1
|
Marshall KS, Cohen MJ, Fonseca GJ, Todorovic B, King CR, Yousef AF, Zhang Z, Mymryk JS. Identification and characterization of multiple conserved nuclear localization signals within adenovirus E1A. Virology 2014; 454-455:206-14. [DOI: 10.1016/j.virol.2014.02.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/18/2013] [Accepted: 02/19/2014] [Indexed: 11/25/2022]
|
2
|
Aggression, digit ratio, and variation in the androgen receptor, serotonin transporter, and dopamine D4 receptor genes in African foragers: the Hadza. Behav Genet 2012; 42:647-62. [PMID: 22392544 DOI: 10.1007/s10519-012-9533-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 02/15/2012] [Indexed: 02/07/2023]
Abstract
The role of genes in the expression of aggression and masculinity traits in humans has been a focus of recent behavioral genetic studies. This is the first study on the variation in aggression, the digit ratio (the ratio between the second and the fourth digits, 2D:4D), the directional asymmetry in 2D:4D (D(R-L)) and polymorphisms of the AR, DRD4, and 5-HTTL genes in simple hunter-gatherers, namely the Hadza of Tanzania (142 adult men). The distribution of AR, DRD4E3, and 5-HTTLPR genotypes and allele frequencies in Hadza was compared to other African populations on which the data were available. Hadza and Ariaal differed significantly in the distributions of frequencies of AR alleles with different numbers of CAG repeats. Hadza population was similar to other African populations in the distribution of allelic frequencies of the DRD4E3 locus, and to Afro-Americans in the distribution of allelic types of the 5-HTTLPR locus. We found no influence of AR gene on the right hand 2D:4D ratio, D(R-L), and any of aggression subscales of the Buss-Perry Aggression Questionnaire (AQ). Although, a weak positive correlation between CAG repeats and the left hand 2D:4D was found. The multiple regression analysis with digit ratios, D(R-L) and aggression subscales of AQ as dependent variables and the three gene candidates (AR, DRD4E3, and 5-HTTLPR) as independent variables revealed the following: men with lower number of CAG repeats had significantly lower left hand 2D:4D ratio; men with higher numbers of 48-bp unit copies in exon 3 of a VNTR polymorphism in the DRD4 gene had significantly lower digit ratios on both hands; no effect of the 5-HTTLPR gene on either the digit ratio or aggressive behavior. These findings demonstrate the complexity of gene effects on digit ratios and aggression and call for simultaneous analysis of more candidate genes. It is noteworthy that these results were obtained for a human population that is still practicing foraging and has been subjected to a high selective pressure due to harsh environments and practically has no access to modern medical care. Hadza are highly egalitarian, and their culture does not favor persons with a dominant or aggressive behavior. It is still to be found to what extent the relationships observed in this study are similar to those in other human populations.
Collapse
|
3
|
The stimulatory effect of salsolinol on prolactin gene expression within the anterior pituitary of lactating sheep: In vivo and in vitro study. Small Rumin Res 2012. [DOI: 10.1016/j.smallrumres.2011.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Abstract
Prolactinomas are the most common hormonally active pituitary tumors and are usually successfully treated with dopamine agonists. A small proportion, however, appears not to respond to such treatment and such cases are termed resistant prolactinomas. Resistance is generally defined as failure to achieve normoprolactinemia and inability to induce tumor shrinkage. Reduced dopamine receptor density on lactotroph cells is currently considered the major underlying mechanism of resistance. Treatment options in resistant cases usually include substitution with another dopamine agonist, increasing the dose of the drug, as well as surgery, radiotherapy, and experimental medical therapies.
