1
|
Banerjee D, Tateishi-Karimata H, Toplishek M, Ohyama T, Ghosh S, Takahashi S, Trajkovski M, Plavec J, Sugimoto N. In-Cell Stability Prediction of RNA/DNA Hybrid Duplexes for Designing Oligonucleotides Aimed at Therapeutics. J Am Chem Soc 2023; 145:23503-23518. [PMID: 37873979 DOI: 10.1021/jacs.3c06706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In cells, the formation of RNA/DNA hybrid duplexes regulates gene expression and modification. The environment inside cellular organelles is heterogeneously crowded with high concentrations of biomolecules that affect the structure and stability of RNA/DNA hybrid duplexes. However, the detailed environmental effects remain unclear. Therefore, the mechanistic details of the effect of such molecular crowding were investigated at the molecular level by using thermodynamic and nuclear magnetic resonance analyses, revealing structure-dependent destabilization of the duplexes under crowded conditions. The transition from B- to A-like hybrid duplexes due to a change in conformation of the DNA strand guided by purine-pyrimidine asymmetry significantly increased the hydration number, which resulted in greater destabilization by the addition of cosolutes. By quantifying the individual contributions of environmental factors and the bulk structure of the duplex, we developed a set of parameters that predict the stability of hybrid duplexes with conformational dissimilarities under diverse crowding conditions. A comparison of the effects of environmental conditions in living cells and in vitro crowded solutions on hybrid duplex formation using the Förster resonance energy transfer technique established the applicability of our parameters to living cells. Moreover, our derived parameters can be used to estimate the efficiency of transcriptional inhibition, genome editing, and silencing techniques in cells. This supports the usefulness of our parameters for the visualization of cellular mechanisms of gene expression and the development of nucleic acid-based therapeutics targeting different cells.
Collapse
Affiliation(s)
- Dipanwita Banerjee
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Maria Toplishek
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Tatsuya Ohyama
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Saptarshi Ghosh
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Shuntaro Takahashi
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Marko Trajkovski
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- EN → FIST Centre of Excellence, Trg Osvobodilne fronte 13, SI-1001 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
2
|
Park JS, Baek A, Park IS, Jun BH, Kim DE. A graphene oxide-based platform for the assay of RNA synthesis by RNA polymerase using a fluorescent peptide nucleic acid probe. Chem Commun (Camb) 2013; 49:9203-5. [PMID: 23995852 DOI: 10.1039/c3cc45750h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report a simple, direct fluorometric assay based on graphene oxide (GO) for RNA polymerase-mediated RNA synthesis. In principle, fluorescent peptide nucleic acid (PNA) probes were designed, and annealed with RNA products and the resultant RNA-PNA hybrids induced the recovery of fluorescence intensity of the PNA probes adsorbed onto the GO surface.
Collapse
Affiliation(s)
- Joon Soo Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea.
| | | | | | | | | |
Collapse
|
3
|
Tahirov TH, Temiakov D, Anikin M, Patlan V, McAllister WT, Vassylyev DG, Yokoyama S. Structure of a T7 RNA polymerase elongation complex at 2.9 A resolution. Nature 2002; 420:43-50. [PMID: 12422209 DOI: 10.1038/nature01129] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2002] [Accepted: 09/19/2002] [Indexed: 01/22/2023]
Abstract
The single-subunit bacteriophage T7 RNA polymerase carries out the transcription cycle in an identical manner to that of bacterial and eukaryotic multisubunit enzymes. Here we report the crystal structure of a T7 RNA polymerase elongation complex, which shows that incorporation of an 8-base-pair RNA-DNA hybrid into the active site of the enzyme induces a marked rearrangement of the amino-terminal domain. This rearrangement involves alternative folding of about 130 residues and a marked reorientation (about 130 degrees rotation) of a stable core subdomain, resulting in a structure that provides elements required for stable transcription elongation. A wide opening on the enzyme surface that is probably an RNA exit pathway is formed, and the RNA-DNA hybrid is completely buried in a newly formed, deep protein cavity. Binding of 10 base pairs of downstream DNA is stabilized mostly by long-distance electrostatic interactions. The structure implies plausible mechanisms for the various phases of the transcription cycle, and reveals important structural similarities with the multisubunit RNA polymerases.
Collapse
Affiliation(s)
- Tahir H Tahirov
- High Throughput Factory, RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo, Hyogo 679-5148, Japan
| | | | | | | | | | | | | |
Collapse
|