1
|
Yuan K, Xi X, Han S, Han J, Zhao B, Wei Q, Zhou X. Selict-seq profiles genome-wide off-target effects in adenosine base editing. Nucleic Acids Res 2025; 53:gkaf281. [PMID: 40207628 PMCID: PMC11983105 DOI: 10.1093/nar/gkaf281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
Adenosine base editors (ABEs) facilitate A·T to G·C base pair conversion with significant therapeutic potential for correcting pathogenic point mutations in human genetic diseases, such as sickle cell anemia and β-thalassemia. Unlike CRISPR-Cas9 systems that induce double-strand breaks, ABEs operate through precise deamination, avoiding chromosomal instability. However, the off-target editing effects of ABEs remain inadequately characterized. In this study, we present a biochemical method Selict-seq, designed to evaluate genome-wide off-target editing by ABEs. Selict-seq specifically captures deoxyinosine-containing single-stranded DNA and precisely identifies deoxyadenosine-to-deoxyinosine (dA-to-dI) mutation sites, elucidating the off-target effects induced by ABEs. Through investigations involving three single-guide RNAs, we identified numerous unexpected off-target edits both within and outside the protospacer regions. Notably, ABE8e(V106W) exhibited distinct off-target characteristics, including high editing rates (>10%) at previously unreported sites (e.g. RNF2 and EMX1) and out-of-protospacer mutations. These findings significantly advance our understanding of the off-target landscape associated with ABEs. In summary, our approach enables an unbiased analysis of the ABE editome and provides a widely applicable tool for specificity evaluation of various emerging genome editing technologies that produce intermediate products as deoxyinosine.
Collapse
Affiliation(s)
- Kexin Yuan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Xin Xi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Shaoqing Han
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Jingyu Han
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Bin Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Qi Wei
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, PR China
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China
| |
Collapse
|
2
|
Yoshioka S, Kurazono H, Ohshita K, Fukui K, Takemura M, Kato SI, Ohnishi K, Yano T, Wakamatsu T. The HNH endonuclease domain of the giant virus MutS7 specifically binds to branched DNA structures with single-stranded regions. DNA Repair (Amst) 2025; 145:103804. [PMID: 39742574 DOI: 10.1016/j.dnarep.2024.103804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/03/2025]
Abstract
Most giant viruses including Mimiviridae family build large viral factories within the host cytoplasms. These giant viruses are presumed to possess specific genes that enable the rapid and massive replication of their large double-stranded DNA genomes within viral factories. It has been revealed that a functionally uncharacterized protein, MutS7, is expressed during the operational phase of the viral factory. MutS7 contains an N-terminal mismatched DNA-binding domain, which is similar to the mismatched DNA-recognizing protein MutS1, and a unique C-terminal HNH endonuclease domain absent in other MutS family proteins. MutS7 gene of the genus Mimivirus of the family Mimiviridae is encoded in the locus that is responsible for resistance against infection of a virophage. In the present study, we characterized the MutS7 HNH domain of Mimivirus shirakomae. The HNH domain preferentially bound to branched DNA structures containing single-stranded regions, especially the displacement-loop structure, which is a primary intermediate in homologous/homeologous recombination, rather than to linear DNAs and branched DNAs lacking single-stranded regions. However, the HNH domain exhibited no endonuclease activity. The site-directed mutagenesis analysis revealed that the Cys4-type zinc finger of the HNH domain was not essential, but was important for the DNA binding. Given that giant virus MutS7 contains a mismatch-binding domain in addition to the HNH domain, we propose that giant virus MutS7 may suppress homeologous recombination in the viral factory.
Collapse
Affiliation(s)
- Satoshi Yoshioka
- Agriculture and Marine Science Program, Graduate School of Integrated Arts and Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Hirochika Kurazono
- Agriculture and Marine Science Program, Graduate School of Integrated Arts and Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Koki Ohshita
- Agricultural Science, Graduate School of Integrated Arts and Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kenji Fukui
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-8686, Japan
| | - Masaharu Takemura
- Department of Mathematics and Science Education, Graduate School of Science, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Shin-Ichiro Kato
- Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Takato Yano
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-8686, Japan
| | - Taisuke Wakamatsu
- Agriculture and Marine Science Program, Graduate School of Integrated Arts and Science, Kochi University, Nankoku, Kochi 783-8502, Japan; Agricultural Science, Graduate School of Integrated Arts and Science, Kochi University, Nankoku, Kochi 783-8502, Japan.
| |
Collapse
|
3
|
Biochemical and mutational studies of an endonuclease V from the hyperthermophilic crenarchaeon Sulfolobus islandicus REY15A. World J Microbiol Biotechnol 2023; 39:90. [PMID: 36752840 DOI: 10.1007/s11274-023-03526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023]
Abstract
Endonuclease V (EndoV), which is widespread in bacteria, eukarya and Archaea, can cleave hypoxanthine (Hx)-containing DNA or RNA strand, and play an essential role in Hx repair. However, our understanding on archaeal EndoV's function remains incomplete. The model archaeon Sulfolobus islandicus REY15A encodes a putative EndoV protein (Sis-EndoV). Herein, we probed the biochemical characteristics of Sis-EndoV and dissected the roles of its seven conserved residues. Our biochemical data demonstrate that Sis-EndoV displays maximum cleavage efficiency at above 60 °C and at pH 7.0-9.0, and the enzyme activity is dependent on a divalent metal ion, among which Mg2+ is optimal. Importantly, we first measured the activation energy for cleaving Hx-containing ssDNA by Sis-EndoV to be 9.6 ± 0.8 kcal/mol by kinetic analyses, suggesting that chemical catalysis might be a rate-limiting step for catalysis. Mutational analyses show that residue D38 in Sis-EndoV is essential for catalysis, but has no role in DNA binding. Furthermore, we first revealed that residues Y41 and D189 in Sis-EndoV are involved in both DNA cleavage and DNA binding, but residues F77, H103, K156 and F161 are only responsible for DNA binding.
Collapse
|
4
|
Endo M, Kim JI, Shioi NA, Iwai S, Kuraoka I. Arabidopsis thaliana endonuclease V is a ribonuclease specific for inosine-containing single-stranded RNA. Open Biol 2021; 11:210148. [PMID: 34665969 PMCID: PMC8526164 DOI: 10.1098/rsob.210148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Endonuclease V is highly conserved, both structurally and functionally, from bacteria to humans, and it cleaves the deoxyinosine-containing double-stranded DNA in Escherichia coli, whereas in Homo sapiens it catalyses the inosine-containing single-stranded RNA. Thus, deoxyinosine and inosine are unexpectedly produced by the deamination reactions of adenine in DNA and RNA, respectively. Moreover, adenosine-to-inosine (A-to-I) RNA editing is carried out by adenosine deaminase acting on dsRNA (ADARs). We focused on Arabidopsis thaliana endonuclease V (AtEndoV) activity exhibiting variations in DNA or RNA substrate specificities. Since no ADAR was observed for A-to-I editing in A. thaliana, the possibility of inosine generation by A-to-I editing can be ruled out. Purified AtEndoV protein cleaved the second and third phosphodiester bonds, 3' to inosine in single-strand RNA, at a low reaction temperature of 20-25°C, whereas the AtEndoV (Y100A) protein bearing a mutation in substrate recognition sites did not cleave these bonds. Furthermore, AtEndoV, similar to human EndoV, prefers RNA substrates over DNA substrates, and it could not cleave the inosine-containing double-stranded RNA. Thus, we propose the possibility that AtEndoV functions as an RNA substrate containing inosine induced by RNA damage, and not by A-to-I RNA editing in vivo.
Collapse
Affiliation(s)
- Megumi Endo
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Jung In Kim
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Narumi Aoki Shioi
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Isao Kuraoka
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
5
|
Liu TC, Guo KW, Chu JW, Hsiao YY. Understanding APE1 cellular functions by the structural preference of exonuclease activities. Comput Struct Biotechnol J 2021; 19:3682-3691. [PMID: 34285771 PMCID: PMC8258793 DOI: 10.1016/j.csbj.2021.06.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
Mammalian apurinic/apyrimidinic (AP) endonuclease 1 (APE1) has versatile enzymatic functions, including redox, endonuclease, and exonuclease activities. APE1 is thus broadly associated with pathways in DNA repair, cancer cell growth, and drug resistance. Unlike its AP site-specific endonuclease activity in Base excision repair (BER), the 3′-5′ exonucleolytic cleavage of APE1 using the same active site exhibits complex substrate selection patterns, which are key to the biological functions. This work aims to integrate molecular structural information and biocatalytic properties to deduce the substrate recognition mechanism of APE1 as an exonuclease and make connection to its diverse functionalities in the cell. In particular, an induced space-filling model emerges in which a bridge-like structure is formed by Arg177 and Met270 (RM bridge) upon substrate binding, causing the active site to adopt a long and narrow product pocket for hosting the leaving group of an AP site or the 3′-end nucleotide. Rather than distinguishing bases as other exonucleases, the hydrophobicity and steric hindrance due to the APE1 product pocket provides selectivity for substrate structures, such as matched or mismatched blunt-ended dsDNA, recessed dsDNA, gapped dsDNA, and nicked dsDNA with 3′-end overhang shorter than 2 nucleotides. These dsDNAs are similar to the native substrates in BER proofreading, BER for trinucleotide repeats (TNR), Nucleotide incision repair (NIR), DNA single-strand breaks (SSB), SSB with damaged bases, and apoptosis. Integration of in vivo studies, in vitro biochemical assays, and structural analysis is thus essential for linking the APE1 exonuclease activity to the specific roles in cellular functions.