Collapse
Affiliation(s)
- V Vasilev
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Belgium
| | | | | | | | | |
Collapse
|
5
|
Liu Z, Shi ZD, Liu Y, Li MY, Huang YM, Yao BH. Molecular cloning and characterisation of the Magang goose prolactin gene. Gen Comp Endocrinol 2008; 155:208-16. [PMID: 17570367 DOI: 10.1016/j.ygcen.2007.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 04/20/2007] [Accepted: 04/23/2007] [Indexed: 11/21/2022]
Abstract
In studying the roles of prolactin in regulation of seasonal reproduction, incubation, broodiness and laying performance in goose, the goose PRL gene was cloned in Magang goose. The goose PRL cDNA shared 98.4%, 92.2%, 92%, and 91.9% sequence homology to duck, turkey, chicken and quail PRLs, respectively. The goose PRL gene consisted of 5 exons and 4 introns, just as in other species. The 5' proximal regulatory region shared high homology with those in other avian species as well, and, apart from other non-specific transcription factor binding sites, contained 2 regulatory element binding sites, a Pit-1 (-130/-122) and a VIP response element (-64/-53). The deduced 199-residue mature goose PRL shared 98.5%, 94%, 93%, and 92% homology to duck, quail, chicken, and turkey PRLs, respectively. When compared with other vertebrates, all residues were found to be highly conserved at the key positions in the 4 conserved domains (PD1-PD4), including the 6 cysteine residues at positions 4, 11, 58, 175, 191, and 199. The only exception was a substitution of Arginine by Histidine at position 176 in the mature PRL peptide. These findings render goose PRL as having a similar hydropathy profile and similar secondary and tertiary structures with other PRLs. Goose PRL also possesses an N-linked glycosylation site (Asn-X-Ser), at position 6, and an alternative glycosylation site (Asn-Gly-Cys), at position 56. Five PRL isoforms were detected in goose, as well as in chicken pituitary glands, by immunoblotting analysis. Results of this study not only provided a starting point for further study of PRL function, synthesis, and secretion in goose species, but also for breeding new goose lines efficiently using the genomic information.
Collapse
Affiliation(s)
- Z Liu
- Department of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | | | | | | | | | | |
Collapse
|
6
|
Van Craenenbroeck K, De Bosscher K, Vanden Berghe W, Vanhoenacker P, Haegeman G. Role of glucocorticoids in dopamine-related neuropsychiatric disorders. Mol Cell Endocrinol 2005; 245:10-22. [PMID: 16310935 DOI: 10.1016/j.mce.2005.10.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 10/14/2005] [Indexed: 01/12/2023]
Abstract
'Psychoneuroendocrinology' is now quickly emerging as a hot interdisciplinary research field that addresses the interplay between neuronal and endocrine signaling in psychiatric diseases. Both glucocorticoid hormones and dopamine have an important role in maintaining normal brain functions. In this review, molecular and mechanistic aspects of glucocorticoid effects on brain function and behavior will be discussed with specific reference to dopamine signaling.
Collapse
Affiliation(s)
- Kathleen Van Craenenbroeck
- Laboratory for Eukaryotic Gene Expression and Signal Transduction, LEGEST, Department of Molecular Biology, Ghent University-UGent, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | | | | | | | | |
Collapse
|
7
|
Abstract
Dopamine is a small and relatively simple molecule that fulfills diverse functions. Within the brain, it acts as a classical neurotransmitter whose attenuation or overactivity can result in disorders such as Parkinson's disease and schizophrenia. Major advances in the cloning and characterization of biosynthetic enzymes, transporters, and receptors have increased our knowledge regarding the metabolism, release, reuptake, and mechanism of action of dopamine. Dopamine reaches the pituitary via hypophysial portal blood from several hypothalamic nerve tracts that are regulated by PRL itself, estrogens, and several neuropeptides and neurotransmitters. Dopamine binds to type-2 dopamine receptors that are functionally linked to membrane channels and G proteins and suppresses the high intrinsic secretory activity of the pituitary lactotrophs. In addition to inhibiting PRL release by controlling calcium fluxes, dopamine activates several interacting intracellular signaling pathways and suppresses PRL gene expression and lactotroph proliferation. Thus, PRL homeostasis should be viewed in the context of a fine balance between the action of dopamine as an inhibitor and the many hypothalamic, systemic, and local factors acting as stimulators, none of which has yet emerged as a primary PRL releasing factor. The generation of transgenic animals with overexpressed or mutated genes expanded our understanding of dopamine-PRL interactions and the physiological consequences of their perturbations. PRL release in humans, which differs in many respects from that in laboratory animals, is affected by several drugs used in clinical practice. Hyperprolactinemia is a major neuroendocrine-related cause of reproductive disturbances in both men and women. The treatment of hyperprolactinemia has greatly benefited from the generation of progressively more effective and selective dopaminergic drugs.
