1
|
Carrasco C, Pastrana CL, Aicart-Ramos C, Leuba SH, Khan S, Moreno-Herrero F. Dynamics of DNA nicking and unwinding by the RepC-PcrA complex. Nucleic Acids Res 2020; 48:2013-2025. [PMID: 31930301 PMCID: PMC7038956 DOI: 10.1093/nar/gkz1200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 01/22/2023] Open
Abstract
The rolling-circle replication is the most common mechanism for the replication of small plasmids carrying antibiotic resistance genes in Gram-positive bacteria. It is initiated by the binding and nicking of double-stranded origin of replication by a replication initiator protein (Rep). Duplex unwinding is then performed by the PcrA helicase, whose processivity is critically promoted by its interaction with Rep. How Rep and PcrA proteins interact to nick and unwind the duplex is not fully understood. Here, we have used magnetic tweezers to monitor PcrA helicase unwinding and its relationship with the nicking activity of Staphylococcus aureus plasmid pT181 initiator RepC. Our results indicate that PcrA is a highly processive helicase prone to stochastic pausing, resulting in average translocation rates of 30 bp s-1, while a typical velocity of 50 bp s-1 is found in the absence of pausing. Single-strand DNA binding protein did not affect PcrA translocation velocity but slightly increased its processivity. Analysis of the degree of DNA supercoiling required for RepC nicking, and the time between RepC nicking and DNA unwinding, suggests that RepC and PcrA form a protein complex on the DNA binding site before nicking. A comprehensive model that rationalizes these findings is presented.
Collapse
Affiliation(s)
- Carolina Carrasco
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - Cesar L Pastrana
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - Sanford H Leuba
- Departments of Cell Biology and Bioengineering, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
| | - Saleem A Khan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Cantoblanco, Madrid, Spain
| |
Collapse
|
2
|
Wawrzyniak P, Sobolewska-Ruta A, Zaleski P, Łukasiewicz N, Kabaj P, Kierył P, Gościk A, Bierczyńska-Krzysik A, Baran P, Mazurkiewicz-Pisarek A, Płucienniczak A, Bartosik D. Molecular dissection of the replication system of plasmid pIGRK encoding two in-frame Rep proteins with antagonistic functions. BMC Microbiol 2019; 19:254. [PMID: 31722681 PMCID: PMC6854812 DOI: 10.1186/s12866-019-1595-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 09/10/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Gene overlapping is a frequent phenomenon in microbial genomes. Excluding so-called "trivial overlapping", there are significant implications of such genetic arrangements, including regulation of gene expression and modification of protein activity. It is also postulated that, besides gene duplication, the appearance of overlapping genes (OGs) is one of the most important factors promoting a genome's novelty and evolution. OGs coding for in-frame proteins with different functions are a particularly interesting case. In this study we identified and characterized two in-frame proteins encoded by OGs on plasmid pIGRK from Klebsiella pneumoniae, a representative of the newly distinguished pHW126 plasmid family. RESULTS A single repR locus located within the replication system of plasmid pIGRK encodes, in the same frame, two functional polypeptides: a full-length RepR protein and a RepR' protein (with N-terminal truncation) translated from an internal START codon. Both proteins form homodimers, and interact with diverse DNA regions within the plasmid replication origin and repR promoter operator. Interestingly, RepR and RepR' have opposing functions - RepR is crucial for initiation of pIGRK replication, while RepR' is a negative regulator of this process. Nevertheless, both proteins act cooperatively as negative transcriptional regulators of their own expression. CONCLUSIONS Regulation of the initiation of pIGRK replication is a complex process in which a major role is played by two in-frame proteins with antagonistic functions. In-frame encoded Rep proteins are uncommon, having been described in only a few plasmids. This is the first description of such proteins in a plasmid of the pHW126 family.