Collapse
Affiliation(s)
- Tung-Chang Liu
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30068, Taiwan
| | - Kai-Wei Guo
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30068, Taiwan
| | - Jhih-Wei Chu
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30068, Taiwan.,Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, 30068, Taiwan.,Center For Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Yuan Hsiao
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30068, Taiwan.,Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, 30068, Taiwan.,Center For Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Drug Development and Value Creation Research Center, Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Evolutionary Origins of DNA Repair Pathways: Role of Oxygen Catastrophe in the Emergence of DNA Glycosylases. Cells 2021; 10:cells10071591. [PMID: 34202661 PMCID: PMC8307549 DOI: 10.3390/cells10071591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022] Open
Abstract
It was proposed that the last universal common ancestor (LUCA) evolved under high temperatures in an oxygen-free environment, similar to those found in deep-sea vents and on volcanic slopes. Therefore, spontaneous DNA decay, such as base loss and cytosine deamination, was the major factor affecting LUCA’s genome integrity. Cosmic radiation due to Earth’s weak magnetic field and alkylating metabolic radicals added to these threats. Here, we propose that ancient forms of life had only two distinct repair mechanisms: versatile apurinic/apyrimidinic (AP) endonucleases to cope with both AP sites and deaminated residues, and enzymes catalyzing the direct reversal of UV and alkylation damage. The absence of uracil–DNA N-glycosylases in some Archaea, together with the presence of an AP endonuclease, which can cleave uracil-containing DNA, suggests that the AP endonuclease-initiated nucleotide incision repair (NIR) pathway evolved independently from DNA glycosylase-mediated base excision repair. NIR may be a relic that appeared in an early thermophilic ancestor to counteract spontaneous DNA damage. We hypothesize that a rise in the oxygen level in the Earth’s atmosphere ~2 Ga triggered the narrow specialization of AP endonucleases and DNA glycosylases to cope efficiently with a widened array of oxidative base damage and complex DNA lesions.
Collapse
|
7
|
YwqL (EndoV), ExoA and PolA act in a novel alternative excision pathway to repair deaminated DNA bases in Bacillus subtilis. PLoS One 2019; 14:e0211653. [PMID: 30726292 PMCID: PMC6364969 DOI: 10.1371/journal.pone.0211653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/17/2019] [Indexed: 11/19/2022] Open
Abstract
DNA deamination generates base transitions and apurinic/apyrimidinic (AP)-sites which are potentially genotoxic and cytotoxic. In Bacillus subtilis uracil can be removed from DNA by the uracil DNA-glycosylase through the base excision repair pathway. Genetic evidence suggests that B. subtilis YwqL, a homolog of Endonuclease-V (EndoV), acts on a wider spectrum of deaminated bases but the factors that complete this pathway have remained elusive. Here, we report that a purified His6-YwqL (hereafter BsEndoV) protein had in vitro endonuclease activity against double-stranded DNAs containing a single uracil (U), hypoxanthine (Hx), xanthine (X) or an AP site. Interestingly, while BsEndoV catalyzed a single strand break at the second phosphodiester bond towards the 3'-end of the U and AP lesions, there was an additional cleavage of the phosphodiester bond preceding the Hx and X lesions. Remarkably, the repair event initiated by BsEndoV on Hx and X, was completed by a recombinant B. subtilis His6-DNA polymerase A (BsPolA), but not on BsEndoV-processed U and AP lesions. For the latter lesions a second excision event performed by a recombinant B. subtilis His6-ExoA (BsExoA) was necessary before completion of their repair by BsPolA. These results suggest the existence of a novel alternative excision repair pathway in B. subtilis that counteracts the genotoxic effects of base deamination. The presence of this novel pathway in vivo in B. subtilis was also supported by analysis of effects of single or multiple deletions of exoA, endoV and polA on spontaneous mutations in growing cells, and the sensitivity of growing wild-type and mutant cells to a DNA deaminating agent.
Collapse
|
8
|
Breaking the speed limit with multimode fast scanning of DNA by Endonuclease V. Nat Commun 2018; 9:5381. [PMID: 30568191 PMCID: PMC6300609 DOI: 10.1038/s41467-018-07797-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 11/27/2018] [Indexed: 01/04/2023] Open
Abstract
In order to preserve genomic stability, cells rely on various repair pathways for removing DNA damage. The mechanisms how enzymes scan DNA and recognize their target sites are incompletely understood. Here, by using high-localization precision microscopy along with 133 Hz high sampling rate, we have recorded EndoV and OGG1 interacting with 12-kbp elongated λ-DNA in an optical trap. EndoV switches between three distinct scanning modes, each with a clear range of activation energy barriers. These results concur with average diffusion rate and occupancy of states determined by a hidden Markov model, allowing us to infer that EndoV confinement occurs when the intercalating wedge motif is involved in rigorous probing of the DNA, while highly mobile EndoV may disengage from a strictly 1D helical diffusion mode and hop along the DNA. This makes EndoV the first example of a monomeric, single-conformation and single-binding-site protein demonstrating the ability to switch between three scanning modes. How DNA repair proteins locate their target sites on DNA is still a matter of debate. Here the authors characterize by single-molecule fluorescence imaging the modes of scanning adopted by bacterial endonuclease V as it moves along linear DNA tracks.
Collapse
|
9
|
Zuin Fantoni N, Molphy Z, Slator C, Menounou G, Toniolo G, Mitrikas G, McKee V, Chatgilialoglu C, Kellett A. Polypyridyl‐Based Copper Phenanthrene Complexes: A New Type of Stabilized Artificial Chemical Nuclease. Chemistry 2018; 25:221-237. [DOI: 10.1002/chem.201804084] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Nicoló Zuin Fantoni
- School of Chemical Sciences and National Institute for Cellular, BiotechnologyDublin City University 9 Glasnevin, Dublin Ireland
| | - Zara Molphy
- School of Chemical Sciences and National Institute for Cellular, BiotechnologyDublin City University 9 Glasnevin, Dublin Ireland
| | - Creina Slator
- School of Chemical Sciences and National Institute for Cellular, BiotechnologyDublin City University 9 Glasnevin, Dublin Ireland
| | - Georgia Menounou
- ISOF-CNR Area della Ricerca di Bologna Via P. Gobetti 101 40129 Bologna Italy
| | - Gianluca Toniolo
- Institute of Nanoscience and Nanotechnology, N.C.S.R. Demokritos Agia Paraskevi Attikis P.O. Box 60037, 15341 Athens Greece
| | - George Mitrikas
- Institute of Nanoscience and Nanotechnology, N.C.S.R. Demokritos Agia Paraskevi Attikis P.O. Box 60037, 15341 Athens Greece
| | - Vickie McKee
- School of Chemical Sciences and National Institute for Cellular, BiotechnologyDublin City University 9 Glasnevin, Dublin Ireland
- Department of Physics, Chemistry and PharmacyUniversity of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Chryssostomos Chatgilialoglu
- ISOF-CNR Area della Ricerca di Bologna Via P. Gobetti 101 40129 Bologna Italy
- Institute of Nanoscience and Nanotechnology, N.C.S.R. Demokritos Agia Paraskevi Attikis P.O. Box 60037, 15341 Athens Greece
| | - Andrew Kellett
- School of Chemical Sciences and National Institute for Cellular, BiotechnologyDublin City University 9 Glasnevin, Dublin Ireland
| |
Collapse
|
10
|
Wang Y, Zhang L, Zhu X, Li Y, Shi H, Oger P, Yang Z. Biochemical characterization of a thermostable endonuclease V from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5. Int J Biol Macromol 2018; 117:17-24. [DOI: 10.1016/j.ijbiomac.2018.05.155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 01/13/2023]
|
11
|
Insights into the role of endonuclease V in RNA metabolism in Trypanosoma brucei. Sci Rep 2017; 7:8505. [PMID: 28819113 PMCID: PMC5561087 DOI: 10.1038/s41598-017-08910-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/14/2017] [Indexed: 01/05/2023] Open
Abstract
Inosine may arise in DNA as a result of oxidative deamination of adenine or misincorporation of deoxyinosine triphosphate during replication. On the other hand, the occurrence of inosine in RNA is considered a normal and essential modification induced by specific adenosine deaminases acting on mRNA and tRNA. In prokaryotes, endonuclease V (EndoV) can recognize and cleave inosine-containing DNA. In contrast, mammalian EndoVs preferentially cleave inosine-containing RNA, suggesting a role in RNA metabolism for the eukaryotic members of this protein family. We have performed a biochemical characterization of EndoV from the protozoan parasite Trypanosoma brucei. In vitro, TbEndoV efficiently processes single-stranded RNA oligonucleotides with inosine, including A to I-edited tRNA-like substrates but exhibits weak activity over DNA, except when a ribonucleotide is placed 3' to the inosine. Immunolocalization studies performed in procyclic forms indicate that TbEndoV is mainly cytosolic yet upon nutritional stress it redistributes and accumulates in stress granules colocalizing with the DEAD-box helicase TbDhh1. RNAi-mediated depletion of TbEndoV results in moderate growth defects in procyclic cells while the two EndoV alleles could be readily knocked out in bloodstream forms. Taken together, these observations suggest an important role of TbEndoV in RNA metabolism in procyclic forms of the parasite.
Collapse
|
12
|
Samara NL, Gao Y, Wu J, Yang W. Detection of Reaction Intermediates in Mg 2+-Dependent DNA Synthesis and RNA Degradation by Time-Resolved X-Ray Crystallography. Methods Enzymol 2017; 592:283-327. [PMID: 28668125 DOI: 10.1016/bs.mie.2017.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Structures of enzyme-substrate/product complexes have been studied for over four decades but have been limited to either before or after a chemical reaction. Recently using in crystallo catalysis combined with X-ray diffraction, we have discovered that many enzymatic reactions in nucleic acid metabolism require additional metal ion cofactors that are not present in the substrate or product state. By controlling metal ions essential for catalysis, the in crystallo approach has revealed unprecedented details of reaction intermediates. Here we present protocols used for successful studies of Mg2+-dependent DNA polymerases and ribonucleases that are applicable to analyses of a variety of metal ion-dependent reactions.
Collapse
Affiliation(s)
- Nadine L Samara
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States; Section on Biological Chemistry, NIDCR, National Institutes of Health, Bethesda, MD, United States
| | - Yang Gao
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
| | - Jinjun Wu
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
| | - Wei Yang
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
13
|
Nie H, Huang H, Li W, Yang T. A Label-free Time-resolved Luminescent Platform for Sensitive Endonuclease V Detection Based on Exonuclease III Regulated DNA-Tb 3+ Luminescence. ANAL SCI 2016; 32:1245-1250. [PMID: 27829633 DOI: 10.2116/analsci.32.1245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Endonuclease V (EndoV) plays the important role of nucleotide excision repair (NER) in the maintenance of genomic stability. Highly sensitive detection of EndoV was achieved through an oligonucleotides sensitizing Tb3+ luminescent technique. We found that although both guanine-rich (G-rich) single-stranded DNA and dGMP could enhance the time-resolved luminescence of Tb3+, their efficiencies of enhancement were considerably different. Employing such interesting phenomenon, a label-free and time-resolved luminescent strategy for the sensitive detection of EndoV activity was developed based on DNA-enhanced time-resolved luminescence (TRL) of Tb3+. The EndoV was used to cut off the deoxyinosine site (dI) and convert the 3'-protruding termini to a recessed end, and Exonuclease III (Exo III) was used to enhance the signal contrast via digestion of G-rich DNA to dNTP. Combining with the natural advantages of the TRL, the proposed method exhibited a good linear response to EndoV ranging from 0.005 to 0.4 U/mL, with a low limit of detection of 0.005 U/mL.