Collapse
Affiliation(s)
- N Ben-Jonathan
- Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati Medical Center, Cincinnati, Ohio 45267, USA.
| | | |
Collapse
|
8
|
Williams JC, Stone D, Smith-Arica JR, Morris ID, Lowenstein PR, Castro MG. Regulated, adenovirus-mediated delivery of tyrosine hydroxylase suppresses growth of estrogen-induced pituitary prolactinomas. Mol Ther 2001; 4:593-602. [PMID: 11735344 DOI: 10.1006/mthe.2001.0499] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prolactin-secreting adenomas are one of the most common types of intracranial neoplasm found in humans. The modalities of clinical treatment currently in use include D(2)-dopamine receptor agonists, surgery, and radiotherapy, and the success rates for treatment are good. However, there are prolactinomas that are difficult to treat. As an alternative, we have developed a gene therapy strategy in which the rate-limiting enzyme in dopamine synthesis, tyrosine hydroxylase (TH), is overexpressed in the anterior pituitary (AP) gland. Because dopamine is known to have an inhibitory effect on lactotroph growth and prolactin secretion, we developed a system that would enable its local synthesis from freely available precursor amino acids. A dual adenovirus tetracycline-regulatable expression system was generated to control the production of TH. In the absence but not presence of the tetracycline analog doxycycline, TH expression was observed in AP tumor cell lines AtT20, GH3, and MMQ. In both primary AP cell cultures and the AP gland, in situ expression of TH was seen in lactotrophs, somatotrophs, corticotrophs, thyrotrophs, and gonadotrophs in the absence but not presence of doxycycline. The ability of this system to inhibit hyperprolactinemia and pituitary lactotroph hyperplasia was then assessed in a model of estrogen- or estrogen/sulpiride-induced pituitary tumors. In the absence but not presence of doxycycline, a 49% reduction in pituitary growth and 58% reduction in the increase of circulating prolactin levels were observed in estrogen, but not estrogen/sulpiride, treated rats. These results indicate that in situ dopamine enhancement gene therapy can be a useful tool for the treatment of prolactinoma. Dopamine synthesis can be tightly regulated and the therapeutic benefit of the system is only inhibited when local dopamine signaling is impaired.
Collapse
Affiliation(s)
- J C Williams
- Molecular Medicine and Gene Therapy Unit, School of Medicine, University of Manchester, Room 1.302, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
9
|
Seri I, Somogyvari Z, Hovanyovszky S, Kiszel J, Tulassay T. Developmental regulation of the inhibitory effect of dopamine on prolactin release in the preterm neonate. BIOLOGY OF THE NEONATE 2000; 73:137-44. [PMID: 9535530 DOI: 10.1159/000013970] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The secretion and release of prolactin from the anterior pituitary is under the tonic inhibitory control of endogenous dopamine produced in the central nervous system. Exogenous dopamine inhibits prolactin secretion by reaching the pituitary via the portal circulation, and the hypolactotropic effect of dopamine infusion has been documented in all age groups in humans. However, the maturation of lactotroph sensitivity to dopaminergic inhibition has not been studied. Therefore, we followed the changes in serum prolactin concentrations before, during, and after dopamine infusion in 19 sick preterm infants with a mean gestational age of 30.6+/-0.6 weeks during the first 3 days of life, and examined the relationship of the hypolactotropic effect of dopamine to gestational age and birth weight in this patient population. As expected, dopamine therapy resulted in a decrease in mean serum prolactin from 89.4+/-9.5 to 58.6+/-9.1 microg/l (p < 0.05) with a return of the serum prolactin concentration to the pretreatment level 2-6 h after discontinuation of drug administration (98.3+/-11.7 microg/l, p < 0.05). However, simple regression analysis of the individual data revealed that the magnitude of the dopamine-induced decrease in serum prolactin was significantly influenced by gestational age (p = 0.006) and birthweight (p = 0.037). Thus, our findings provide evidence for the maturation of pituitary lactotroph sensitivity to dopaminergic inhibition in the preterm human neonate.
