389/fmolb.2017.00088] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/05/2017] [Indexed: 02/03/2023] Open
Abstract
D-amino acid oxidase catalyzes the oxidative deamination of D-amino acids. In the brain, the NMDA receptor coagonist D-serine has been proposed as its physiological substrate. In order to shed light on the mechanisms regulating D-serine concentration at the cellular level, we biochemically characterized human DAAO (hDAAO) in greater depth. In addition to clarify the physical-chemical properties of the enzyme, we demonstrated that divalent ions and nucleotides do not affect flavoenzyme function. Moreover, the definition of hDAAO substrate specificity demonstrated that D-cysteine is the best substrate, which made it possible to propose it as a putative physiological substrate in selected tissues. Indeed, the flavoenzyme shows a preference for hydrophobic amino acids, some of which are molecules relevant in neurotransmission, i.e., D-kynurenine, D-DOPA, and D-tryptophan. hDAAO shows a very low affinity for the flavin cofactor. The apoprotein form exists in solution in equilibrium between two alternative conformations: the one at higher affinity for FAD is favored in the presence of an active site ligand. This may represent a mechanism to finely modulate hDAAO activity by substrate/inhibitor presence. Taken together, the peculiar properties of hDAAO seem to have evolved in order to use this flavoenzyme in different tissues to meet different physiological needs related to D-amino acids.
Collapse
Affiliation(s)
- Giulia Murtas
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Silvia Sacchi
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy.,The Protein Factory, Politecnico di Milano and Università degli Studi dell'Insubria, Milan, Italy
| | - Mattia Valentino
- The Protein Factory, Politecnico di Milano and Università degli Studi dell'Insubria, Milan, Italy.,Sezione Adolfo Quilico, Istituto di Chimica del Riconoscimento Molecolare, CNR, Milan, Italy
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy.,The Protein Factory, Politecnico di Milano and Università degli Studi dell'Insubria, Milan, Italy
| |
Collapse
|
5
|
Bialas C, Jarocha LE, Henbest KB, Zollitsch TM, Kodali G, Timmel CR, Mackenzie SR, Dutton PL, Moser CC, Hore PJ. Engineering an Artificial Flavoprotein Magnetosensor. J Am Chem Soc 2016; 138:16584-16587. [PMID: 27958724 DOI: 10.1021/jacs.6b09682] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Migratory birds use the Earth's magnetic field as a source of navigational information. This light-dependent magnetic compass is thought to be mediated by cryptochrome proteins in the retina. Upon light activation, electron transfer between the flavin adenine dinucleotide cofactor and tryptophan residues leads to the formation of a spin-correlated radical pair, whose subsequent fate is sensitive to external magnetic fields. To learn more about the functional requirements of this complex chemical compass, we have created a family of simplified, adaptable proteins-maquettes-that contain a single tryptophan residue at different distances from a covalently bound flavin. Despite the complete absence of structural resemblance to the native cryptochrome fold or sequence, the maquettes exhibit a strong magnetic field effect that rivals those observed in the natural proteins in vitro. These novel maquette designs offer unprecedented flexibility to explore the basic requirements for magnetic sensing in a protein environment.