Collapse
Affiliation(s)
- Huaijun Nie
- State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Key Laboratory of Drinking Water Source Safety Control, Shenzhen Research Academy of Environmental Sciences
| | | | | | | |
Collapse
|
14
|
Kuraoka I. Diversity of Endonuclease V: From DNA Repair to RNA Editing. Biomolecules 2015; 5:2194-206. [PMID: 26404388 PMCID: PMC4693234 DOI: 10.3390/biom5042194] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 11/16/2022] Open
Abstract
Deamination of adenine occurs in DNA, RNA, and their precursors via a hydrolytic reaction and a nitrosative reaction. The generated deaminated products are potentially mutagenic because of their structural similarity to natural bases, which in turn leads to erroneous nucleotide pairing and subsequent disruption of cellular metabolism. Incorporation of deaminated precursors into the nucleic acid strand occurs during nucleotide synthesis by DNA and RNA polymerases or base modification by DNA- and/or RNA-editing enzymes during cellular functions. In such cases, removal of deaminated products from DNA and RNA by a nuclease might be required depending on the cellular function. One such enzyme, endonuclease V, recognizes deoxyinosine and cleaves 3' end of the damaged base in double-stranded DNA through an alternative excision repair mechanism in Escherichia coli, whereas in Homo sapiens, it recognizes and cleaves inosine in single-stranded RNA. However, to explore the role of endonuclease V in vivo, a detailed analysis of cell biology is required. Based on recent reports and developments on endonuclease V, we discuss the potential functions of endonuclease V in DNA repair and RNA metabolism.
Collapse
Affiliation(s)
- Isao Kuraoka
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
15
|
Evidence for Retromutagenesis as a Mechanism for Adaptive Mutation in Escherichia coli. PLoS Genet 2015; 11:e1005477. [PMID: 26305558 PMCID: PMC4548950 DOI: 10.1371/journal.pgen.1005477] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/30/2015] [Indexed: 11/19/2022] Open
Abstract
Adaptive mutation refers to the continuous outgrowth of new mutants from a non-dividing cell population during selection, in apparent violation of the neo-Darwinian principle that mutation precedes selection. One explanation is that of retromutagenesis, in which a DNA lesion causes a transcriptional mutation that yields a mutant protein, allowing escape from selection. This enables a round of DNA replication that establishes heritability. Because the model requires that gene expression precedes DNA replication, it predicts that during selection, new mutants will arise from damage only to the transcribed DNA strand. As a test, we used a lacZ amber mutant of Escherichia coli that can revert by nitrous acid-induced deamination of adenine residues on either strand of the TAG stop codon, each causing different DNA mutations. When stationary-phase, mutagenized cells were grown in rich broth before being plated on lactose-selective media, only non-transcribed strand mutations appeared in the revertants. This result was consistent with the known high sensitivity to deamination of the single-stranded DNA in a transcription bubble, and it provided an important control because it demonstrated that the genetic system we would use to detect transcribed-strand mutations could also detect a bias toward the non-transcribed strand. When residual lacZ transcription was blocked beforehand by catabolite repression, both strands were mutated about equally, but if revertants were selected immediately after nitrous acid exposure, transcribed-strand mutations predominated among the revertants, implicating retromutagenesis as the mechanism. This result was not affected by gene orientation. Retromutagenesis is apt to be a universal method of evolutionary adaptation, which enables the emergence of new mutants from mutations acquired during counterselection rather than beforehand, and it may have roles in processes as diverse as the development of antibiotic resistance and neoplasia. The basic principle of neo-Darwinian genetics is that mutations occurring during growth enable the subsequent survival of the mutants under selective environmental conditions. However, new mutants can arise from a non-growing bacterial population during selection in an apparently Lamarckian way. The phenomenon is called adaptive mutation. In one suggested pathway, retromutagenesis, a damaged gene produces a mutant protein that enables enough growth for a mutant gene to be copied onto daughter chromosomes. This hypothesis is supported by evidence that, in several experimental systems, a damaged gene can produce a mutant protein rather than no protein at all, and that both RNA and DNA polymerase will pair the same base with a lesion. Because this model requires gene expression before DNA synthesis, a third feature is predicted: in a non-growing population, adaptive mutations will occur preferentially on the transcribed strand of a gene. In this paper, we describe a bacterial genetic system that can distinguish between mutations occurring on either DNA strand, and we use it to confirm this prediction. The findings enhance our general understanding of evolution in all organisms, the majority of which are in a non-growing state most of the time.
Collapse
|
16
|
Crystal structure of E. coli endonuclease V, an essential enzyme for deamination repair. Sci Rep 2015; 5:12754. [PMID: 26244280 PMCID: PMC4650699 DOI: 10.1038/srep12754] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/03/2015] [Indexed: 12/26/2022] Open
Abstract
Endonuclease V (EndoV) is a ubiquitous protein present in all three kingdoms of life, responsible for the specific cleavages at the second phosphodiester bond 3’ to inosine. E. coli EndoV (EcEndoV) is the first member discovered in the EndoV family. It is a small protein with a compact gene organization, yet with a wide spectrum of substrate specificities. However, the structural basis of its substrate recognition is not well understood. In this study, we determined the 2.4 Å crystal structure of EcEndoV. The enzyme preserves the general ‘RNase H-like motif’ structure. Two subunits are almost fully resolved in the asymmetric unit, but they are not related by any 2-fold axes. Rather, they establish “head-to-shoulder” contacts with loose interactions between each other. Mutational studies show that mutations that disrupt the association mode of the two subunits also decrease the cleavage efficiencies of the enzyme. Further biochemical studies suggest that EcEndoV is able to bind to single-stranded, undamaged DNA substrates without sequence specificity, and forms two types of complexes in a metal-independent manner, which may explain the wide spectrum of substrate specificities of EcEndoV.
Collapse
|
17
|
EndoQ and EndoV work individually for damaged DNA base repair in Pyrococcus furiosus. Biochimie 2015; 118:264-9. [PMID: 26116888 DOI: 10.1016/j.biochi.2015.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/19/2015] [Indexed: 12/11/2022]
Abstract
Base deamination is a typical form of DNA damage, and it must be repaired quickly to maintain the genome integrity of living organisms. Endonuclease Q (EndoQ), recently found in the hyperthermophilic archaea, is an enzyme that cleaves the phosphodiester bond 5' from the damaged nucleotide in the DNA strand, and may primarily function to start the repair process for the damaged bases. Endonuclease V (EndoV) also hydrolyzes the second phosphodiester bond 3' from the damaged nucleotide, although the hyperthermophilic archaeal EndoV is a strictly hypoxanthine-specific endonuclease. To understand the relationships of the EndoQ and EndoV functions in hyperthermophilic archaea, we analyzed their interactions in hypoxanthine repair. EndoQ and EndoV do not directly interact with each other in either the presence or absence of DNA. However, EndoQ and EndoV individually worked on deoxyinosine (dI)-containing DNA at each cleavage site. EndoQ has higher affinity to dI-containing DNA than EndoV, and cells produce higher amounts of EndoQ, as compared to EndoV. These data support the proposal that EndoQ primarily functions for, at least, dI-containing DNA.
Collapse
|
18
|
Dalhus B, Alseth I, Bjørås M. Structural basis for incision at deaminated adenines in DNA and RNA by endonuclease V. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 117:134-142. [PMID: 25824682 DOI: 10.1016/j.pbiomolbio.2015.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 01/15/2023]
Abstract
Deamination of the exocyclic amines in adenine, guanine and cytosine forms base lesions that may lead to mutations if not removed by DNA repair proteins. Prokaryotic endonuclease V (EndoV/Nfi) has long been known to incise DNA 3' to a variety of base lesions, including deaminated adenine, guanine and cytosine. Biochemical and genetic data implicate that EndoV is involved in repair of these deaminated bases. In contrast to DNA glycosylases that remove a series of modified/damaged bases in DNA by direct excision of the nucleobase, EndoV cleaves the DNA sugar phosphate backbone at the second phosphodiester 3' to the lesion without removing the deaminated base. Structural investigation of this unusual incision by EndoV has unravelled an enzyme with separate base lesion and active site pockets. A novel wedge motif was identified as a DNA strand-separation feature important for damage detection. Human EndoV appears inactive on DNA, but has been shown to incise various RNA substrates containing inosine. Inosine is the deamination product of adenosine and is frequently found in RNA. The structural basis for discrimination between DNA and RNA by human EndoV remains elusive.
Collapse
Affiliation(s)
- Bjørn Dalhus
- Department of Medical Biochemistry, Institute for Clinical Medicine, University of Oslo, PO Box 4950, Nydalen, N-0424 Oslo, Norway; Department of Microbiology, Clinic for Diagnostics and Intervention, Oslo University Hospital, Rikshospitalet, PO Box 4950, Nydalen, N-0424 Oslo, Norway.
| | - Ingrun Alseth
- Department of Microbiology, Clinic for Diagnostics and Intervention, Oslo University Hospital, Rikshospitalet, PO Box 4950, Nydalen, N-0424 Oslo, Norway
| | - Magnar Bjørås
- Department of Microbiology, Clinic for Diagnostics and Intervention, Oslo University Hospital, Rikshospitalet, PO Box 4950, Nydalen, N-0424 Oslo, Norway
| |
Collapse
|
19
|
Shiraishi M, Ishino S, Yamagami T, Egashira Y, Kiyonari S, Ishino Y. A novel endonuclease that may be responsible for damaged DNA base repair in Pyrococcus furiosus. Nucleic Acids Res 2015; 43:2853-63. [PMID: 25694513 PMCID: PMC4357722 DOI: 10.1093/nar/gkv121] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA is constantly damaged by endogenous and environmental influences. Deaminated adenine (hypoxanthine) tends to pair with cytosine and leads to the A:T→G:C transition mutation during DNA replication. Endonuclease V (EndoV) hydrolyzes the second phosphodiester bond 3′ from deoxyinosine in the DNA strand, and was considered to be responsible for hypoxanthine excision repair. However, the downstream pathway after EndoV cleavage remained unclear. The activity to cleave the phosphodiester bond 5′ from deoxyinosine was detected in a Pyrococcus furiosus cell extract. The protein encoded by PF1551, obtained from the mass spectrometry analysis of the purified fraction, exhibited the corresponding cleavage activity. A putative homolog from Thermococcus kodakarensis (TK0887) showed the same activity. Further biochemical analyses revealed that the purified PF1551 and TK0887 proteins recognize uracil, xanthine and the AP site, in addition to hypoxanthine. We named this endonuclease Endonuclease Q (EndoQ), as it may be involved in damaged base repair in the Thermococcals of Archaea.