Collapse
Affiliation(s)
- I Seri
- Department of Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, 19403, USA.
| | | | | | | | | |
Collapse
|
10
|
Ghahremani MH, Forget C, Albert PR. Distinct roles for Galpha(i)2 and Gbetagamma in signaling to DNA synthesis and Galpha(i)3 in cellular transformation by dopamine D2S receptor activation in BALB/c 3T3 cells. Mol Cell Biol 2000; 20:1497-506. [PMID: 10669727 PMCID: PMC85319 DOI: 10.1128/mcb.20.5.1497-1506.2000] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Control of cell proliferation depends on intracellular mediators that determine the cellular response to external cues. In neuroendocrine cells, the dopamine D2 receptor short form (D2S receptor) inhibits cell proliferation, whereas in mesenchymal cells the same receptor enhances cell proliferation. Nontransformed BALB/c 3T3 fibroblast cells were stably transfected with the D2S receptor cDNA to study the G proteins that direct D2S signaling to stimulate cell proliferation. Pertussis toxin inactivates G(i) and G(o) proteins and blocks signaling of the D2S receptor in these cells. D2S receptor signaling was reconstituted by individually transfecting pertussis toxin-resistant Galpha(i/o) subunit mutants and measuring D2-induced responses in pertussis toxin-treated cells. This approach identified Galpha(i)2 and Galpha(i)3 as mediators of the D2S receptor-mediated inhibition of forskolin-stimulated adenylyl cyclase activity; Galpha(i)2-mediated D2S-induced stimulation of p42 and p44 mitogen-activated kinase (MAPK) and DNA synthesis, whereas Galpha(i)3 was required for formation of transformed foci. Transfection of toxin-resistant Galpha(i)1 cDNA induced abnormal cell growth independent of D2S receptor activation, while Galpha(o) inhibited dopamine-induced transformation. The role of Gbetagamma subunits was assessed by ectopic expression of the carboxyl-terminal domain of G protein receptor kinase to selectively antagonize Gbetagamma activity. Mobilization of Gbetagamma subunits was required for D2S-induced calcium mobilization, MAPK activation, and DNA synthesis. These findings reveal a remarkable and distinct G protein specificity for D2S receptor-mediated signaling to initiate DNA synthesis (Galpha(i)2 and Gbetagamma) and oncogenic transformation (Galpha(i)3), and they indicate that acute activation of MAPK correlates with enhanced DNA synthesis but not with transformation.