Collapse
Affiliation(s)
- Paweł Wawrzyniak
- Bioengineering Department, Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516 Warsaw, Poland
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland
| | - Agnieszka Sobolewska-Ruta
- Bioengineering Department, Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516 Warsaw, Poland
| | - Piotr Zaleski
- Bioengineering Department, Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516 Warsaw, Poland
| | - Natalia Łukasiewicz
- Bioengineering Department, Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516 Warsaw, Poland
| | - Paulina Kabaj
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland
| | - Piotr Kierył
- Bioengineering Department, Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516 Warsaw, Poland
| | - Agata Gościk
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland
| | - Anna Bierczyńska-Krzysik
- Bioengineering Department, Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516 Warsaw, Poland
| | - Piotr Baran
- Bioengineering Department, Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516 Warsaw, Poland
| | - Anna Mazurkiewicz-Pisarek
- Bioengineering Department, Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516 Warsaw, Poland
| | - Andrzej Płucienniczak
- Bioengineering Department, Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516 Warsaw, Poland
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
3
|
Abstract
Plasmids are DNA entities that undergo controlled replication independent of the chromosomal DNA, a crucial step that guarantees the prevalence of the plasmid in its host. DNA replication has to cope with the incapacity of the DNA polymerases to start de novo DNA synthesis, and different replication mechanisms offer diverse solutions to this problem. Rolling-circle replication (RCR) is a mechanism adopted by certain plasmids, among other genetic elements, that represents one of the simplest initiation strategies, that is, the nicking by a replication initiator protein on one parental strand to generate the primer for leading-strand initiation and a single priming site for lagging-strand synthesis. All RCR plasmid genomes consist of a number of basic elements: leading strand initiation and control, lagging strand origin, phenotypic determinants, and mobilization, generally in that order of frequency. RCR has been mainly characterized in Gram-positive bacterial plasmids, although it has also been described in Gram-negative bacterial or archaeal plasmids. Here we aim to provide an overview of the RCR plasmids' lifestyle, with emphasis on their characteristic traits, promiscuity, stability, utility as vectors, etc. While RCR is one of the best-characterized plasmid replication mechanisms, there are still many questions left unanswered, which will be pointed out along the way in this review.
Collapse
|
4
|
Boer DR, Ruiz-Masó JA, Rueda M, Petoukhov MV, Machón C, Svergun DI, Orozco M, del Solar G, Coll M. Conformational plasticity of RepB, the replication initiator protein of promiscuous streptococcal plasmid pMV158. Sci Rep 2016; 6:20915. [PMID: 26875695 PMCID: PMC4753449 DOI: 10.1038/srep20915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 01/13/2016] [Indexed: 11/16/2022] Open
Abstract
DNA replication initiation is a vital and tightly regulated step in all replicons and requires an initiator factor that specifically recognizes the DNA replication origin and starts replication. RepB from the promiscuous streptococcal plasmid pMV158 is a hexameric ring protein evolutionary related to viral initiators. Here we explore the conformational plasticity of the RepB hexamer by i) SAXS, ii) sedimentation experiments, iii) molecular simulations and iv) X-ray crystallography. Combining these techniques, we derive an estimate of the conformational ensemble in solution showing that the C-terminal oligomerisation domains of the protein form a rigid cylindrical scaffold to which the N-terminal DNA-binding/catalytic domains are attached as highly flexible appendages, featuring multiple orientations. In addition, we show that the hinge region connecting both domains plays a pivotal role in the observed plasticity. Sequence comparisons and a literature survey show that this hinge region could exists in other initiators, suggesting that it is a common, crucial structural element for DNA binding and manipulation.