Collapse
Affiliation(s)
- Chris Bialas
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Lauren E Jarocha
- Department of Chemistry, University of Oxford , Physical and Theoretical Chemistry Laboratory, Oxford OX1 3QZ, United Kingdom
| | - Kevin B Henbest
- Department of Chemistry, University of Oxford , Inorganic Chemistry Laboratory, Oxford OX1 3QR, United Kingdom
| | - Tilo M Zollitsch
- Department of Chemistry, University of Oxford , Physical and Theoretical Chemistry Laboratory, Oxford OX1 3QZ, United Kingdom
| | - Goutham Kodali
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Christiane R Timmel
- Department of Chemistry, University of Oxford , Inorganic Chemistry Laboratory, Oxford OX1 3QR, United Kingdom
| | - Stuart R Mackenzie
- Department of Chemistry, University of Oxford , Physical and Theoretical Chemistry Laboratory, Oxford OX1 3QZ, United Kingdom
| | - P Leslie Dutton
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Christopher C Moser
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - P J Hore
- Department of Chemistry, University of Oxford , Physical and Theoretical Chemistry Laboratory, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
6
|
Katane M, Matsuda S, Saitoh Y, Sekine M, Furuchi T, Koyama N, Nakagome I, Tomoda H, Hirono S, Homma H. The Antiviral Drug Acyclovir Is a Slow-Binding Inhibitor of d-Amino Acid Oxidase. Biochemistry 2013; 52:5665-74. [DOI: 10.1021/bi400478a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Masumi Katane
- Laboratory of Biomolecular Science,
Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641,
Japan
| | - Satsuki Matsuda
- Laboratory of Biomolecular Science,
Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641,
Japan
| | - Yasuaki Saitoh
- Laboratory of Biomolecular Science,
Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641,
Japan
| | - Masae Sekine
- Laboratory of Biomolecular Science,
Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641,
Japan
| | - Takemitsu Furuchi
- Laboratory of Biomolecular Science,
Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641,
Japan
| | - Nobuhiro Koyama
- Laboratory of Microbial
Chemistry,
Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641,
Japan
| | - Izumi Nakagome
- Laboratory of Physical
Chemistry
for Drug Design, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo
108-8641, Japan
| | - Hiroshi Tomoda
- Laboratory of Microbial
Chemistry,
Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641,
Japan
| | - Shuichi Hirono
- Laboratory of Physical
Chemistry
for Drug Design, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo
108-8641, Japan
| | - Hiroshi Homma
- Laboratory of Biomolecular Science,
Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641,
Japan
| |
Collapse
|
7
|
Katane M, Osaka N, Matsuda S, Maeda K, Kawata T, Saitoh Y, Sekine M, Furuchi T, Doi I, Hirono S, Homma H. Identification of Novel d-Amino Acid Oxidase Inhibitors by in Silico Screening and Their Functional Characterization in Vitro. J Med Chem 2013; 56:1894-907. [DOI: 10.1021/jm3017865] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Masumi Katane
- Laboratory of Biomolecular Science,
Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1
Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Naoko Osaka
- Laboratory of Biomolecular Science,
Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1
Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Satsuki Matsuda
- Laboratory of Biomolecular Science,
Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1
Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kazuhiro Maeda
- Laboratory of Biomolecular Science,
Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1
Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tomonori Kawata
- Laboratory of Biomolecular Science,
Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1
Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yasuaki Saitoh
- Laboratory of Biomolecular Science,
Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1
Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masae Sekine
- Laboratory of Biomolecular Science,
Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1
Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takemitsu Furuchi
- Laboratory of Biomolecular Science,
Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1
Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Issei Doi
- Laboratory of Physical Chemistry
for Drug Design, Graduate School of Pharmaceutical Sciences, Kitasato
University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- First Research Department, Toyama
Chemical Co., Ltd., 2-4-1 Shimookui, Toyama, Toyama 930-8508, Japan
| | - Shuichi Hirono
- Laboratory of Physical Chemistry
for Drug Design, Graduate School of Pharmaceutical Sciences, Kitasato
University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroshi Homma
- Laboratory of Biomolecular Science,
Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1
Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
8
|
|
9
|
Structure–function relationships in human d-amino acid oxidase. Amino Acids 2012; 43:1833-50. [DOI: 10.1007/s00726-012-1345-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/16/2012] [Indexed: 01/01/2023]
|
10
|
Potential pathophysiological role of D-amino acid oxidase in schizophrenia: immunohistochemical and in situ hybridization study of the expression in human and rat brain. J Neural Transm (Vienna) 2009; 116:1335-47. [PMID: 19685198 DOI: 10.1007/s00702-009-0289-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 07/27/2009] [Indexed: 11/26/2022]
Abstract
D-Amino acid oxidase (DAO) is a peroxisomal flavoenzyme that catalyzes oxidative deamination of a wide range of D-amino acids. Among the possible substrates of DAO in vivo, D-serine is proposed to be a neuromodulator of the N-methyl-D-aspartate (NMDA) type glutamate receptor. The gene for DAO was reported to be associated with schizophrenia. Since DAO is expected to be one of the key enzymes in the regulation of NMDA neurotransmission, the modulation of the enzyme activity is expected to be therapeutical for neuronal disorders. In search of the pathophysiological role of DAO, we analyzed the distribution of DAO mRNA and protein in the rat and human brain. In rat, the distribution of DAO mRNA was newly detected in choroid plexus (CP) epithelial cells in addition to glial cells of pons, medulla oblongata, and especially Bergmann glia of cerebellum. Moreover, to investigate how DAO expression level is altered in schizophrenia, we performed immunohistochemistry in the human brain. In agreement with the results in the rat brain, the immunoreactivity for DAO was detected in glial cells of rhombencephalon and in CP. Furthermore, higher level of DAO expression was observed in schizophrenic CP epithelial cells than that in non-schizophrenic cases. These results suggest that an increase in DAO expression in parts of the brain is involved in aberrant D-amino acid metabolism. In particular, gene expression of DAO in CP suggests that DAO may regulate D-amino acid concentration by modulating the cerebrospinal fluid and may be regarded as a potential therapeutic target for schizophrenia.