Collapse
Affiliation(s)
- M H Ghahremani
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | | | | |
Collapse
|
11
|
Ghahremani MH, Cheng P, Lembo PM, Albert PR. Distinct roles for Galphai2, Galphai3, and Gbeta gamma in modulation offorskolin- or Gs-mediated cAMP accumulation and calcium mobilization by dopamine D2S receptors. J Biol Chem 1999; 274:9238-45. [PMID: 10092597 DOI: 10.1074/jbc.274.14.9238] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that a single G protein-coupled receptor can regulate different effector systems by signaling through multiple subtypes of heterotrimeric G proteins. In LD2S fibroblast cells, the dopamine D2S receptor couples to pertussis toxin (PTX)-sensitive Gi/Go proteins to inhibit forskolin- or prostaglandin E1-stimulated cAMP production and to stimulate calcium mobilization. To analyze the role of distinct Galphai/o protein subtypes, LD2S cells were stably transfected with a series of PTX-insensitive Galphai/o protein Cys --> Ser point mutants and assayed for D2S receptor signaling after PTX treatment. The level of expression of the transfected Galpha mutant subunits was similar to the endogenous level of the most abundant Galphai/o proteins (Galphao, Galphai3). D2S receptor-mediated inhibition of forskolin-stimulated cAMP production was retained only in clones expressing mutant Galphai2. In contrast, the D2S receptor utilized Galphai3 to inhibit PGE1-induced (Gs-coupled) enhancement of cAMP production. Following stable or transient transfection, no single or pair set of mutant Galphai/o subtypes rescued the D2S-mediated calcium response following PTX pretreatment. On the other hand, in LD2S cells stably transfected with GRK-CT, a receptor kinase fragment that specifically antagonizes Gbeta gamma subunit activity, D2S receptor-mediated calcium mobilization was blocked. The observed specificity of Galphai2 and Galphai3 for different states of adenylyl cyclase activation suggests a higher level of specificity for interaction of Galphai subunits with forskolin- versus Gs-activated states of adenylyl cyclase than has been previously appreciated.
Collapse
Affiliation(s)
- M H Ghahremani
- Department of Pharmacology and Therapeutics, McGill University, Montreal H3G 1Y6, Canada
| | | | | | | |
Collapse
|
12
|
Trinh KY, Jin T, Drucker DJ. Identification of domains mediating transcriptional activation and cytoplasmic export in the caudal homeobox protein Cdx-3. J Biol Chem 1999; 274:6011-9. [PMID: 10026228 DOI: 10.1074/jbc.274.9.6011] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The caudal genes have important functions in embryonic development and cell differentiation. The caudal-related protein Cdx-2/3 (the protein designated Cdx-2 in the mouse and Cdx-3 in the hamster) is expressed in the gastrointestinal epithelium and in islet and enteroendocrine cells, where it activates proglucagon gene transcription. We show here that Cdx-3 sequences amino-terminal to the homeodomain (amino acids 1-180) function as a heterologous transcriptional activation domain when fused to the LexA DNA binding domain. A Cdx-3-Pit-1 fusion protein containing only the first 83 amino acids of Cdx-3 linked to the POU domain of Pit-1 markedly stimulated the transcriptional activity of a Pit-1-responsive promoter. Analysis of the transcriptional properties of Cdx-3 mutants in fibroblasts and islet cells revealed distinct amino-terminal subdomains that function in a cell-specific manner. Point mutations within the amino-terminal A domain were associated with reduced transcriptional activity. Furthermore, internal deletions and selected point mutations within domain A, but not the B or C domains, resulted in accumulation of mutant Cdx-3 in the cytoplasm. Unexpectedly, mutation of an Asp-Lys-Asp motif within domain A identified a putative cytoplasmic membrane-associated export signal that mediates Cdx-3 compartmentalization. These experiments delineate unique activities for specific amino-terminal sequences that are functionally important for Cdx-3 biological activity.
Collapse
Affiliation(s)
- K Y Trinh
- Department of Medicine, The Toronto Hospital, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | | | | |
Collapse
|
13
|
Diamond SE, Chiono M, Gutierrez-Hartmann A. Reconstitution of the protein kinase A response of the rat prolactin promoter: differential effects of distinct Pit-1 isoforms and functional interaction with Oct-1. Mol Endocrinol 1999; 13:228-38. [PMID: 9973253 DOI: 10.1210/mend.13.2.0227] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
PRL gene transcription is primarily regulated by dopamine, which lowers cAMP levels and inhibits protein kinase A (PKA) activity. Current data indicate that the cAMP/PKA response maps to the most proximal Pit-1/Pit-1beta binding site footprint I (FP I) on the rat PRL (rPRL) promoter. Pit-1, a POU-homeo domain transcription factor, is specifically expressed in the anterior pituitary and is required both for the normal development of anterior pituitary cell types, somatotrophs, lactotrophs, and thyrotrophs, and for the expression of their hormones: GH, PRL, and TSHbeta. Pit-1 has been shown to functionally interact, via FP I, with several transcription factors, including Oct-1, a ubiquitous homeobox protein, and thyrotroph embryonic factor, which is found in lactotrophs, to activate basal rPRL promoter activity. Pit-1beta/GHF-2, a distinct splice isoform of Pit-1, acts to inhibit Ras-activated transcription from the rPRL promoter, which is mediated by a functional interaction between Pit-1 and Ets-1 at the most distal Pit-1 binding site (FP IV). In this manuscript we show 1) that the Pit-1beta isoform not only fails to block PKA activation, but is, in fact, a superior mediator of the PKA response; 2) that the PKA response requires intact POU-specific and POU-homeo domains of Pit-1; and 3) that Oct-1, but not thyrotroph embryonic factor, functions as a Pit-1-interacting factor to mediate an optimal PKA response.