Collapse
Affiliation(s)
- Miyako Shiraishi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| | - Takeshi Yamagami
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| | - Yuriko Egashira
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| | - Shinichi Kiyonari
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| |
Collapse
|
20
|
van der Veen S, Tang CM. The BER necessities: the repair of DNA damage in human-adapted bacterial pathogens. Nat Rev Microbiol 2015; 13:83-94. [PMID: 25578955 DOI: 10.1038/nrmicro3391] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
During colonization and disease, bacterial pathogens must survive the onslaught of the host immune system. A key component of the innate immune response is the generation of reactive oxygen and nitrogen species by phagocytic cells, which target and disrupt pathogen molecules, particularly DNA, and the base excision repair (BER) pathway is the most important mechanism for the repair of such oxidative DNA damage. In this Review, we discuss how the human-specific pathogens Mycobacterium tuberculosis, Helicobacter pylori and Neisseria meningitidis have evolved specialized mechanisms of DNA repair, particularly their BER pathways, compared with model organisms such as Escherichia coli. This specialization in DNA repair is likely to reflect the distinct niches occupied by these important human pathogens in the host.
Collapse
Affiliation(s)
- Stijn van der Veen
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, OX1 3RE, UK
| | - Christoph M Tang
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, OX1 3RE, UK
| |
Collapse
|
21
|
Zhang Z, Hao Z, Wang Z, Li Q, Xie W. Structure of human endonuclease V as an inosine-specific ribonuclease. ACTA ACUST UNITED AC 2014; 70:2286-94. [PMID: 25195743 DOI: 10.1107/s139900471401356x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 06/11/2014] [Indexed: 11/10/2022]
Abstract
The 6-aminopurine ring of adenosine (A) can be deaminated to form the 6-oxopurine of inosine (I). Endonuclease Vs (EndoVs) are inosine-specific nucleases that cleave at the second phosphodiester bond 3' to inosine. EndoV proteins are highly conserved in all domains of life, but the bacterial and human enzymes seem to display distinct substrate preferences. While the bacterial enzymes exhibit high cleavage efficiency on various nucleic acid substrates, human EndoV (hEndoV) is most active towards ssRNA but is much less active towards other substrates. However, the structural basis of substrate recognition by hEndoV is not well understood. In this study, the 2.3 Å resolution crystal structure of hEndoV was determined and its unusual RNA-cleaving properties were investigated. The enzyme preserves the general `RNase H-like' structure, especially in the wedge motif, the metal-binding site and the hypoxanthine-binding pocket. hEndoV also features several extra insertions and a characteristic four-cysteine motif, in which Cys227 and Cys228, two cysteines that are highly conserved in higher eukaryotes, play important roles in catalysis. The structure presented here helps in understanding the substrate preference of hEndoV catalysis.
Collapse
Affiliation(s)
- Zhemin Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Zhitai Hao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Zhong Wang
- Centre for Cellular and Structural Biology, The Sun Yat-Sen University, 132 East Circle Road, University City, Guangzhou 510006, People's Republic of China
| | - Qing Li
- Centre for Cellular and Structural Biology, The Sun Yat-Sen University, 132 East Circle Road, University City, Guangzhou 510006, People's Republic of China
| | - Wei Xie
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
22
|
The cutting edges in DNA repair, licensing, and fidelity: DNA and RNA repair nucleases sculpt DNA to measure twice, cut once. DNA Repair (Amst) 2014; 19:95-107. [PMID: 24754999 DOI: 10.1016/j.dnarep.2014.03.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To avoid genome instability, DNA repair nucleases must precisely target the correct damaged substrate before they are licensed to incise. Damage identification is a challenge for all DNA damage response proteins, but especially for nucleases that cut the DNA and necessarily create a cleaved DNA repair intermediate, likely more toxic than the initial damage. How do these enzymes achieve exquisite specificity without specific sequence recognition or, in some cases, without a non-canonical DNA nucleotide? Combined structural, biochemical, and biological analyses of repair nucleases are revealing their molecular tools for damage verification and safeguarding against inadvertent incision. Surprisingly, these enzymes also often act on RNA, which deserves more attention. Here, we review protein-DNA structures for nucleases involved in replication, base excision repair, mismatch repair, double strand break repair (DSBR), and telomere maintenance: apurinic/apyrimidinic endonuclease 1 (APE1), Endonuclease IV (Nfo), tyrosyl DNA phosphodiesterase (TDP2), UV Damage endonuclease (UVDE), very short patch repair endonuclease (Vsr), Endonuclease V (Nfi), Flap endonuclease 1 (FEN1), exonuclease 1 (Exo1), RNase T and Meiotic recombination 11 (Mre11). DNA and RNA structure-sensing nucleases are essential to life with roles in DNA replication, repair, and transcription. Increasingly these enzymes are employed as advanced tools for synthetic biology and as targets for cancer prognosis and interventions. Currently their structural biology is most fully illuminated for DNA repair, which is also essential to life. How DNA repair enzymes maintain genome fidelity is one of the DNA double helix secrets missed by James Watson and Francis Crick, that is only now being illuminated though structural biology and mutational analyses. Structures reveal motifs for repair nucleases and mechanisms whereby these enzymes follow the old carpenter adage: measure twice, cut once. Furthermore, to measure twice these nucleases act as molecular level transformers that typically reshape the DNA and sometimes themselves to achieve extraordinary specificity and efficiency.
Collapse
|
23
|
Hsiao YY, Fang WH, Lee CC, Chen YP, Yuan HS. Structural insights into DNA repair by RNase T--an exonuclease processing 3' end of structured DNA in repair pathways. PLoS Biol 2014; 12:e1001803. [PMID: 24594808 PMCID: PMC3942315 DOI: 10.1371/journal.pbio.1001803] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/21/2014] [Indexed: 11/19/2022] Open
Abstract
DNA repair mechanisms are essential for preservation of genome integrity. However, it is not clear how DNA are selected and processed at broken ends by exonucleases during repair pathways. Here we show that the DnaQ-like exonuclease RNase T is critical for Escherichia coli resistance to various DNA-damaging agents and UV radiation. RNase T specifically trims the 3' end of structured DNA, including bulge, bubble, and Y-structured DNA, and it can work with Endonuclease V to restore the deaminated base in an inosine-containing heteroduplex DNA. Crystal structure analyses further reveal how RNase T recognizes the bulge DNA by inserting a phenylalanine into the bulge, and as a result the 3' end of blunt-end bulge DNA can be digested by RNase T. In contrast, the homodimeric RNase T interacts with the Y-structured DNA by a different binding mode via a single protomer so that the 3' overhang of the Y-structured DNA can be trimmed closely to the duplex region. Our data suggest that RNase T likely processes bulge and bubble DNA in the Endonuclease V-dependent DNA repair, whereas it processes Y-structured DNA in UV-induced and various other DNA repair pathways. This study thus provides mechanistic insights for RNase T and thousands of DnaQ-like exonucleases in DNA 3'-end processing.
Collapse
Affiliation(s)
- Yu-Yuan Hsiao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Woei-Horng Fang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chia-Chia Lee
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yi-Ping Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Hanna S. Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
- Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
24
|
Human endonuclease V is a ribonuclease specific for inosine-containing RNA. Nat Commun 2014; 4:2273. [PMID: 23912718 PMCID: PMC3741642 DOI: 10.1038/ncomms3273] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/09/2013] [Indexed: 01/21/2023] Open
Abstract
Deamination of DNA bases can create missense mutations predisposing humans to cancer and also interfere with other basic molecular genetic processes; this deamination generates deoxyinosine from deoxyadenosine. In Escherichia coli, the highly conserved endonuclease V is involved in alternative excision repair that removes deoxyinosine from DNA. However, its exact activities and roles in humans are unknown. Here we characterize the FLJ35220 protein, the human homologue of E. coli endonuclease V, hEndoV as a ribonuclease specific for inosine-containing RNA. hEndoV preferentially binds to RNA and efficiently hydrolyses the second phosphodiester bond located 3′ to the inosine in unpaired inosine-containing ssRNA regions in dsRNA. It localizes to the cytoplasm in cells. The ribonuclease activity is promoted by Tudor staphylococcal nuclease and detected on inosine-containing dsRNA created by the action of adenosine deaminases acting on RNA. These results demonstrate that hEndoV controls the fate of inosine-containing RNA in humans. In Escherichia coli, the highly conserved enzyme endonuclease V has a role in DNA repair. Here the authors show that human endonuclease V is an inosine 3' endoribonuclease and that Tudor Staphylococcal nuclease enhances this activity, suggesting a role for human endonuclease V in RNA metabolism.
Collapse
|
25
|
Kiyonari S, Egashira Y, Ishino S, Ishino Y. Biochemical characterization of endonuclease V from the hyperthermophilic archaeon, Pyrococcus furiosus. J Biochem 2014; 155:325-33. [PMID: 24535600 DOI: 10.1093/jb/mvu010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Endonuclease V (Endo V) is a DNA repair enzyme that recognizes deoxyinosine and cleaves the second phosphodiester bond on the 3' side of the deaminated base lesion. A database search revealed the presence of homologous genes for Endo V in most archaeal species, but the absence in some methanogenic species. We cloned a gene encoding the sequence homologous to Escherichia coli Endo V from the genome of the hyperthermophilic euryarchaeon, Pyrococcus furiosus and purified gene product (PfuEndoV) to homogeneity. In vitro characterization showed that PfuEndoV possesses specific endonuclease activity for the deoxyinosine-containing DNA strand. The activity of the enzyme was maximal at 90°C. Stable complex formation between PfuEndoV and nicked DNA produced by the cleavage reaction was detected by gel mobility shift assays. The molecular mechanisms of the inosine repair pathway including Endo V in the archaeal cells are discussed. Interestingly, PfuEndoV cleaved inosine-containing RNA strands as well as DNA substrates. PfuEndoV may also be involved in RNA metabolism.