Collapse
|
11
|
Heuts DPHM, Scrutton NS, McIntire WS, Fraaije MW. What's in a covalent bond? On the role and formation of covalently bound flavin cofactors. FEBS J 2009; 276:3405-27. [PMID: 19438712 DOI: 10.1111/j.1742-4658.2009.07053.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many enzymes use one or more cofactors, such as biotin, heme, or flavin. These cofactors may be bound to the enzyme in a noncovalent or covalent manner. Although most flavoproteins contain a noncovalently bound flavin cofactor (FMN or FAD), a large number have these cofactors covalently linked to the polypeptide chain. Most covalent flavin-protein linkages involve a single cofactor attachment via a histidyl, tyrosyl, cysteinyl or threonyl linkage. However, some flavoproteins contain a flavin that is tethered to two amino acids. In the last decade, many studies have focused on elucidating the mechanism(s) of covalent flavin incorporation (flavinylation) and the possible role(s) of covalent protein-flavin bonds. These endeavors have revealed that covalent flavinylation is a post-translational and self-catalytic process. This review presents an overview of the known types of covalent flavin bonds and the proposed mechanisms and roles of covalent flavinylation.
Collapse
Affiliation(s)
- Dominic P H M Heuts
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | | | | | | |
Collapse
|
12
|
Iwana S, Kawazoe T, Park HK, Tsuchiya K, Ono K, Yorita K, Sakai T, Kusumi T, Fukui K. Chlorpromazine oligomer is a potentially active substance that inhibits human D-amino acid oxidase, product of a susceptibility gene for schizophrenia. J Enzyme Inhib Med Chem 2009; 23:901-11. [PMID: 18615285 DOI: 10.1080/14756360701745478] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
D-amino acid oxidase (DAO), a potential risk factor for schizophrenia, has been proposed to be involved in the decreased glutamatergic neurotransmission in schizophrenia. Here we show the inhibitory effect of an antipsychotic drug, chlorpromazine, on human DAO, which is consistent with previous reports using porcine DAO, although human DAO was inhibited to a lesser degree (K(i) = 0.7 mM) than porcine DAO. Since chlorpromazine is known to induce phototoxic or photoallergic reactions and also to be transformed into various metabolites, we examined the effects of white light-irradiated chlorpromazine on the enzymatic activity. Analytical methods including high-resolution mass spectrometry revealed that irradiation triggered the oligomerization of chlorpromazine molecules. The oligomerized chlorpromazine showed a mixed type inhibition with inhibition constants of low micromolar range, indicative of enhanced inhibition. Taken together, these results suggest that oligomerized chlorpromazine could act as an active substance that might contribute to the therapeutic effects of this drug.
Collapse
Affiliation(s)
- Sanae Iwana
- The Institute for Enzyme Research, The University of Tokushima, Tokushima, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kawazoe T, Park HK, Iwana S, Tsuge H, Fukui K. Human D-amino acid oxidase: an update and review. CHEM REC 2008; 7:305-15. [PMID: 17924443 DOI: 10.1002/tcr.20129] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The flavoprotein D-amino acid oxidase (DAO) degrades the gliotransmitter D-Ser, a potent activator of N-methyl-D-aspartate-type glutamate receptors. A body of evidence suggests that DAO, together with its activator, G72 protein, may play a key role in the pathophysiology of schizophrenia. It has also been suggested that 3,4-dihydroxy-D-phenylalanine (D-DOPA), the stereoisomer of 3,4-dihydroxy-L-phenylalanine (L-DOPA), is oxidized by DAO and converted to dopamine via an alternative biosynthetic pathway. We determined the crystal structures of human DAO in complex with the reaction products of two clinically important substrates, D-Ser and D-DOPA. Kinetic data show that the maximum velocity is much greater for D-DOPA than that for D-Ser, which strongly supports the proposed alternative pathway for dopamine biosynthesis in the treatment of Parkinson's disease. In addition, biochemical characterization of human DAO indicates that it binds FAD more weakly than does porcine D-amino acid oxidase (pDAO) and exists as a stable homodimer, even in the apoprotein form. Determination of the structures of human DAO in various states reveals that, in contrast to pDAO, the hydrophobic-Val-Ala-Ala-Gly-Leu (VAAGL) stretch (residues 47-51, structurally ambivalent peptide) located at the si-face of the flavin ring assumes a uniquely stable conformation, which provides a structural basis for the unique kinetic features of human DAO.