Collapse
Affiliation(s)
- S E Diamond
- Department of Medicine, Colorado Cancer Center, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | |
Collapse
|
14
|
Day RN, Liu J, Sundmark V, Kawecki M, Berry D, Elsholtz HP. Selective inhibition of prolactin gene transcription by the ETS-2 repressor factor. J Biol Chem 1998; 273:31909-15. [PMID: 9822660 DOI: 10.1074/jbc.273.48.31909] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of prolactin gene transcription requires cooperative interactions between the pituitary-specific POU domain protein Pit-1 and members of the ETS transcription factor family. We demonstrate here that the ETS-2 repressor factor (ERF) is expressed in pituitary tumor cells and that overexpression of recombinant ERF inhibits prolactin promoter activity, but not the closely related growth hormone promoter. In non-pituitary cell lines, coexpression of ERF disrupts the cooperative interactions between Pit-1 and ETS-1 and blocks the induction of Pit-1-dependent prolactin promoter activity by cAMP. The potential role of ERF in the inhibitory response of the prolactin promoter to dopamine was examined using pituitary tumor cells stably expressing dopamine D2 receptors. The inhibitory responses of the prolactin promoter to ERF and dopamine are additive, suggesting that ERF has a complementary role in this hormonal response. A single Pit-1 DNA-binding element from the prolactin promoter is sufficient to reconstitute the inhibitory response to ERF. DNA binding analysis using either a composite Pit-1/ETS protein-binding site or a Pit-1 element with no known affinity for ETS proteins revealed that ERF interferes with Pit-1 binding. Together, these results demonstrate that ERF is a specific inhibitor of basal and hormone-regulated transcription of the prolactin gene and suggest a new level of complexity for the interaction of ETS factors with Pit-1 target genes.
Collapse
Affiliation(s)
- R N Day
- Departments of Internal Medicine and Cell Biology, National Science Foundation Center for Biological Timing, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Youngren OM, Chaiseha Y, El Halawani ME. Regulation of prolactin secretion by dopamine and vasoactive intestinal peptide at the level of the pituitary in the turkey. Neuroendocrinology 1998; 68:319-25. [PMID: 9822799 DOI: 10.1159/000054380] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study investigated the capability of dopamine (DA) to prevent avian prolactin (PRL) secretion by antagonizing the PRL-releasing factor, vasoactive intestinal peptide (VIP), at the level of the pituitary. To test this hypothesis, combined intracranial and intrapituitary infusions of DA, DA agonists, and VIP, plus electrical stimulation of the medial preoptic area (ES/POM), were used to characterize the actions of DA on PRL secretion in anesthetized laying turkey hens. Infused into the third ventricle at the rate of 10 nmol/min, DA induced a 2.8-fold increase in circulating PRL levels (63.8 +/- 15.1 to 181.3 +/- 44.3 ng/ml, p < 0. 05), similar to the 3.1-fold PRL increase induced by ES/POM (65 +/- 10.3 to 199.1 +/- 57.3 ng/ml, p < 0.05). Infused into the anterior pituitary at the rate of 15 ng/min, VIP induced a 2.2-fold increase in PRL (78.6 +/- 22.9 to 173.6 +/- 39.5 ng/ml, p < 0.05). When DA (10 nmol/min) was infused into the anterior pituitary it completely blocked both ES/POM- and VIP-induced PRL secretion. The D2 DA receptor agonist R- (-) -Propylnorapomorphine HCl inhibited VIP-induced PRL secretion at the level of the anterior pituitary, allowing only an insignificant rise in PRL (54.8 +/- 14.3 to 73.9 +/- 21.6 ng/ml, p > 0.05), while the D1 DA receptor agonist (+/-)-SKF-38393 HCl failed to prevent VIP-induced PRL release, allowing PRL to rise 2.5-fold (49.1 +/- 10.8 to 121.0 +/- 34.8 ng/ml, p < 0.05). Pituitary infusion of DA, DA agonists or vehicle alone caused no change in PRL levels. The data showed that DA prevented avian PRL secretion by blocking the action of VIP at the level of the anterior pituitary. DA effected this blockade of PRL via D2 DA receptors residing within the anterior pituitary. The data also suggested that there were no stimulatory D1 DA receptors related to PRL secretion in the avian anterior pituitary.