Collapse
Affiliation(s)
- D Roeland Boer
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, 08028 Spain.,Institut de Biologia Molecular de Barcelona (Consejo Superior de Investigaciones Científicas), Barcelona, 08028, Spain
| | - José Angel Ruiz-Masó
- Centro de Investigaciones Biológicas (Consejo Superior de Investigaciones Científicas), Madrid, 28040, Spain
| | - Manuel Rueda
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, 08028 Spain
| | - Maxim V Petoukhov
- European Molecular Biology Laboratory, Hamburg Unit, EMBL c/o DESY, Hamburg, 22607, Germany
| | - Cristina Machón
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, 08028 Spain.,Institut de Biologia Molecular de Barcelona (Consejo Superior de Investigaciones Científicas), Barcelona, 08028, Spain
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Unit, EMBL c/o DESY, Hamburg, 22607, Germany
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, 08028 Spain.,Departament de Bioquímica, Facultat de Biologia, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Gloria del Solar
- Centro de Investigaciones Biológicas (Consejo Superior de Investigaciones Científicas), Madrid, 28040, Spain
| | - Miquel Coll
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, 08028 Spain.,Institut de Biologia Molecular de Barcelona (Consejo Superior de Investigaciones Científicas), Barcelona, 08028, Spain
| |
Collapse
|
5
|
Boer DR, Ruíz-Masó JA, López-Blanco JR, Blanco AG, Vives-Llàcer M, Chacón P, Usón I, Gomis-Rüth FX, Espinosa M, Llorca O, del Solar G, Coll M. Plasmid replication initiator RepB forms a hexamer reminiscent of ring helicases and has mobile nuclease domains. EMBO J 2009; 28:1666-78. [PMID: 19440202 DOI: 10.1038/emboj.2009.125] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 04/07/2009] [Indexed: 11/09/2022] Open
Abstract
RepB initiates plasmid rolling-circle replication by binding to a triple 11-bp direct repeat (bind locus) and cleaving the DNA at a specific distant site located in a hairpin loop within the nic locus of the origin. The structure of native full-length RepB reveals a hexameric ring molecule, where each protomer has two domains. The origin-binding and catalytic domains show a three-layer alpha-beta-alpha sandwich fold. The active site is positioned at one of the faces of the beta-sheet and coordinates a Mn2+ ion at short distance from the essential nucleophilic Y99. The oligomerization domains (ODs), each consisting of four alpha-helices, together define a compact ring with a central channel, a feature found in ring helicases. The toroidal arrangement of RepB suggests that, similar to ring helicases, it encircles one of the DNA strands during replication to confer processivity to the replisome complex. The catalytic domains appear to be highly mobile with respect to ODs. This mobility may account for the adaptation of the protein to two distinct DNA recognition sites.
Collapse
Affiliation(s)
- D Roeland Boer
- Institute for Research in Biomedicine, Barcelona Science Park, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ruiz-Masó JA, Anand SP, Espinosa M, Khan SA, del Solar G. Genetic and biochemical characterization of the Streptococcus pneumoniae PcrA helicase and its role in plasmid rolling circle replication. J Bacteriol 2006; 188:7416-25. [PMID: 16936036 PMCID: PMC1636267 DOI: 10.1128/jb.01010-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PcrA is a chromosomally encoded DNA helicase of gram-positive bacteria involved in replication of rolling circle replicating plasmids. Efficient interaction between PcrA and the plasmid-encoded replication initiator (Rep) protein is considered a requirement for the plasmid to replicate in a given host, and thus, the ability of a Rep protein to interact with heterologous PcrA helicases has been invoked as a determinant of plasmid promiscuity. We characterized transcription of the Streptococcus pneumoniae pcrA gene in its genetic context and studied the biochemical properties of its product, the PcrA(Spn) helicase. Transcription of the pneumococcal pcrA gene was directed by promoter Pa, consisting of an extended -10 box. Promoter Pa also accounted for expression of a second essential gene, radC, which was transcribed with much lower efficiency than pcrA, probably due to the presence of a terminator/attenuator sequence located between the two genes. PcrA(Spn) displayed single-stranded DNA-dependent ATPase activity. PcrA(Spn) showed 5'-->3' and 3'-->5' helicase activities and bound efficiently to partially duplex DNA containing a hairpin structure adjacent to a 6-nucleotide 5' or 3' single-stranded tail and one unpaired (flap) nucleotide in the complementary strand. PcrA(Spn) interacted specifically with RepC, the initiator of staphylococcal plasmid pT181. Although the pneumococcal helicase was able to initiate unwinding of the RepC-nicked pT181 DNA, it was much less processive in this activity than the cognate staphylococcal PcrA protein. Accordingly, PcrA(Spn) was inefficient in in vitro replication of pT181, and perhaps as a consequence, this plasmid could not be established in S. pneumoniae.