Collapse
Affiliation(s)
- Tomoya Kawazoe
- Institute for Enzyme Research, The University of Tokushima, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | | | | | | | | |
Collapse
|
14
|
Kawazoe T, Tsuge H, Imagawa T, Aki K, Kuramitsu S, Fukui K. Structural basis of D-DOPA oxidation by D-amino acid oxidase: alternative pathway for dopamine biosynthesis. Biochem Biophys Res Commun 2007; 355:385-91. [PMID: 17303072 DOI: 10.1016/j.bbrc.2007.01.181] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 01/30/2007] [Indexed: 11/17/2022]
Abstract
D-amino acid oxidase (DAO) degrades the gliotransmitter D-serine, a potent endogenous ligand of N-methyl-D-aspartate type glutamate receptors. It also has been suggested that D-DOPA, the stereoisomer of L-DOPA, is oxidized by DAO and then converted to dopamine via an alternative biosynthetic pathway. Here, we provide direct crystallographic evidence that D-DOPA is readily fitted into the active site of human DAO, where it is oxidized by the enzyme. Moreover, our kinetic data show that the maximal velocity for oxidation of D-DOPA is much greater than for D-serine, which strongly supports the proposed alternative pathway for dopamine biosynthesis in the treatment of Parkinson's disease. In addition, determination of the structures of human DAO in various states revealed that the conformation of the hydrophobic VAAGL stretch (residues 47-51) to be uniquely stable in the human enzyme, which provides a structural basis for the unique kinetic features of human DAO.
Collapse
Affiliation(s)
- Tomoya Kawazoe
- The Institute for Enzyme Research, The University of Tokushima, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Kawazoe T, Tsuge H, Pilone MS, Fukui K. Crystal structure of human D-amino acid oxidase: context-dependent variability of the backbone conformation of the VAAGL hydrophobic stretch located at the si-face of the flavin ring. Protein Sci 2006; 15:2708-17. [PMID: 17088322 PMCID: PMC2242440 DOI: 10.1110/ps.062421606] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In the brain, the extensively studied FAD-dependent enzyme D-amino acid oxidase (DAO) degrades the gliotransmitter D-serine, a potent activator of N-methyl-D-aspartate type glutamate receptors, and evidence suggests that DAO, together with its activator G72 protein, may play a key role in the pathophysiology of schizophrenia. Indeed, its potential clinical importance highlights the need for structural and functional analyses of human DAO. We recently succeeded in purifying human DAO, and found that it weakly binds FAD and shows a significant slower rate of flavin reduction compared with porcine DAO. However, the molecular basis for the different kinetic features remains unclear because the active site of human DAO was considered to be virtually identical to that of porcine DAO, as would be expected from the 85% sequence identity. To address this issue, we determined the crystal structure of human DAO in complex with a competitive inhibitor benzoate, at a resolution of 2.5 Angstrom. The overall dimeric structure of human DAO is similar to porcine DAO, and the catalytic residues are fully conserved at the re-face of the flavin ring. However, at the si-face of the flavin ring, despite the strict sequence identity, a hydrophobic stretch (residues 47-51, VAAGL) exists in a significantly different conformation compared with both of the independently determined porcine DAO-benzoate structures. This suggests that a context-dependent conformational variability of the hydrophobic stretch accounts for the low affinity for FAD as well as the slower rate of flavin reduction, thus highlighting the unique features of the human enzyme.
Collapse
Affiliation(s)
- Tomoya Kawazoe
- The Institute for Enzyme Research, The University of Tokushima, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | | | | | | |
Collapse
|
16
|
Molla G, Sacchi S, Bernasconi M, Pilone MS, Fukui K, Polegioni L. Characterization of human D-amino acid oxidase. FEBS Lett 2006; 580:2358-64. [PMID: 16616139 DOI: 10.1016/j.febslet.2006.03.045] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 03/09/2006] [Accepted: 03/12/2006] [Indexed: 10/24/2022]
Abstract
D-Amino acid oxidase (DAAO) has been proposed to be involved in the oxidation of D-serine, an allosteric activator of the NMDA-type glutamate receptor in the brain, and to be associated with the onset of schizophrenia. The recombinant human DAAO was expressed in Escherichia coli and was isolated as an active homodimeric flavoenzyme. It shows the properties of the dehydrogenase-oxidase class of flavoproteins, possesses a low kinetic efficiency, and follows a ternary complex (sequential) kinetic mechanism. In contrast to the other known DAAOs, the human enzyme is a stable homodimer even in the apoprotein form and weakly binds the cofactor in the free form.