Collapse
Affiliation(s)
- O M Youngren
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minn., 55108, USA.
| | | | | |
Collapse
|
16
|
Melamed P, Rosenfeld H, Elizur A, Yaron Z. Endocrine regulation of gonadotropin and growth hormone gene transcription in fish. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1998; 119:325-38. [PMID: 9827005 DOI: 10.1016/s0742-8413(98)00021-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The pituitary of a number of teleosts contains two gonadotropins (GtHs) which are produced in distinct populations of cells; the beta subunit of the GtH I being found in close proximity to the somatotrophs, while the II beta cells are more peripheral. In several species the GtH beta subunits are expressed at varying levels throughout the reproductive cycle, the I beta dominating in early maturing fish, after which the II beta becomes predominant. This suggests differential control of the beta subunit synthesis which may be regulated by both hypothalamic hormones and gonadal steroids. At ovulation and spawning, changes also occur in the somatotrophs, which become markedly more active, while plasma growth hormone (GH) levels increase. In a number of species, GnRH elevates either the I beta or the II beta mRNA levels, depending on the reproductive state of the fish. In tilapia, the GnRH effect on the II beta appears to be mediated through both cAMP-PKA and PKC pathways. GnRH also stimulates GH release in both goldfish and tilapia, but it increases the GH transcript levels only in goldfish; both GnRH and direct activation of PKC are ineffective in altering GH mRNA in tilapia pituitary cells. Dopamine (DA) does not alter II beta transcript levels in cultured tilapia pituitary cells, but increases GH mRNA levels in both rainbow trout and tilapia, in a PKA-dependent manner. This effect appears to be through interactions with Pit-1 and also by stabilizing the mRNA. Somatostatin (SRIF) does not alter GH transcript levels in either tilapia or rainbow trout, although it may alter GH synthesis by modulation of translation. Gonadal steroids appear to have differential effects on the transcription of the beta subunits. In tilapia, testosterone (T) elevates I beta mRNA levels in cells from immature or early maturing fish (in low doses), but depresses them in cells from late maturing fish and is ineffective in cells from regressed fish. Similar results were seen in early recrudescing male coho salmon injected with T or E2. T or E2 administered in vivo has dramatic stimulatory effects on the II beta transcript levels in immature fish of a number of species, while less powerful effects are seen in vitro. A response is also seen in cells from early maturing rainbow trout or tilapia, or regressed tilapia, but not in cells from late maturing or spawning fish. These results are substantiated by the finding that the promoter of the salmon II beta gene contains several estrogen responsive elements (EREs) which react and interact differently when exposed to varying levels of E2. In addition, activator protein-1 (AP-1) and steroidogenic factor-1 (SF-1) response elements are also found in the salmon II beta promoter; the AP-1 site is located close to a half ERE, while the SF-1 acts synergistically with the E2 receptor. The mRNA levels of both AP-1 and SP-1 are elevated, at least in mammals, by GnRH, suggesting possible sites for cross-talk between GnRH and steroid activated pathways. Reports of the effects of T or E2 on GH transcription differ. No effect is seen in vitro in pituitaries of tilapia, juvenile rainbow trout or common carp, but T does increase the transcript levels in pituitaries of both immature and mature goldfish. Reasons for these discrepancies are unclear, but other systemic hormones may be more instrumental than the gonadal steroids in regulating GH transcription. These include T3 which increases both GH mRNA levels and de novo synthesis (in tilapia and common carp) and insulin-like growth factor-I (IGF-I) which reduces GH transcript levels as well as inhibiting GH release.