Collapse
Affiliation(s)
- Shinichi Kiyonari
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| | | | | | | |
Collapse
|
26
|
Cao W. Endonuclease V: an unusual enzyme for repair of DNA deamination. Cell Mol Life Sci 2013; 70:3145-56. [PMID: 23263163 PMCID: PMC11114013 DOI: 10.1007/s00018-012-1222-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 11/25/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
Abstract
Endonuclease V (endo V) was first discovered as the fifth endonuclease in Escherichia coli in 1977 and later rediscovered as a deoxyinosine 3' endonuclease. Decades of biochemical and genetic investigations have accumulated rich information on its role as a DNA repair enzyme for the removal of deaminated bases. Structural and biochemical analyses have offered invaluable insights on its recognition capacity, catalytic mechanism, and multitude of enzymatic activities. The roles of endo V in genome maintenance have been validated in both prokaryotic and eukaryotic organisms. The ubiquitous nature of endo V in the three domains of life: Bacteria, Archaea, and Eukaryotes, indicates its existence in the early evolutionary stage of cellular life. The application of endo V in mutation detection and DNA manipulation underscores its value beyond cellular DNA repair. This review is intended to provide a comprehensive account of the historic aspects, biochemical, structural biological, genetic and biotechnological studies of this unusual DNA repair enzyme.
Collapse
Affiliation(s)
- Weiguo Cao
- Department of Genetics and Biochemistry, South Carolina Experiment Station, Clemson University, Room 049 Life Science Building, 190 Collings Street, Clemson, SC, 29634, USA.
| |
Collapse
|
27
|
Couvé S, Ishchenko AA, Fedorova OS, Ramanculov EM, Laval J, Saparbaev M. Direct DNA Lesion Reversal and Excision Repair in Escherichia coli. EcoSal Plus 2013; 5. [PMID: 26442931 DOI: 10.1128/ecosalplus.7.2.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Indexed: 06/05/2023]
Abstract
Cellular DNA is constantly challenged by various endogenous and exogenous genotoxic factors that inevitably lead to DNA damage: structural and chemical modifications of primary DNA sequence. These DNA lesions are either cytotoxic, because they block DNA replication and transcription, or mutagenic due to the miscoding nature of the DNA modifications, or both, and are believed to contribute to cell lethality and mutagenesis. Studies on DNA repair in Escherichia coli spearheaded formulation of principal strategies to counteract DNA damage and mutagenesis, such as: direct lesion reversal, DNA excision repair, mismatch and recombinational repair and genotoxic stress signalling pathways. These DNA repair pathways are universal among cellular organisms. Mechanistic principles used for each repair strategies are fundamentally different. Direct lesion reversal removes DNA damage without need for excision and de novo DNA synthesis, whereas DNA excision repair that includes pathways such as base excision, nucleotide excision, alternative excision and mismatch repair, proceeds through phosphodiester bond breakage, de novo DNA synthesis and ligation. Cell signalling systems, such as adaptive and oxidative stress responses, although not DNA repair pathways per se, are nevertheless essential to counteract DNA damage and mutagenesis. The present review focuses on the nature of DNA damage, direct lesion reversal, DNA excision repair pathways and adaptive and oxidative stress responses in E. coli.
Collapse
|
28
|
Li Y, Pan Z, Tang J, Pu D, Xiao P, Lu Z. Endonuclease V-assisted accurate cleavage of oligonucleotide probes controlled by deoxyinosine and deoxynucleoside phosphorothioate for sequencing-by-ligation. Analyst 2013; 137:4421-4. [PMID: 22896836 DOI: 10.1039/c2an35595g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sequencing-by-ligation (SBL) is one of the next-generation sequencing methods for massive parallel sequencing. The ligated probes used in SBL should be accurately cleaved for a better ligation in the next cycle. Here, a novel kind of oligonucleotide probe that could be accurately cleaved at the given position was proposed. Deoxynucleoside phosphorothioates were introduced into the deoxyoxanosine-containing oligonucleotide probes in order to increase the cleavage accuracy of endonuclease V on double-stranded DNA templates. The results illustrated that incorporating deoxynucleoside phosphorothioates could greatly reduce the effect of the nonsynchronous sequencing primer, and the queried bases of the DNA templates were unambiguously identified with 5 cycles of sequencing ligations. Additionally, the read length can reach up to 25 bp with high accuracy. The SBL-based method is inexpensive, has high-throughput, and is easy to operate allowing massive scale-up, miniaturization and automation.
Collapse
Affiliation(s)
- Yanqiang Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, PR China
| | | | | | | | | | | |
Collapse
|
29
|
Rosnes I, Rowe AD, Vik ES, Forstrøm RJ, Alseth I, Bjørås M, Dalhus B. Structural basis of DNA loop recognition by endonuclease V. Structure 2013; 21:257-65. [PMID: 23313664 DOI: 10.1016/j.str.2012.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 11/19/2012] [Accepted: 12/02/2012] [Indexed: 12/25/2022]
Abstract
The DNA repair enzyme endonuclease V (EndoV) recognizes and cleaves DNA at deaminated adenine lesions (hypoxanthine). In addition, EndoV cleaves DNA containing various helical distortions such as loops, hairpins, and flaps. To understand the molecular basis of EndoV's ability to recognize and incise DNA structures with helical distortions, we solved the crystal structure of Thermotoga maritima EndoV in complex with DNA containing a one-nucleotide loop. The structure shows that a strand-separating wedge is crucial for DNA loop recognition, with DNA strands separated precisely at the helical distortion. The additional nucleotide forming the loop rests on the surface of the wedge, while the normal adenine opposite the loop is flipped into a base recognition pocket. Our data show a different principle for DNA loop recognition and cleavage by EndoV, in which a coordinated action of a DNA-intercalating wedge and a base pocket accommodating a flipped normal base facilitate strand incision.
Collapse
Affiliation(s)
- Ida Rosnes
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, P.O. Box 4950, Nydalen, N-0424 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
30
|
Fladeby C, Vik ES, Laerdahl JK, Gran Neurauter C, Heggelund JE, Thorgaard E, Strøm-Andersen P, Bjørås M, Dalhus B, Alseth I. The human homolog of Escherichia coli endonuclease V is a nucleolar protein with affinity for branched DNA structures. PLoS One 2012; 7:e47466. [PMID: 23139746 PMCID: PMC3489907 DOI: 10.1371/journal.pone.0047466] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/11/2012] [Indexed: 12/19/2022] Open
Abstract
Loss of amino groups from adenines in DNA results in the formation of hypoxanthine (Hx) bases with miscoding properties. The primary enzyme in Escherichia coli for DNA repair initiation at deaminated adenine is endonuclease V (endoV), encoded by the nfi gene, which cleaves the second phosphodiester bond 3′ of an Hx lesion. Endonuclease V orthologs are widespread in nature and belong to a family of highly conserved proteins. Whereas prokaryotic endoV enzymes are well characterized, the function of the eukaryotic homologs remains obscure. Here we describe the human endoV ortholog and show with bioinformatics and experimental analysis that a large number of transcript variants exist for the human endonuclease V gene (ENDOV), many of which are unlikely to be translated into functional protein. Full-length ENDOV is encoded by 8 evolutionary conserved exons covering the core region of the enzyme, in addition to one or more 3′-exons encoding an unstructured and poorly conserved C-terminus. In contrast to the E. coli enzyme, we find recombinant ENDOV neither to incise nor bind Hx-containing DNA. While both enzymes have strong affinity for several branched DNA substrates, cleavage is observed only with E. coli endoV. We find that ENDOV is localized in the cytoplasm and nucleoli of human cells. As nucleoli harbor the rRNA genes, this may suggest a role for the protein in rRNA gene transactions such as DNA replication or RNA transcription.
Collapse
Affiliation(s)
- Cathrine Fladeby
- Department of Microbiology, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN), Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
| | - Erik Sebastian Vik
- Department of Microbiology, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN), Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
| | - Jon K. Laerdahl
- Department of Microbiology, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN), Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
| | - Christine Gran Neurauter
- Department of Microbiology, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN), Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
| | - Julie E. Heggelund
- Department of Medical Biochemistry, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN), Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
| | - Eirik Thorgaard
- Department of Microbiology, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN), Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
| | - Pernille Strøm-Andersen
- Department of Medical Biochemistry, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN), Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN), Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
| | - Bjørn Dalhus
- Department of Microbiology, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN), Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
| | - Ingrun Alseth
- Department of Microbiology, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN), Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- * E-mail:
| |
Collapse
|
31
|
Mi R, Alford-Zappala M, Kow YW, Cunningham RP, Cao W. Human endonuclease V as a repair enzyme for DNA deamination. Mutat Res 2012; 735:12-8. [PMID: 22664237 DOI: 10.1016/j.mrfmmm.2012.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/16/2012] [Accepted: 05/18/2012] [Indexed: 12/28/2022]
Abstract
The human endonuclease V gene is located in chromosome 17q25.3 and encodes a 282 amino acid protein that shares about 30% sequence identity with bacterial endonuclease V. This study reports biochemical properties of human endonuclease V with respect to repair of deaminated base lesions. Using soluble proteins fused to thioredoxin at the N-terminus, we determined repair activities of human endonuclease V on deoxyinosine (I)-, deoxyxanthosine (X)-, deoxyoxanosine (O)- and deoxyuridine (U)-containing DNA. Human endonuclease V is most active with deoxyinosine-containing DNA but with minor activity on deoxyxanthosine-containing DNA. Endonuclease activities on deoxyuridine and deoxyoxanosine were not detected. The endonuclease activity on deoxyinosine-containing DNA follows the order of single-stranded I>G/I>T/I>A/I>C/I. The preference of the catalytic activity correlates with the binding affinity of these deoxyinosine-containing DNAs. Mg(2+) and to a much less extent, Mn(2+), Ni(2+), Co(2+) can support the endonuclease activity. Introduction of human endonuclease V into Escherichia coli cells deficient in nfi, mug and ung genes caused three-fold reduction in mutation frequency. This is the first report of deaminated base repair activity for human endonuclease V. The relationship between the endonuclease activity and deaminated deoxyadenosine (deoxyinosine) repair is discussed.