Collapse
Affiliation(s)
- Gianluca Molla
- Department of Biotechnology and Molecular Sciences, University of Insubria, Varese, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Brandish PE, Chiu CS, Schneeweis J, Brandon NJ, Leech CL, Kornienko O, Scolnick EM, Strulovici B, Zheng W. A Cell-Based Ultra-High-Throughput Screening Assay for Identifying Inhibitors of D-Amino Acid Oxidase. ACTA ACUST UNITED AC 2006; 11:481-7. [PMID: 16760370 DOI: 10.1177/1087057106288181] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Enzymes are often considered less “druggable” targets than ligand-regulated proteins such as G-protein-coupled receptors, ion channels, or other hormone receptors. Reasons for this include cellular location (intracellular vs. cell surface), typically lower affinities for the binding of small molecules compared to ligand-specific receptors, and binding (catalytic) sites that are often charged or highly polar. A practical drawback to the discovery of compounds targeting enzymes is that screening of compound libraries is typically carried out in cell-free activity assays using purified protein in an inherently artificial environment. Cell-based assays, although often arduous to design for enzyme targets, are the preferred discovery tool for the screening of large compound libraries. The authors have recently described a novel cell-based approach to screening for inhibitors of a phosphatase enzyme and now report on the development and implementation of a homogeneous 3456-well plate assay for D-amino acid oxidase (DAO). Human DAO was stably expressed in Chinese hamster ovary (CHO) cells, and its activity was measured as the amount of hydrogen peroxide detected in the growth medium following feeding the cells with D-serine. In less than 12 weeks, the authors proved the concept in 96-and then 384-well formats, miniaturized the assay to the 3456-well (nanoplate) scale, and screened a library containing more than 1 million compounds. They have identified several cell-permeable inhibitors of DAO from this cell-based high-throughput screening, which provided the discovery program with a few novel and attractive lead structures.
Collapse
|
18
|
Park HK, Shishido Y, Ichise-Shishido S, Kawazoe T, Ono K, Iwana S, Tomita Y, Yorita K, Sakai T, Fukui K. Potential Role for Astroglial d-Amino Acid Oxidase in Extracellular d-Serine Metabolism and Cytotoxicity. ACTA ACUST UNITED AC 2006; 139:295-304. [PMID: 16452318 DOI: 10.1093/jb/mvj036] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
D-amino acid oxidase (DAO) is a flavoenzyme that catalyzes the oxidation of D-amino acids. In the brain, gene expression of DAO is detected in astrocytes. Among the possible substrates of DAO in vivo, D-serine is proposed to be a neuromodulator of the N-methyl-D-aspartate (NMDA) receptor. In a search for the physiological role of DAO in the brain, we investigated the metabolism of extracellular D-serine in glial cells. Here we show that after D-serine treatment, rat primary type-1 astrocytes exhibited increased cell death. In order to enhance the enzyme activity of DAO in cells, we established stable rat C6 glial cells overexpressing mouse DAO designated as C6/DAO. Treatment with a high dose of D-serine led to the production of hydrogen peroxide (H(2)O(2)) followed by apoptosis in C6/DAO cells. Among the amino acids tested, D-serine specifically exhibited a significant cell death-inducing effect. DAO inhibitors, i.e., sodium benzoate and chlorpromazine, partially prevented the death of C6/DAO cells treated with D-serine, indicating the involvement of DAO activity in d-serine metabolism. Overall, we consider that extracellular D-serine can gain access to intracellular DAO, being metabolized to produce H(2)O(2). These results support the proposal that astroglial DAO plays an important role in metabolizing a neuromodulator, D-serine.
Collapse
Affiliation(s)
- Hwan Ki Park
- Department of Gene Regulatorics, The Institute for Enzyme Research, The University of Tokushima, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Qi D, Tann CM, Haring D, Distefano MD. Generation of new enzymes via covalent modification of existing proteins. Chem Rev 2001; 101:3081-111. [PMID: 11710063 DOI: 10.1021/cr000059o] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D Qi
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|