Collapse
Affiliation(s)
- P Melamed
- Department of Zoology, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | |
Collapse
|
17
|
Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. Physiol Rev 1998; 78:189-225. [PMID: 9457173 DOI: 10.1152/physrev.1998.78.1.189] [Citation(s) in RCA: 2466] [Impact Index Per Article: 91.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The diverse physiological actions of dopamine are mediated by at least five distinct G protein-coupled receptor subtypes. Two D1-like receptor subtypes (D1 and D5) couple to the G protein Gs and activate adenylyl cyclase. The other receptor subtypes belong to the D2-like subfamily (D2, D3, and D4) and are prototypic of G protein-coupled receptors that inhibit adenylyl cyclase and activate K+ channels. The genes for the D1 and D5 receptors are intronless, but pseudogenes of the D5 exist. The D2 and D3 receptors vary in certain tissues and species as a result of alternative splicing, and the human D4 receptor gene exhibits extensive polymorphic variation. In the central nervous system, dopamine receptors are widely expressed because they are involved in the control of locomotion, cognition, emotion, and affect as well as neuroendocrine secretion. In the periphery, dopamine receptors are present more prominently in kidney, vasculature, and pituitary, where they affect mainly sodium homeostasis, vascular tone, and hormone secretion. Numerous genetic linkage analysis studies have failed so far to reveal unequivocal evidence for the involvement of one of these receptors in the etiology of various central nervous system disorders. However, targeted deletion of several of these dopamine receptor genes in mice should provide valuable information about their physiological functions.
Collapse
Affiliation(s)
- C Missale
- Department of Cell Biology, Howard Hughes Medical Institute Laboratories, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
In the central nervous system (CNS), dopamine is involved in the control of locomotion, cognition, affect and neuroendocrine secretion. These actions of dopamine are mediated by five different receptor subtypes, which are members of the large G-protein coupled receptor superfamily. The dopamine receptor subtypes are divided into two major subclasses: the D1-like and D2-like receptors, which typically couple to Gs and Gj mediated transduction systems. In the CNS, the various receptor subtypes display specific anatomical distributions, with D1-like receptors being mainly post-synaptic and D2-like receptors being both pre- and post-synaptic. D1 and D2 dopamine receptors, the most abundant subtypes in the CNS, appear to be expressed largely in distinct neurons. Substance P and dynorphin, which are expressed in D1 receptor-containing neurons, as well as pre-proenkephalin in D2 receptor-containing neurons, have been used as monitors of dopaminergic activity in the CNS. Expression of immediate early genes, in particular fos, has also been found to correlate with dopaminergic transmission. Dopamine released from the hypothalamus controls the synthesis and secretion of prolactin from the anterior pituitary via D2 dopamine receptors. As yet none of the dopamine receptor subtypes have been associated with the etiology of psychotic disorders, such as schizophrenia. However, the recent characterization of D3 and D4 receptors which are, interestingly, expressed in areas of the CNS mediating cognition and affect or showing increased affinity for certain neuroleptics, have renewed the interest and hope of finding effective neuroleptics devoid of side effects. Finally, the recent production of genetically-derived animals lacking several of these receptor genes should help elucidate which specific physiological paradigms the receptors mediate.
Collapse
Affiliation(s)
- M Jaber
- Howard Hughes Medical Institute Laboratories, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|