Collapse
Affiliation(s)
- J A Ruiz-Masó
- Department of Protein Structure and Function, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
7
|
Khan SA. DNA–Protein Interactions during the Initiation and Termination of Plasmid pT181 Rolling-Circle Replication. ACTA ACUST UNITED AC 2003; 75:113-37. [PMID: 14604011 DOI: 10.1016/s0079-6603(03)75004-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Initiation of DNA replication requires the generation of a primer at the origin of replication that can be utilized by a DNA polymerase for DNA synthesis. This can be accomplished by several means, including the synthesis of an RNA primer by a DNA primase or RNA polymerase, by nicking of one strand of the DNA to generate a free 3'-OH end that can be used as a primer, and by the utilization of the OH group present in an amino acid such as serine within an initiation protein as a primer. Furthermore, some single-stranded DNA genomes can utilize a snap-back 3'-OH end generated due to self-complementarity as a primer for DNA replication. The different modes of initiation require the generation of highly organized DNA-protein complexes at the origin that trigger the initiation of replication. A large majority of small, multicopy plasmids of Gram-positive bacteria and some of Gram-negative bacteria replicate by a rolling-circle (RC) mechanism (for previous reviews, see Refs.). More than 200 rolling-circle replicating (RCR) plasmids have so far been identified and, based on sequence homologies in their replication regions, can be grouped into approximately seven families (Refs., and http://www.essex.ac.uk/bs/staff/osborn/DPR-home.htm). This review will focus on plasmids of the pT181 family that replicate by an RC mechanism. So far, approximately 25 plasmids have been identified as belonging to this family based on the sequence homology in their double-strand origins (dsos) and the genes encoding the initiator (Rep) proteins. This review will highlight our current understanding of the structural features of the origins of replication, and the DNA-protein and protein-protein interactions that result in the generation of a replication-initiation complex that triggers replication. It will discuss the molecular events that result in the precise termination of replication once the leading-strand DNA synthesis has been completed. This review will also discuss the various biochemical activities of the initiator proteins encoded by the plasmids of the pT181 family and the mechanism of inactivation of the Rep activity after supporting one round of leading-strand replication. Finally, the review will outline the mechanism of replication of the lagging strand of the pT181 plasmid as well as the limited information that is available on the role of host proteins in pT181 leading- and lagging-strand replication.
Collapse
Affiliation(s)
- Saleem A Khan
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
8
|
Abstract
It is now well established that a large majority of small, multicopy plasmids of Gram-positive bacteria use the rolling-circle (RC) mechanism for their replication. Furthermore, the host range of RC plasmids now includes Gram-negative organisms as well as archaea. RC plasmids can be broadly classified into at least five families, individual members of which are spread among widely different bacteria. There is significant homology in the basic replicons of plasmids belonging to a particular family, and there is compelling evidence that such plasmids have evolved from common ancestors. Major advances have recently been made in our understanding of plasmid RC replication, including the characterization of the biochemical activities of the plasmid initiator proteins and their interaction with the double-strand origin, the domain structure of the initiator proteins and the molecular basis for the function of single-strand origins in plasmid lagging strand synthesis. Over the past several years, there has been a 'renaissance' in studies on RC replication as a result of the discovery that many plasmids replicate by this mechanism, and studies in the next few years are likely to reveal new and novel mechanisms used by RC plasmids for their regulated replication.
Collapse
Affiliation(s)
- S A Khan
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
9
|
Chang TL, Kramer MG, Ansari RA, Khan SA. Role of individual monomers of a dimeric initiator protein in the initiation and termination of plasmid rolling circle replication. J Biol Chem 2000; 275:13529-34. [PMID: 10788467 DOI: 10.1074/jbc.275.18.13529] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasmids of the pT181 family encode initiator proteins that act as dimers during plasmid rolling circle (RC) replication. These initiator proteins bind to the origin of replication through a sequence-specific interaction and generate a nick at the origin that acts as the primer for RC replication. Previous studies have demonstrated that the initiator proteins contain separate DNA binding and nicking-closing domains, both of which are required for plasmid replication. The tyrosine residue at position 191 of the initiator RepC protein of pT181 is known to be involved in nicking at the origin. We have generated heterodimers of RepC that consist of different combinations of wild type, DNA binding, and nicking mutant monomers to identify the role of each of the two monomers in RC replication. One monomer with DNA binding activity was sufficient for the targeting of the initiator to the origin, and the presence of Tyr-191 in one monomer was sufficient for the initiation of replication. On the other hand, a dimer consisting of one monomer defective in DNA binding and the other defective in origin nicking failed to initiate replication. Our results demonstrate that the monomer that promotes sequence-specific binding to the origin must also nick the DNA to initiate replication. Interestingly, whereas Tyr-191 of the initiator was required for nicking at the origin to initiate replication, it was dispensable for termination, suggesting that alternate amino acids in the initiator may promote termination but not initiation.
Collapse
Affiliation(s)
- T L Chang
- Department of Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|