Collapse
Affiliation(s)
- Rongjuan Mi
- Department of Genetics and Biochemistry, South Carolina Experiment Station, Clemson University, Room 219 Biosystems Research Complex, 105 Collings Street, Clemson, SC 29634, United States
| | | | | | | | | |
Collapse
|
32
|
Ma S, Saaem I, Tian J. Error correction in gene synthesis technology. Trends Biotechnol 2011; 30:147-54. [PMID: 22209624 DOI: 10.1016/j.tibtech.2011.10.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 10/21/2011] [Accepted: 10/21/2011] [Indexed: 11/15/2022]
Abstract
Accurate, economical and high-throughput gene and genome synthesis is essential to the development of synthetic biology and biotechnology. New large-scale gene synthesis methods harnessing the power of DNA microchips have recently been demonstrated. Yet, the technology is still compromised by a high occurrence of errors in the synthesized products. These errors still require substantial effort to correct. To solve this bottleneck, novel approaches based on new chemistry, enzymology or next generation sequencing have emerged. This review discusses these new trends and promising strategies of error filtration, correction and prevention in de novo gene and genome synthesis. Continued innovation in error correction technologies will enable affordable and large-scale gene and genome synthesis in the near future.
Collapse
Affiliation(s)
- Siying Ma
- Department of Biomedical Engineering and the Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA
| | | | | |
Collapse
|
33
|
Roles of endonuclease V, uracil-DNA glycosylase, and mismatch repair in Bacillus subtilis DNA base-deamination-induced mutagenesis. J Bacteriol 2011; 194:243-52. [PMID: 22056936 DOI: 10.1128/jb.06082-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The disruption of ung, the unique uracil-DNA-glycosylase-encoding gene in Bacillus subtilis, slightly increased the spontaneous mutation frequency to rifampin resistance (Rif(r)), suggesting that additional repair pathways counteract the mutagenic effects of uracil in this microorganism. An alternative excision repair pathway is involved in this process, as the loss of YwqL, a putative endonuclease V homolog, significantly increased the mutation frequency of the ung null mutant, suggesting that Ung and YwqL both reduce the mutagenic effects of base deamination. Consistent with this notion, sodium bisulfite (SB) increased the Rif(r) mutation frequency of the single ung and double ung ywqL strains, and the absence of Ung and/or YwqL decreased the ability of B. subtilis to eliminate uracil from DNA. Interestingly, the Rif(r) mutation frequency of single ung and mutSL (mismatch repair [MMR] system) mutants was dramatically increased in a ung knockout strain that was also deficient in MutSL, suggesting that the MMR pathway also counteracts the mutagenic effects of uracil. Since the mutation frequency of the ung mutSL strain was significantly increased by SB, in addition to Ung, the mutagenic effects promoted by base deamination in growing B. subtilis cells are prevented not only by YwqL but also by MMR. Importantly, in nondividing cells of B. subtilis, the accumulations of mutations in three chromosomal alleles were significantly diminished following the disruption of ung and ywqL. Thus, under conditions of nutritional stress, the processing of deaminated bases in B. subtilis may normally occur in an error-prone manner to promote adaptive mutagenesis.
Collapse
|
34
|
Mi R, Abole AK, Cao W. Dissecting endonuclease and exonuclease activities in endonuclease V from Thermotoga maritima. Nucleic Acids Res 2010; 39:536-44. [PMID: 20852258 PMCID: PMC3025561 DOI: 10.1093/nar/gkq791] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Endonuclease V is an enzyme that initiates a conserved DNA repair pathway by making an endonucleolytic incision at the 3'-side 1 nt from a deaminated base lesion. DNA cleavage analysis using mutants defective in DNA binding and Mn(2+) as a metal cofactor reveals a novel 3'-exonuclease activity in endonuclease V [Feng,H., Dong,L., Klutz,A.M., Aghaebrahim,N. and Cao,W. (2005) Defining amino acid residues involved in DNA-protein interactions and revelation of 3'-exonuclease activity in endonuclease V. Biochemistry, 44, 11486-11495.]. This study defines the enzymatic nature of the endonuclease and exonuclease activity in endonuclease V from Thermotoga maritima. In addition to its well-known inosine-dependent endonuclease, Tma endonuclease V also exhibits inosine-dependent 3'-exonuclease activity. The dependence on an inosine site and the exonuclease nature of the 3'-exonuclease activity was demonstrated using 5'-labeled and internally-labeled inosine-containing DNA and a H214D mutant that is defective in non-specific nuclease activity. Detailed kinetic analysis using 3'-labeled DNA indicates that Tma endonuclease V also possesses non-specific 5'-exonuclease activity. The multiplicity of the endonuclease and exonuclease activity is discussed with respect to deaminated base repair.
Collapse
Affiliation(s)
- Rongjuan Mi
- Department of Genetics and Biochemistry, South Carolina Experiment Station, Clemson University, Clemson, SC 29634, USA
| | | | | |
Collapse
|
35
|
Endonuclease V-mediated deoxyinosine excision repair in vitro. DNA Repair (Amst) 2010; 9:1073-9. [PMID: 20696623 DOI: 10.1016/j.dnarep.2010.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 07/09/2010] [Accepted: 07/10/2010] [Indexed: 11/23/2022]
Abstract
Deoxyinosine (dI) in DNA can arise from hydrolytic or nitrosative deamination of deoxyadenosine. It is excised in a repair pathway that is initiated by endonuclease V, the nfi gene product, in Escherichia coli. Repair was studied in vitro using M13mp18 derived heteroduplexes containing a site-specific deoxyinosine. Unpaired dI/G mismatch resides within the recognition site for XhoI restriction endonucleases, permitting evaluation of repair occurring on deoxyinosine-containing DNA strand. Our results show that dI lesions were efficiently repaired in nfi(+)E. coli extracts but the repair level was much reduced in nfi mutant extracts. We subjected the deoxyinosine-containing heteroduplex to a purified system consisting of soluble endonuclease V fusion protein, DNA polymerase I, and DNA ligase, along with the four deoxynucleoside triphosphates. Interestingly we found these three proteins alone are sufficient to process the dI lesion efficiently. We also found that the 3'-exonuclease activity of DNA polymerase I is sufficient to remove the dI lesion in this minimum reconstituted assay.
Collapse
|
36
|
Dalhus B, Laerdahl JK, Backe PH, Bjørås M. DNA base repair--recognition and initiation of catalysis. FEMS Microbiol Rev 2009; 33:1044-78. [PMID: 19659577 DOI: 10.1111/j.1574-6976.2009.00188.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Endogenous DNA damage induced by hydrolysis, reactive oxygen species and alkylation modifies DNA bases and the structure of the DNA duplex. Numerous mechanisms have evolved to protect cells from these deleterious effects. Base excision repair is the major pathway for removing base lesions. However, several mechanisms of direct base damage reversal, involving enzymes such as transferases, photolyases and oxidative demethylases, are specialized to remove certain types of photoproducts and alkylated bases. Mismatch excision repair corrects for misincorporation of bases by replicative DNA polymerases. The determination of the 3D structure and visualization of DNA repair proteins and their interactions with damaged DNA have considerably aided our understanding of the molecular basis for DNA base lesion repair and genome stability. Here, we review the structural biochemistry of base lesion recognition and initiation of one-step direct reversal (DR) of damage as well as the multistep pathways of base excision repair (BER), nucleotide incision repair (NIR) and mismatch repair (MMR).
Collapse
Affiliation(s)
- Bjørn Dalhus
- Centre for Molecular Biology and Neuroscience (CMBN), Rikshospitalet University Hospital, Oslo, Norway
| | | | | | | |
Collapse
|
37
|
Production of 3-nitrosoindole derivatives by Escherichia coli during anaerobic growth. J Bacteriol 2009; 191:5369-76. [PMID: 19561128 DOI: 10.1128/jb.00586-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When Escherichia coli K-12 is grown anaerobically in medium containing tryptophan and sodium nitrate, it produces red compounds. The reaction requires functional genes for trytophanase (tnaA), a tryptophan permease (tnaB), and a nitrate reductase (narG), as well as a natural drop in the pH of the culture. Mass spectrometry revealed that the purified chromophores had mass/charge ratios that closely match those for indole red, indoxyl red, and an indole trimer. These compounds are known products of chemical reactions between indole and nitrous acid. They are derived from an initial reaction of 3-nitrosoindole with indole. Apparently, nitrite that is produced from the metabolic reduction of nitrate is converted in the acid medium to nitrous acid, which leads to the nitrosation of the indole that is generated by tryptophanase. An nfi (endonuclease V) mutant and a recA mutant were selectively killed during the period of chromophore production, and a uvrA strain displayed reduced growth. These effects depended on the addition of nitrate to the medium and on tryptophanase activity in the cells. Unexpectedly, the killing of a tnaA(+) nfi mutant was not accompanied by marked increases in mutation frequencies for several traits tested. The vulnerability of three DNA repair mutants indicates that a nitrosoindole or a derivative of a nitrosoindole produces lethal DNA damage.
Collapse
|
38
|
Structures of endonuclease V with DNA reveal initiation of deaminated adenine repair. Nat Struct Mol Biol 2009; 16:138-43. [PMID: 19136958 PMCID: PMC3560532 DOI: 10.1038/nsmb.1538] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 11/21/2008] [Indexed: 01/07/2023]
Abstract
Endonuclease V (EndoV) initiates a major base-repair pathway for nitrosative deamination resulting from endogenous processes and increased by oxidative stress from mitochondrial dysfunction or inflammatory responses. We solved the crystal structures of Thermotoga maritima EndoV in complex with a hypoxanthine lesion substrate and with product DNA. The PYIP wedge motif acts as a minor groove-damage sensor for helical distortions and base mismatches and separates DNA strands at the lesion. EndoV incises DNA with an unusual offset nick 1 nucleotide 3' of the lesion, as the deaminated adenine is rotated approximately 90 degrees into a recognition pocket approximately 8 A from the catalytic site. Tight binding by the lesion-recognition pocket in addition to Mg(2+) and hydrogen-bonding interactions to the DNA ends stabilize the product complex, suggesting an orderly recruitment of downstream proteins in this base-repair pathway.
Collapse
|
39
|
Cross MJ, Waters DLE, Lee LS, Henry RJ. Endonucleolytic mutation analysis by internal labeling (EMAIL). Electrophoresis 2008; 29:1291-301. [PMID: 18288672 DOI: 10.1002/elps.200700452] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mismatch-specific endonucleases are efficient tools for the targeted scanning of populations for subtle DNA variations. Conventional protocols involve 5'-labeled amplicon substrates and the detection of digestion products by LIF electrophoresis. A shortcoming of such protocols, however, is the limited 5'-signal strength. Normally the sensitivity of fluorescent DNA analyzers is superior to that of intercalating dye/agarose systems, however, pooling capacities of the former and latter approaches to mismatch scanning are somewhat similar. Detection is further limited by significant background. We investigated the activity of CEL nucleases using amplicon substrates labeled both internally and at each 5'-terminus. The amplicons were generated from exon 8 of the rice starch synthase IIa encoding gene. Signal of both 5'-labels was significantly reduced by enzyme activity, while that of the internal label was largely unaffected. In addition, background resulting from internal labeling was a significant improvement on that associated with 5'-labeling. Sizing of the multilabeled substrates suggests that 5'-modification enhances exonucleolytic activity, resulting in the removal of the dye-labeled terminal nucleotides. We have developed an alternative approach to mismatch detection, in which amplicon labeling is achieved via the incorporation of fluorescently labeled deoxynucleotides, which we have named Endonucleolytic Mutation Analysis by Internal Labeling (EMAIL). The strength of the EMAIL assay was demonstrated by the reclassification of a rice line as being heterozygous for the starch gene. This cultivar was assigned as being homozygous by a previous resequencing study. EMAIL shows potential for the clear identification of multiple mutations amongst allelic pools.
Collapse
Affiliation(s)
- Michael J Cross
- Grain Foods CRC, Centre for Plant Conservation Genetics, Southern Cross University, Lismore, NSW, Australia.
| | | | | | | |
Collapse
|
40
|
Yasui M, Suenaga E, Koyama N, Masutani C, Hanaoka F, Gruz P, Shibutani S, Nohmi T, Hayashi M, Honma M. Miscoding properties of 2'-deoxyinosine, a nitric oxide-derived DNA Adduct, during translesion synthesis catalyzed by human DNA polymerases. J Mol Biol 2008; 377:1015-23. [PMID: 18304575 DOI: 10.1016/j.jmb.2008.01.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 01/10/2008] [Accepted: 01/14/2008] [Indexed: 01/20/2023]
Abstract
Chronic inflammation involving constant generation of nitric oxide (*NO) by macrophages has been recognized as a factor related to carcinogenesis. At the site of inflammation, nitrosatively deaminated DNA adducts such as 2'-deoxyinosine (dI) and 2'-deoxyxanthosine are primarily formed by *NO and may be associated with the development of cancer. In this study, we explored the miscoding properties of the dI lesion generated by Y-family DNA polymerases (pols) using a new fluorescent method for analyzing translesion synthesis. An oligodeoxynucleotide containing a single dI lesion was used as a template in primer extension reaction catalyzed by human DNA pols to explore the miscoding potential of the dI adduct. Primer extension reaction catalyzed by pol alpha was slightly retarded prior to the dI adduct site; most of the primers were extended past the lesion. Pol eta and pol kappaDeltaC (a truncated form of pol kappa) readily bypassed the dI lesion. The fully extended products were analyzed by using two-phased PAGE to quantify the miscoding frequency and specificity occurring at the lesion site. All pols, that is, pol alpha, pol eta, and pol kappaDeltaC, promoted preferential incorporation of 2'-deoxycytidine monophosphate (dCMP), the wrong base, opposite the dI lesion. Surprisingly, no incorporation of 2'-deoxythymidine monophosphate, the correct base, was observed opposite the lesion. Steady-state kinetic studies with pol alpha, pol eta, and pol kappaDeltaC indicated that dCMP was preferentially incorporated opposite the dI lesion. These pols bypassed the lesion by incorporating dCMP opposite the lesion and extended past the lesion. These relative bypass frequencies past the dC:dI pair were at least 3 orders of magnitude higher than those for the dT:dI pair. Thus, the dI adduct is a highly miscoding lesion capable of generating A-->G transition. This ()NO-induced adduct may play an important role in initiating inflammation-driven carcinogenesis.
Collapse
Affiliation(s)
- Manabu Yasui
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Turner DJ, Pingle MR, Barany F. Harnessing asymmetrical substrate recognition by thermostable EndoV to achieve balanced linear amplification in multiplexed SNP typing. Biochem Cell Biol 2006; 84:232-42. [PMID: 16609704 DOI: 10.1139/o06-025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Multiplexed amplification of specific DNA sequences, by PCR or by strand-displacement amplification, is an intrinsically biased process. The relative abundance of amplified DNA can be altered significantly from the original representation and, in extreme cases, allele dropout can occur. In this paper, we present a method of linear amplification of DNA that relies on the cooperative, sequence-dependent functioning of the DNA mismatch-repair enzyme endonuclease V (EndoV) from Thermotoga maritima (Tma) and Bacillus stearothermophilus (Bst) DNA polymerase. Tma EndoV can nick one strand of unmodified duplex DNA, allowing extension by Bst polymerase. By controlling the bases surrounding a mismatch and the mismatch itself, the efficiency of nicking by EndoV and extension by Bst polymerase can be controlled. The method currently allows 100-fold multiplexed amplification of target molecules to be performed isothermally, with an average change of <1.3-fold in their original representation. Because only a single primer is necessary, primer artefacts and nonspecific amplification products are minimized.
Collapse
Affiliation(s)
- Daniel J Turner
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
42
|
Fuhrmann M, Oertel W, Berthold P, Hegemann P. Removal of mismatched bases from synthetic genes by enzymatic mismatch cleavage. Nucleic Acids Res 2005; 33:e58. [PMID: 15800209 PMCID: PMC1072809 DOI: 10.1093/nar/gni058] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The success of long polynucleotide de novo synthesis is largely dependent on the quality and purity of the oligonucleotides used. Generally, the primary product of any synthesis reaction is directly cloned, and clones with correct products have to be identified. In this study, a novel strategy has been established for removing undesired sequence variants from primary gene synthesis products. Single base-pair mismatches, insertions and deletions were cleaved with specific endonucleases. Three different enzymes--T7 endonuclease I, T4 endonuclease VII and Escherichia coli endonuclease V--have been tested. As a model, a synthetic polynucleotide encoding the bacterial chloramphenicol-acetyltransferase (cat) was synthesized using different methods for one step polynucleotide synthesis based on ligation of oligonucleotides. The influence of enzymatic mismatch cleavage (EMC) as an error correction step on the frequency of correct products was analyzed by functional cloning of the synthetic cat and comparing the error rate with that of untreated products. Significant reduction of all mutation types was observed. Statistical analysis revealed that the T4 and E.coli endonucleases reduced the occurrence of mutations in cloned synthetic gene products. The EMC treatment was successful especially in the removal of deletions and insertions from the primary ligation products.
Collapse
Affiliation(s)
- Markus Fuhrmann
- Universität Regensburg, Kompetenzzentrum für Fluoreszente Bioanalytik Josef-Engert-Strasse 9, 93053 Regensburg, Germany.
| | | | | | | |
Collapse
|
43
|
Sauvaigo S, Guerniou V, Rapin D, Gasparutto D, Caillat S, Favier A. An oligonucleotide microarray for the monitoring of repair enzyme activity toward different DNA base damage. Anal Biochem 2005; 333:182-92. [PMID: 15351295 DOI: 10.1016/j.ab.2004.06.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Indexed: 11/23/2022]
Abstract
Characterization of DNA-N-glycosylase activities in cell extract is a challenging problem and could represent a major concern for medical applications. Synthetic oligonucleotides which contain base lesions located on specific sites constitute suitable substrates for their study. An in vitro miniaturized assay was developed that allows the measurement of cleavage activities of DNA repair enzymes on a set of oligonucleotides (ODNs) that contained different lesions. The modified ODNs were indirectly hybridized onto probes chemically fixed at defined sites on a circular format within each well of a 96-well microtiter plate (Oligo Sorbent Array, OLISA). The lesions were selected among oxidative damage (8-oxo-7,8-dihydroguanine, formylamine), deaminated bases (uracil, hypoxanthine) and alkylated base (N(6)-etheno-adenine). Cleavage specificity was checked using different enzymes: Fapy-DNA-N-glycosylase, 3-methyladenine DNA glycosylase II, uracil-N-glycosylase, endonuclease V and endonuclease VIII. The extent of excision could be monitored simultaneously for the selected base damage. For this purpose, we used automated fluorescence imaging analysis of the residual ODNs that contained lesions and remained on the support after release of the cleaved ODNs recognized by the repair enzymes. The results indicated that this assay could advantageously replace the analysis of glycosylase activities by PAGE techniques. Finally we show that this in vitro repair assay represents an interesting tool for the determination of cellular repair activities.
Collapse
Affiliation(s)
- Sylvie Sauvaigo
- Laboratoire des Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, CEA/DSM/Département de Recherche Fondamentale sur la Matiére Condensée, CEA-Grenoble, 17 rue des martyrs, 38054 Grenoble Cedex 9, France.
| | | | | | | | | | | |
Collapse
|
44
|
Pincas H, Pingle MR, Huang J, Lao K, Paty PB, Friedman AM, Barany F. High sensitivity EndoV mutation scanning through real-time ligase proofreading. Nucleic Acids Res 2004; 32:e148. [PMID: 15514109 PMCID: PMC528826 DOI: 10.1093/nar/gnh150] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ability to associate mutations in cancer genes with the disease and its subtypes is critical for understanding oncogenesis and identifying biomarkers for clinical diagnosis. A two-step mutation scanning method that sequentially used endonuclease V (EndoV) to nick at mismatches and DNA ligase to reseal incorrectly or nonspecifically nicked sites was previously developed in our laboratory. Herein we report an optimized single-step assay that enables ligase to proofread EndoV cleavage in real-time under a compromise between buffer conditions. Real-time proofreading results in a dramatic reduction of background cleavage. A universal PCR strategy that employs both unlabeled gene-specific primers and labeled universal primers, allows for multiplexed gene amplification and precludes amplification of primer dimers. Internally labeled PCR primers eliminate EndoV cleavage at the 5' terminus, enabling high-throughput capillary electrophoresis readout. Furthermore, signal intensity is increased and artifacts are reduced by generating heteroduplexes containing only one of the two possible mismatches (e.g. either A/C or G/T). The single-step assay improves sensitivity to 1:50 and 1:100 (mutant:wild type) for unknown mutations in the p53 and K-ras genes, respectively, opening prospects as an early detection tool.
Collapse
Affiliation(s)
- Hanna Pincas
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Hitchcock TM, Gao H, Cao W. Cleavage of deoxyoxanosine-containing oligodeoxyribonucleotides by bacterial endonuclease V. Nucleic Acids Res 2004; 32:4071-80. [PMID: 15289580 PMCID: PMC506822 DOI: 10.1093/nar/gkh747] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Oxanine (O) is a deamination product derived from guanine with the nitrogen at the N1 position substituted by oxygen. Cytosine, thymine, adenine, guanine as well as oxanine itself can be incorporated by Klenow Fragment to pair with oxanine in a DNA template with similar efficiency, indicating that oxanine in DNA may cause various mutations. As a nucleotide, deoxyoxanosine may substitute for deoxyguanosine to complete a primer extension reaction. Endonuclease V, an enzyme known for its enzymatic activity on uridine-, inosine- and xanthosine-containing DNA, can cleave oxanosine-containing DNA at the second phosphodiester bond 3' to the lesion. Mg2+ or Mn2+, and to a small extent Co2+ or Ni2+, support the oxanosine-containing DNA cleavage activity. All four oxanosine-containing base pairs (A/O, T/O, C/O and G/O) were cleaved with similar efficiency. The cleavage of double-stranded oxanosine-containing DNA was approximately 6-fold less efficient than that of double-stranded inosine-containing DNA. Single-stranded oxanosine-containing DNA was cleaved with a lower efficiency as compared with double-stranded oxanosine-containing DNA. A metal ion enhances the binding of endonuclease V to double-stranded and single-stranded oxanosine-containing DNA 6- and 4-fold, respectively. Hypothetic models of oxanine-containing base pairs and deaminated base recognition mechanism are presented.
Collapse
Affiliation(s)
- Thomas M Hitchcock
- Department of Genetics, Biochemistry and Life Science Studies, South Carolina, Experiment Station, Clemson University, Room 219, Biosystems Research Complex, 51 New Cherry Street, Clemson, SC 29634, USA
| | | | | |
Collapse
|
46
|
Hashimoto M, Imhoff B, Ali MM, Kow YW. HU protein of Escherichia coli has a role in the repair of closely opposed lesions in DNA. J Biol Chem 2003; 278:28501-7. [PMID: 12748168 DOI: 10.1074/jbc.m303970200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Closely opposed lesions form a unique class of DNA damage that is generated by ionizing radiation. Improper repair of closely opposed lesions could lead to the formation of double strand breaks that can result in increased lethality and mutagenesis. In vitro processing of closely opposed lesions was studied using double-stranded DNA containing a nick in close proximity opposite to a dihydrouracil. In this study we showed that HU protein, an Escherichia coli DNA-binding protein, has a role in the repair of closely opposed lesions. The repair of dihydrouracil is initiated by E. coli endonuclease III and processed via the base excision repair pathway. HU protein was shown to inhibit the rate of removal of dihydrouracil by endonuclease III only when the DNA substrate contained a nick in close proximity opposite to the dihydrouracil. In contrast, HU protein did not inhibit the subsequent steps of the base excision repair pathway, namely the DNA synthesis and ligation reactions catalyzed by E. coli DNA polymerase and E. coli DNA ligase, respectively. The nick-dependent selective inhibition of endonuclease III activity by HU protein suggests that HU could play a role in reducing the formation of double strand breaks in E. coli.
Collapse
Affiliation(s)
- Mitsumasa Hashimoto
- Department of Radiation Oncology, Emory University, Atlanta, Georgia 30303, USA
| | | | | | | |
Collapse
|
47
|
Moe A, Ringvoll J, Nordstrand LM, Eide L, Bjørås M, Seeberg E, Rognes T, Klungland A. Incision at hypoxanthine residues in DNA by a mammalian homologue of the Escherichia coli antimutator enzyme endonuclease V. Nucleic Acids Res 2003; 31:3893-900. [PMID: 12853604 PMCID: PMC167633 DOI: 10.1093/nar/gkg472] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Deamination of DNA bases can occur spontaneously, generating highly mutagenic lesions such as uracil and hypoxanthine. In Escherichia coli two enzymes initiate repair at hypoxanthine residues in DNA. The alkylbase DNA glycosylase, AlkA, initiates repair by removal of the damaged base, whereas endonuclease V, Endo V, hydrolyses the second phosphodiester bond 3' to the lesion. We have identified and characterised a mouse cDNA with striking homology to the E.coli nfi gene, which also has significant similarities to motifs required for catalytic activity of the UvrC endonuclease. The 37-kDa mouse enzyme (mEndo V) incises the DNA strand at the second phosphodiester bond 3' to hypoxanthine- and uracil-containing nucleotides. The activity of mEndo V is elevated on single-stranded DNA substrate in vitro. Expression of the mouse protein in a DNA repair-deficient E.coli alkA nfi strain suppresses its spontaneous mutator phenotype. We suggest that mEndo V initiates an alternative excision repair pathway for hypoxanthine removal. It thus appears that mEndo V has properties overlapping the function of alkylbase DNA glycosylase (Aag) in repair of deaminated adenine, which to some extent could explain the absence of phenotypic abnormalities associated with Aag knockout in mice.
Collapse
Affiliation(s)
- Ane Moe
- Centre for Molecular Biology and Neuroscience and Institute of Medical Microbiology, University of Oslo, Rikshospitalet, N-0027 Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Bacterial RecA protein is required for repair of two-strand DNA lesions that disable whole chromosomes. recA mutants are viable, suggesting a considerable cellular capacity to avoid these chromosome-disabling lesions. recA-dependent mutants reveal chromosomal lesion avoidance pathways. Here we characterize one such mutant, rdgB/yggV, deficient in a putative inosine/xanthosine triphosphatase, conserved throughout kingdoms of life. The rdgB recA lethality is suppressed by inactivation of endonuclease V (gpnfi) specific for DNA-hypoxanthines/xanthines, suggesting that RdgB either intercepts improper DNA precursors dITP/dXTP or works downstream of EndoV in excision repair of incorporated hypoxathines/xanthines. We find that DNA isolated from rdgB mutants contains EndoV-recognizable modifications, whereas DNA from nfi mutants does not, substantiating the dITP/dXTP interception by RdgB. rdgB recBC cells are inviable, whereas rdgB recF cells are healthy, suggesting that chromosomes in rdgB mutants suffer double-strand breaks. Chromosomal fragmentation is indeed observed in rdgB recBC mutants and is suppressed in rdgB recBC nfi mutants. Thus, one way to avoid chromosomal lesions is to prevent hypoxanthine/xanthine incorporation into DNA via interception of dITP/dXTP.
Collapse
Affiliation(s)
- Jill S Bradshaw
- Department of Microbiology, University of Illinois at Urbana-Champaign, B103 C&LSL, 601 South Goodwin Ave., 61801-3709, USA
| | | |
Collapse
|
49
|
Abstract
Deamination of DNA bases can occur spontaneously, generating highly mutagenic lesions such as uracil, hypoxanthine, and xanthine. When cells are under oxidative stress that is induced either by oxidizing agents or by mitochondrial dysfunction, additional deamination products such as 5-hydroxymethyluracil (5-HMU) and 5-hydroxyuracil (5-OH-Ura) are formed. The cellular level of these highly mutagenic lesions is increased substantially when cells are exposed to DNA damaging agent, such as ionizing radiation, redox reagents, nitric oxide, and others. The cellular repair of deamination products is predominantly through the base excision repair (BER) pathway, a major cellular repair pathway that is initiated by lesion specific DNA glycosylases. In BER, the lesions are removed by the combined action of a DNA glycosylase and an AP endonuclease, leaving behind a one-base gap. The gapped product is then further repaired by the sequential action of DNA polymerase and DNA ligase. DNA glycosylases that recognize uracil, 5-OH-Ura, 5-HMU (derived from 5-methylcytosine) and a T/G mismatch (derived from a 5-methylcytosine/G pair) are present in most cells. Many of these glycosylases have been cloned and well characterized. In yeast and mammalian cells, hypoxanthine is efficiently removed by methylpurine N-glycosylase, and it is thought that BER might be an important pathway for the repair of hypoxanthine. In contrast, no glycosylase that can recognize xanthine has been identified in either yeast or mammalian cells. In Escherichia coli, the major enzyme activity that initiates the repair of hypoxanthine and xanthine is endonuclease V. Endonuclease V is an endonuclease that hydrolyzes the second phosphodiester bond 3' to the lesion. It is hypothesized that the cleaved DNA is further repaired through an alternative excision repair (AER) pathway that requires the participation of either a 5' endonuclease or a 3'-5' exonuclease to remove the damaged base. The repair process is then completed by the sequential actions of DNA polymerase and DNA ligase. Endonuclease V sequence homologs are present in all kingdoms, and it is conceivable that endonuclease V might also be a major enzyme that initiates the repair of hypoxanthine and xanthine in mammalian cells.
Collapse
Affiliation(s)
- Yoke W Kow
- Department of Radiation Oncology, Laughlin Radiation Center, Emory University School of Medicine, 145 Edgewood Avenue, Atlanta, GA 30335, USA.
| |
Collapse
|
50
|
Otto CJ, Almqvist E, Hayden MR, Andrew SE. The "flap" endonuclease gene FEN1 is excluded as a candidate gene implicated in the CAG repeat expansion underlying Huntington disease. Clin Genet 2001; 59:122-7. [PMID: 11260214 DOI: 10.1034/j.1399-0004.2001.590210.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
At least 12 disorders including Huntington disease (HD) are associated with expansion of a trinucleotide repeat (TNR). Factors contributing to the risk of expansion of TNRs and the mechanism of expansion have not been elucidated. Data from Saccharomyces cerevisiae suggest that the flap endonuclease FEN1 plays a role in expansion of repetitive DNA tracts. It has been hypothesized that insufficiency of FEN1 or a mutant FEN1 might contribute to the occurrence of expansion events of long repetitive DNA tracts after polymerase slippage events during lagging strand synthesis. The expression pattern of FEN1 was determined, and ubiquitous tissue expression, including germ cells, suggested that FEN1 has the potential to be involved in HD. Fifteen HD parent/child pairs that demonstrated intergenerational increases in CAG length of greater than 10 repeats were examined for possible mutations or polymorphisms within the FEN1 gene that could underlie the saltatory repeat expansions seen in these individuals. No alterations were observed compared to 50 controls, excluding FEN1 as a trans-acting factor underlying TNR expansion. The identification of a candidate gene(s) in HD or other CAG-expansion disorders implicated in TNR instability will elucidate the mechanism of expansion for this growing family of neurological disorders.
Collapse
Affiliation(s)
- C J Otto
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | | | | |
Collapse
|